1
|
Afzia N, Bora S, Ghosh T. Utilization of cassava peel based cellulose nanofiber for developing functionalized pectin/pullulan/olive oil nanocomposite film for cling wrapping of chicken meat. Int J Biol Macromol 2025; 305:140879. [PMID: 39933670 DOI: 10.1016/j.ijbiomac.2025.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
The current research focused on the utilization of cassava peel for fabricating cellulose nanofiber (CNF) and development of nanocomposite films for cling wrapping of chicken meat. The extraction of cellulose was achieved through the pretreatment method of cassava peel. Further, CNF was fabricated via acid hydrolysis (H2SO4) of cassava peel derived cellulose. Field emission scanning electron microscopy analysis confirmed the formation of CNF with diameters ranging from 25.9 to 50.0 nm. Moreover, X-ray diffraction (XRD) showed the characteristics peak of CNF at 21.66°. Further, the thermal stability of CNF was compared with cellulose. The CNF showed the highest thermal stability with T10, T50 value of 204.30 °C and 336.80 °C respectively, along with the residual weight of 24.19 %. Further, various compositions of films such as CNF incorporated pullulan /pectin (PP) and pullulan /pectin /olive oil (PPO)-based nanocomposite films were developed using solution casting method. The properties of films were investigated in terms of surface morphology, barrier, mechanical and optical properties. Incorporation of CNF reduced the water vapor transmission rate of the nanocomposite films. Moreover, film containing 1.5 wt% CNF exhibited the highest tensile strength (6.90 MPa) and Young's modulus (7.21 MPa), while elongation at break peaked at 1 wt% CNF for PP films but decreased with higher CNF content in PPO films. Further, the developed films were used as a cling wrapper for chicken meat and storage study was checked. The cling wrapper maintained the color of the chicken meat, minimizing weight loss from 42.08 % (unwrapped) to 6.13-11.59 % (cling wrapped) and limits the increase in hardness over 10 days. Microbial analysis revealed a significant reduction in mesophilic and psychrophilic bacterial counts in cling wrapped chicken meat as compared to unwrapped one.
Collapse
Affiliation(s)
- Nurin Afzia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - Susmita Bora
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - Tabli Ghosh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India.
| |
Collapse
|
2
|
Dhakal A, Stasiak-Różańska L, Adhikari A. Novel Approaches in Production and Application of Bacterial Cellulose in Food Industries. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40195143 DOI: 10.1007/10_2025_285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bacterial cellulose (BC) is a polymer produced by specific species of bacteria, most often by the species Komagataeibacter xylinus and Gluconacetobacter xylinus. BC may be distinguished from other types of cellulose by its origin. It is a kind of cellulose that is highly pure and robust, which is made up of long chains of glucose units that create a 3D network. The production of BC takes place via fermentation. During this process, the bacteria utilize sugar and produce cellulose as a byproduct. BC has been extensively researched for its potential use in the medical industry, food industry, and many other fields. Application includes development of an artificial skin for wound dressing because of its remarkable inter- and intramolecular hydrogen bonding and thermal and mechanical strength. BC has a large potential to be used in the food industry, where it can be combined with other polysaccharides to be used in food products as additives, edible film/coating, or active food packaging material to prolong the shelf life of the product and reduce the rate of chemical reactions and microbial growth in food products.
Collapse
Affiliation(s)
- Aakankshya Dhakal
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Lidia Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
He R, Gai L, Zhu Z, Gu H, Sun P. Industrial by-products of tiger nut starch as a source of cellulose nanocrystals for biodegradable packaging materials. Int J Biol Macromol 2025; 306:141422. [PMID: 40032128 DOI: 10.1016/j.ijbiomac.2025.141422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 03/05/2025]
Abstract
The development of eco-friendly, biodegradable nanomaterials is essential for promoting the sustainable utilization of industry by-products from tiger nut starch. This study focuses on the extraction of cellulose nanocrystals (TN-CNC) from tiger nut starch by-products through acid hydrolysis, as well as evaluation of their effects on the characteristics of starch-based biodegradable packaging. The TN-CNC was identified as having a rod-like morphology, exhibiting high crystallinity (CI = 87.2 ± 2.4 %), stable thermal properties (Tonset = 299.1 °C), an average length of 278.4 ± 91.6 nm, and a notable aspect ratio (23.1 ± 8.8). TN-CNC demonstrated compatibility with starch substrates and enhanced the microstructure of natural starch films through self-assembly and the formation of new hydrogen bonds. Incorporating 1.0 % TN-CNC improved the crystallinity of the starch films from 16.2 % to 23.7 %, and increased their thermal stability from 271.8 °C to 289.3 °C. This concentration also significantly increased tensile strength by up to 104.2 %. These findings advocate for the upcycling of tiger nut starch by-products, highlighting their potential in developing high-performance biodegradable packaging materials.
Collapse
Affiliation(s)
- Rongjun He
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China.
| | - Linlin Gai
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China.
| | - Zhouyi Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China.
| | - Hong Gu
- Genhawk Biotech Company Limited, Hubei, Wuhan 430074, China.
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China.
| |
Collapse
|
4
|
Liang J, Xu H, Qin K, Chen J, Sun Y, Li Y, Ding S, Wang R. A novel ε-polylysine-reinforced pullulan/curdlan-active film for an efficient preservation of fresh-cut fruit and vegetable. J Food Sci 2024; 89:8471-8487. [PMID: 39455259 DOI: 10.1111/1750-3841.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
In this study, a novel active film was developed by employing ε-polylysine (ε-PL) as a filler in pullulan/curdlan (P/CD) composite film (P/CD/ε-PL). The results showed that the structure of P/CD films was more uniform and denser compared to pullulan films, due to the good compatibility and intermolecular interaction between them. Among P/CD films, P/CD 6:1 film showed improved hydrophobicity, mechanical and barrier properties, and thermal stability, thereby selecting it for further use. Thereafter, the addition of ε-PL further enhanced the structural and physicochemical properties of prepared P/CD/ε-PL composite films, especially for P/CD/2.5%ε-PL composite film. It exhibited improved ultraviolet barrier (about 80% at 200-400 nm), antibacterial activity (>90% against Staphylococcus aureus and Escherichia coli), and anti-fog properties (clearly visible and transparent background). Furthermore, P/CD/2.5%ε-PL composite film exerted its preservation effect on fresh-cut peppers and kiwis during storage, delaying the softening, consumption of soluble solids, and deterioration. Therefore, the developed P/CD/2.5%ε-PL composite film provided promising applications of active packing film. Practical Application: Fresh-cut fruits and vegetables are prone to deteriorate during storage, and active packaging films play a crucial role in retaining their quality. This study was conducted to prepare a composite film by blending pullulan, curdlan, and ε-PL and explore its structural, physicochemical, and functional properties, further verifying the preservation effect on fresh-cut peppers and kiwis. Compared to polyethylene film, the P/CD/2.5%ε-PL composite film delayed the softening, consumption of soluble solids, and deterioration of fresh-cut peppers and kiwis during storage. It provides a new perspective on the preservation of fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Jiayi Liang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haishan Xu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Keying Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiani Chen
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yuying Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yiyang Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Ding K, Xie Y, Xu H, Xu S, Ge S, Li H, Chang X, Chen J, Wang R, Shan Y, Ding S. Visible light-responsive TiO 2-based hybrid nanofiller reinforced multifunctional chitosan film for effective fruit preservation. Food Chem 2024; 460:140539. [PMID: 39059328 DOI: 10.1016/j.foodchem.2024.140539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
In this study, we developed a multifunctional chitosan film with visible light-responsive photocatalytic properties by incorporating a novel nanofiller-a nanohybrid particle of poly(tannic acid) (PTA) and TiO2 (TP-NPs). Firstly, the hybridization of TiO2 with PTA not only improved its dispersion but also obtained TP-NPs with smaller band gaps (from 3.11 eV to 1.55 eV) and higher separation efficiency of photogenerated e--h+ (about 1.5-fold enhancement), thereby producing more reactive oxygen species and enhancing the antibacterial efficacy (compared with TiO2, the antibacterial effect of TP-NPs on Staphylococcus aureus and Escherichia coli was heightened by about 2 times under visible light for 1 h). Secondly, TP-NPs were hydrogen bonded with chitosan, strengthening its mechanical and barrier properties, while imparting exceptional antibacterial efficacy. Moreover, the multifunctional properties enabled the active film to effectively delay the quality deterioration of grapes and kiwifruit. Hence, this study presented a multifunctional active packaging film tailored for fruit preservation.
Collapse
Affiliation(s)
- Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiani Chen
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
6
|
Li Y, Huang N, Liu Q, Sun Y, Peng K, Jiang X, Yi Y. Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions. Foods 2024; 13:3543. [PMID: 39593959 PMCID: PMC11592553 DOI: 10.3390/foods13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the interaction between polyphenols and polysaccharides in food products, their specific non-covalent interactions and effects on macrophage functions are not well understood. Therefore, the interaction and mechanism of purified lotus root polysaccharide (PLRP) with polyphenols, and the regulatory mechanisms of the PLRP-polyphenol complex on the macrophage functionals were studied. By combining ferulic acid (FA) and chlorogenic acid (CHA) with PLRP, the complexes PLRP-FA, PLRP-CHA and the physical mixtures PLRP&FA and PLRP&CHA were prepared, where their mass ratios of polyphenols to PLRP were 143.97 and 601.67 mg g-1. Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), Ultraviolet (UV), and Transmission electron microscopy (TEM) analyses confirmed that PLRP and polyphenols may engage in non-covalent interactions via hydrogen bonds and hydrophobic interactions. We confirmed that non-covalent interactions led to high molecular weight, dense complexes. Both PLRP and its polyphenol complexes stimulated NO production by macrophages to varying degrees without exacerbating lipopolysaccharide-induced inflammatory responses. PLRP and PLRP-polyphenol complexes repaired cells with impaired antioxidant capacity, depending on doses. Those results indicated that after the combination of lotus root polysaccharide and polyphenol, the molecular weight and conformation changed significantly, which influenced the biological activity. RNA-seq analysis suggested that the regulatory mechanism of PLRP-polyphenol complex in macrophages may mainly involve oxidative phosphorylation, FoxO, TNF, IL-17, MAPK, NF-kappa B, and other signaling pathways. This study investigated the effects of polyphenol binding on the physicochemical characteristics and functional activities of polysaccharides, which provided references for the development of polysaccharide functional products and the control of nutritional quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueyu Jiang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (N.H.); (Q.L.); (Y.S.); (K.P.); (Y.Y.)
| | | |
Collapse
|
7
|
Hernandez-Tenorio F, Saez AA, Palacio DA, Galeano E, Marin-Palacio LD, Giraldo-Estrada C. Formulations based on pullulan and a derivative as coating material for the food sector. Carbohydr Polym 2024; 342:122393. [PMID: 39048197 DOI: 10.1016/j.carbpol.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Carboxymethylated derivatives of pullulan (PU) were synthesized and evaluated as coating for the postharvest preservation of blueberries. Carboxymethylpullulan was obtained by etherification reaction with the substitution degrees of 0.52, 0.34, and 0.26 for CMP1, CMP2, and CMP3 respectively. Infrared spectroscopy and nuclear magnetic resonance results showed characteristic signals of the carbonyl group belonging to the carboxymethyl group. Thermal analysis showed that CMP1, CMP2, and CMP3 derivatives presented thermal stability values of 209.91 C, 214.73 C, and 225.52 °C, respectively, and were lower with respect to PU with Td of 238.84 °C. Furthermore, an increase in the glass transition temperature due to carboxymethylation was determined. The chemical modification decreased the contact angle with respect to PU (71.34°) with values for CMP1, CMP2, and CMP3 of 39.89°, 53.72° and 60.61°, respectively. The carboxymethylation also increased the water vapor permeability and mechanical properties of the films. In addition, it was found that the CMP molecules affected the optical properties. The application of CMP-based coatings reduced the mass loss and ripening rate of blueberries compared to native pullulan, therefore, packaging from CMP molecules could be used as a coating capable of delaying ripening and extending the shelf life of fruits.
Collapse
Affiliation(s)
- Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Alex A Saez
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 0500100, Colombia
| | - Luz D Marin-Palacio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Catalina Giraldo-Estrada
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia.
| |
Collapse
|
8
|
Erceg T, Aćimović M, Šovljanski O, Lončar B, Tomić A, Pavlović M, Vukić V, Hadnađev M. Preparation and characterization of carboxymethylated pullulan/butyric acid-modified chitosan active sustainable bi-layer coatings intended for packaging of cheese slices. Int J Biol Macromol 2024; 277:134053. [PMID: 39069034 DOI: 10.1016/j.ijbiomac.2024.134053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Dependence of the food industry on conventional plastic and the generation of enormous amounts of food waste caused by microbiological spoilage have been imposed as inspiration for this work, to develop active sustainable packaging for sliced cheese using the bi-layer design. Pullulan was modified using a green approach to obtain a polyanionic character in the coating formulation. Chitosan, which has a cationic character in an acidic environment, has been modified using a butyric acid to obtain an amphiphilic character. The formed active bi-layer has demonstrated an improved barrier (decreased permeability for moisture vapor 72.2 and 77.7 times) and mechanical properties (increased tensile strength value up to 3.9 and 9.4 times) compared to the monolayer films. A novel approach to microbiological control of sliced cheese has been established, which implies a synergistic effect of Helichrysum italicum essential oil (EO) and corresponding hydrolate (HY) incorporated in separated layers. This design has ensured avoiding surfactants and preserving cheese's sensory properties, prolonging its shelf-life by 50 % at least. Improvements in cheese storage conditions using this packaging lie in the improved barrier, mechanical and antimicrobial properties, the order of lamination, and a good covering of the cheese surface by spraying.
Collapse
Affiliation(s)
- Tamara Erceg
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pavlović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia; Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA-02138 Cambridge, USA
| | - Vladimir Vukić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Miroslav Hadnađev
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Ghaani M, Soltanzadeh M, Carullo D, Farris S. Development of a Biopolymer-Based Anti-Fog Coating with Sealing Properties for Applications in the Food Packaging Sector. Polymers (Basel) 2024; 16:1745. [PMID: 38932094 PMCID: PMC11207361 DOI: 10.3390/polym16121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The quest for sustainable and functional food packaging materials has led researchers to explore biopolymers such as pullulan, which has emerged as a notable candidate for its excellent film-forming and anti-fogging properties. This study introduces an innovative anti-fog coating by combining pullulan with poly (acrylic acid sodium salt) to enhance the display of packaged food in high humidity environments without impairing the sealing performance of the packaging material-two critical factors in preserving food quality and consumers' acceptance. The research focused on varying the ratios of pullulan to poly (acrylic acid sodium salt) and investigating the performance of this formulation as an anti-fog coating on bioriented polypropylene (BOPP). Contact angle analysis showed a significant improvement in BOPP wettability after coating deposition, with water contact angle values ranging from ~60° to ~17° for formulations consisting only of poly (acrylic acid sodium salt) (P0) or pullulan (P100), respectively. Furthermore, seal strength evaluations demonstrated acceptable performance, with the optimal formulation (P50) achieving the highest sealing force (~2.7 N/2.5 cm) at higher temperatures (130 °C). These results highlight the exceptional potential of a pullulan-based coating as an alternative to conventional packaging materials, significantly enhancing anti-fogging performance.
Collapse
Affiliation(s)
- Masoud Ghaani
- Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, College Green, 2 Dublin, Ireland
- Food Packaging Laboratory, Department of Food, Environmental and Nutritional Sciences—DeFENS, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.S.); (D.C.); (S.F.)
| | - Maral Soltanzadeh
- Food Packaging Laboratory, Department of Food, Environmental and Nutritional Sciences—DeFENS, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.S.); (D.C.); (S.F.)
| | - Daniele Carullo
- Food Packaging Laboratory, Department of Food, Environmental and Nutritional Sciences—DeFENS, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.S.); (D.C.); (S.F.)
| | - Stefano Farris
- Food Packaging Laboratory, Department of Food, Environmental and Nutritional Sciences—DeFENS, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.S.); (D.C.); (S.F.)
| |
Collapse
|
10
|
Thivya P, Gururaj PN, Reddy NBP, Rajam R. Recent advances in protein-polysaccharide based biocomposites and their potential applications in food packaging: A review. Int J Biol Macromol 2024; 268:131757. [PMID: 38657934 DOI: 10.1016/j.ijbiomac.2024.131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This review addresses the current trend of replacing petroleum-based polymers in food packaging with bio-based alternatives, specifically focusing on proteins and polysaccharides. While these biopolymers exhibit excellent film-forming properties and are abundant in nature, their individual use in packaging lacks ideal plastic-like characteristics, especially in terms of mechanical and barrier properties. A recent solution involves the formulation of biocomposites through the reinforcement of one biopolymer with another (e.g., protein with a polysaccharide), significantly enhancing the physical, mechanical, and barrier properties of packaging materials. The review concentrates on the integration of proteins and polysaccharides in biocomposite materials, emphasizing their potential applications in active and intelligent food packaging systems. It covers sources, manufacturing methods, interaction mechanisms, recent developments, perspectives, and opportunities. The exploration extends to practical implementations of these biocomposites in enhancing food quality, safety, and shelf life-a green technological approach contributing to the reduction of food waste and loss.
Collapse
Affiliation(s)
- P Thivya
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Krishnankoil, Virudhunagar, Tamilnadu, India.
| | - P N Gururaj
- Department of Food Science and Technology, Hamelmalo Agricultural College, Hamelmalo, Zoba-Anseba, Eritrea
| | - N Bhanu Prakash Reddy
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - R Rajam
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Virudhunagar 626126, Tamilnadu, India
| |
Collapse
|
11
|
Su Z, Liu Y, Kang L, Chang X, Tan X, Shen D, Wang X, Wang HH, Li G. Physicochemical and antioxidant properties of pectin fractions extracted from lemon (Citrus Eureka) peels. Int J Biol Macromol 2024; 268:132014. [PMID: 38697443 DOI: 10.1016/j.ijbiomac.2024.132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yuchen Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xue Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
12
|
Gao L, Sun H, Nagassa M, Li X, Pei H, Liu S, Gu Y, He S. Edible film preparation by anthocyanin extract addition into acetylated cassava starch/sodium carboxymethyl cellulose matrix for oxidation inhibition of pumpkin seeds. Int J Biol Macromol 2024; 267:131439. [PMID: 38593902 DOI: 10.1016/j.ijbiomac.2024.131439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.
Collapse
Affiliation(s)
- Lingyan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Merga Nagassa
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiao Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hui Pei
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shuyun Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yingying Gu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|
13
|
Płoska J, Garbowska M, Rybak K, Berthold-Pluta A, Stasiak-Różańska L. Study on application of biocellulose-based material for cheese packaging. Int J Biol Macromol 2024; 264:130433. [PMID: 38408577 DOI: 10.1016/j.ijbiomac.2024.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Bacterial cellulose (BC, biocellulose) is a natural polymer of microbiological origin that meets the criteria of a biomaterial for food packaging. The aim of the research was to obtain biocellulose and test its chemical as well as physical characterization as a potential packaging for Dutch-type cheeses. Four variants of biocellulose-based material were obtained: not grinded and grinded variants obtained from YPM medium (YPM-BCNG and YPM-BCG, respectively) and not grinded and grinded variants from acid whey (AW) (AW-BCNG and AW-BCG, respectively). It was demonstrated that AW-BCNG exhibited the highest thermostability and the highest degradation temperature (348 °C). YPM-BCG and YPM-BCNG demonstrated higher sorption properties (approx. 40 %) compared to AW-BCG and AW-BCNG (approx. 15 %). Cheese packaged in biocellulose (except for YPM-BCNG) did not differ in water, fat, or protein content compared to the control cheese. All of the biocellulose packaging variants provided the cheeses with protection against unfavourable microflora. It was demonstrated that cheeses packaged in biocellulose were characterized by lower hardness, fracturability, gumminess, and chewiness than the control cheese sample. The results obtained indicate that BC may be a suitable packaging material for ripening cheeses, which shows a positive impact on selected product features.
Collapse
Affiliation(s)
- J Płoska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland.
| | - M Garbowska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - K Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - A Berthold-Pluta
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - L Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| |
Collapse
|
14
|
Chen K, Tian R, Jiang J, Xiao M, Wu K, Kuang Y, Deng P, Zhao X, Jiang F. Moisture loss inhibition with biopolymer films for preservation of fruits and vegetables: A review. Int J Biol Macromol 2024; 263:130337. [PMID: 38395285 DOI: 10.1016/j.ijbiomac.2024.130337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
In cold storage, fruits and vegetables still keep a low respiratory rate. Although cold storage is beneficial to maintain the quality of some fruits and vegetables, several factors (temperature and humidity fluctuations, heat inflow, air velocity, light, etc.) will accelerate moisture loss. Biopolymer films have attracted great attention for fruits and vegetables preservation because of their biodegradable and barrier properties. However, there is still a certain amount of water transfer occurring between storage environment/biopolymer films/fruits and vegetables (EFF). The effect of biopolymer films to inhibit moisture loss of fruits and vegetables and the water transfer mechanism in EFF system need to be studied systematically. Therefore, the moisture loss of fruits and vegetables, crucial properties, major components, fabrication methods, and formation mechanisms of biopolymer films were reviewed. Further, this study highlights the EFF system, responses of fruits and vegetables, and water transfer in EFF. This work aims to clarify the characteristics of EFF members, their influence on each other, and water transfer, which is conducive to improving the preservation efficiency of fruits and vegetables purposefully in future studies. In addition, the prospects of studies in EFF systems are shown.
Collapse
Affiliation(s)
- Kai Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Runmiao Tian
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Jun Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Man Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaojun Zhao
- Angel Biotechnology Co., Ltd., Yichang 443000, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
15
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
16
|
Lv Z, Meng X, Liang Q, Jiang T, Sun S, Tan Y, Feng J. A biodegradable oxidized starch/carboxymethyl chitosan film coated with pesticide-loaded ZIF-8 for tomato fusarium wilt control. Int J Biol Macromol 2024; 259:129249. [PMID: 38199556 DOI: 10.1016/j.ijbiomac.2024.129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Film mulching is one of the most important methods to control soil-borne diseases. However, the traditional mulch may cause microplastic pollution and soil ecological damage. Herein, a biodegradable film was developed using oxidized starch and carboxymethyl chitosan and incorporated ZIF-8 carrying fludioxonil to sustainably control soil-borne disease. The microstructure, mechanical properties, optical properties, and water barrier properties of the composite films (Flu@ZIF-8-OS/CMCS) were investigated. The results show that Flu@ZIF-8-OS/CMCS had a smooth and uniform surface and excellent light transmittance. The excellent mechanical properties of the films were verified by tensile strength, elongation at break and Young's modulus. Higher contact angle and lower water vapor permeability indicate water retention capacity of the soil was improved through using Flu@ZIF-8-OS/CMCS. Furthermore, the release properties, biological activity, degradability and safety to soil organisms of Flu@ZIF-8-OS/CMCS was determined. The addition of ZIF-8 significantly improved the film's ability to retard the release of Flu, while the Flu@ZIF-8-OS/CMCS has good soil degradability. In vitro antifungal assays and pot experiments demonstrated excellent inhibitory activity against Fusarium oxysporum f. sp. Lycopersici. Flu@ZIF-8-OS/CMCS caused only 13.33 % mortality of earthworms within 7 d. This research provides a new approach to reducing microplastic pollution and effectively managing soil-borne diseases.
Collapse
Affiliation(s)
- Ze Lv
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qianwei Liang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianzhen Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yifei Tan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
18
|
Hamedi S, Mahmoodi-Barmesi M, Kermanian H, Ramezani O, Razmpour Z. Investigation of physicochemical and biological properties of bacterial cellulose & zein-reinforced edible nanocomposites based on flaxseed mucilage containing Origanum vulgare L. essential oil. Int J Biol Macromol 2024; 254:127733. [PMID: 37918591 DOI: 10.1016/j.ijbiomac.2023.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In the present study, the effect of zein and different amounts of bacterial cellulose (BC; 1, 2 and 3 wt%) on the physical, mechanical and barrier properties of flaxseed mucilage/carboxymethyl cellulose (FM/CMC) composite was investigated. The appearance of the absorption band at 1320cm-1 in the ATR-FTIR spectra of nanocomposites indicated the successful introduction of zein into their structure. The characteristic peak at 2θ of 9° belonging to zein disappeared in XRD patterns of the prepared composites suggesting the successful coating of zein via hydrogen bonding interactions. SEM images proved the formation of semi-spherical zein microparticles in the FM/CMC matrix. TGA plots ascertained the addition of zein and nanocellulose caused a significant increase in the thermal stability of FM/CMC film, although zein showed a greater effect. The presence of zein and nanocellulose increased the mechanical strength of nanocomposites. The WVP of FM/CMC decreased after the incorporation of zein and nanocellulose, which created a tortuous path for the diffusion of water molecules. The zein particles exhibited a greater influence on improving the mechanical and barrier properties compared to nanocellulose. FM/CMC-Z film exhibited the highest mechanical strength (49.07 ± 5.89 MPa) and the lowest WVP (1.179 ± 0.076). The composites containing oregano essential oil (EO) showed higher than 60 % antibacterial properties. The bactericidal efficiency of FM/CMC/Z-EO and FM/CMC/Z-EO/BC1 nanocomposites decreased about 10% compared to FM/CMC/EO and FM/CMC-Z/BC1. This evidenced the successful encapsulation of EO molecules in zein particles. According to the in vitro release study, entrapment of EO into zein particles could delay the release and provide the extended antimicrobial effect.
Collapse
Affiliation(s)
- Sepideh Hamedi
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Hossein Kermanian
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Omid Ramezani
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Zahra Razmpour
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Zhang Y, Chen G, Qin W, Men X, Liu L, Zhang Y, Li Q, Wang L, Zhang H. In Situ Fermentation of an Ultra-Strong, Microplastic-Free, and Biodegradable Multilayer Bacterial Cellulose Film for Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44354-44363. [PMID: 37697629 DOI: 10.1021/acsami.3c10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Cellulose-based food packaging has a significant importance in reducing plastic pollution and also ensuring our safety from microplastics. Nonetheless, lignocellulose necessitates sophisticated physical and chemical treatments to be fashioned into a satisfactory food packaging, thus leading to extra consumption and operations. Here, we present a gel-assisted biosynthesis approach for the in situ production of bacterial cellulose (BC) that can be directly applied to food packaging. Komagataeibacter sucrofermentans is homogeneously distributed in the gellan gum (GG)-assisted culture system, and the BC/GG film with an even surface is attained. Then, the BC/GG film is integrated with an antibacterial layer containing a quaternary ammonium chitosan microsphere (QM) through an in situ spray biosynthesis method. The resulting BC/GG/QM multilayer film combines the barrier properties and antibacterial activity. The method for in situ biosynthesis is green, efficient, and convenient to endow the multilayer film with excellent barrier capacity (1.76 g·mm·m-2·d-1·KPa-1 at RH 75%), high mechanical properties (strength 462 MPa), and antibacterial activity (>90% against Escherichia coli O157:H7 and Staphylococcus aureus). In terms of food preservation, the overall performance of the BC/GG/QM multilayer film is better than the commercial petroleum-based film and lignocellulose-derived film. This work proffers a novel strategy to produce a more beneficial and eco-friendly multilayer film via in situ biosynthesis, which manifests great utility in the field of food packaging.
Collapse
Affiliation(s)
- Yibing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guoqiang Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao Men
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yashu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qingtao Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Xie Y, Xu H, Xu S, Ge S, Chang X, Xu Y, Luo Z, Shan Y, Ding S. How to effectively and greenly prepare multi-scale structural starch nanoparticles for strengthening gelatin film (ultrasound-Fenton system). Int J Biol Macromol 2023; 247:125848. [PMID: 37455003 DOI: 10.1016/j.ijbiomac.2023.125848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Ultrasound (US) assisted with Fenton (US-Fenton) reaction was developed to efficiently and greenly prepare starch nanoparticles (SNPs) that were employed as nanofillers to enhance gelatin (G) film properties. Compared to Fenton reaction alone, US-Fenton reaction significantly improved preparation efficiency and dispersion of SNPs (p < 0.05). An optimal US-Fenton reaction parameter (300 mM H2O2, ascorbic acid 55 mM, US 45 min) was found to prepare SNPs with uniform sizes (50-90 nm) and low molecular weight (Mn 7.91 × 105 Da). The XRD, FT-IR, and SAXS analysis revealed that the US-Fenton reaction degraded the amorphous and crystalline zones of starch from top to down, leading to the collapse of the original layered structure starch and the progressive formation of SNPs. The different sizes of SNPs were selected to prepare the composite films. The G-SNP3 film (with 50-90 nm SNPs) showed the most outstanding UV blocking, tensile, and barrier properties. Especially, the tensile strength of G-5%SNP3 film (containing 5 % SNPs) increased by 156 % and 6 % over that of G film and G-5%SNP2 film (containing 5%SNPs with 100-180 nm), respectively. Therefore, the nanomaterial was promisingly prepared by the US-Fenton system and provided a strategy for designing and producing nanocomposite films.
Collapse
Affiliation(s)
- Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China.
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China.
| |
Collapse
|
21
|
Shao X, Niu B, Fang X, Wu W, Liu R, Mu H, Gao H, Chen H. Pullulan-stabilized Soybean Phospholipids/Cinnamaldehyde emulsion for Flammulina velutipes preservation. Int J Biol Macromol 2023; 246:125425. [PMID: 37330078 DOI: 10.1016/j.ijbiomac.2023.125425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fresh mushrooms (Flammulina velutipes) are very perishable and easily brown; also they undergo postharvest loss of nutritive constituents. In this study, cinnamaldehyde (CA) emulsion was prepared by using soybean phospholipids (SP) as emulsifier and pullulan (Pul) as stabilizer. The effect of emulsion on the quality of mushroom during storage was also studied. The experimental results indicated that the emulsion obtained by adding 6 % pullulan was found to the most uniform and stable, which is beneficial to its application. Emulsion coating maintained the storage quality of Flammulina velutipes. The incorporation of CA emulsion into the coating system showed a positive effect on inhibiting the accumulation of reactive oxygen species, resulting from improving the effectiveness of delaying active free radical scavenging enzymes. The shelf life of mushrooms coated with emulsion was significantly prolonged, which indicates its potential application in food preservation.
Collapse
Affiliation(s)
- Xue Shao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ben Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Weijie Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Honglei Mu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| |
Collapse
|
22
|
Chu J, Tian G, Feng X. Recent advances in prevailing antifogging surfaces: structures, materials, durability, and beyond. NANOSCALE 2023. [PMID: 37368459 DOI: 10.1039/d3nr01767b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In past decades, antifogging surfaces have drawn more and more attention owing to their promising and wide applications such as in aerospace, traffic transportation, optical devices, the food industry, and medical and other fields. Therefore, the potential hazards caused by fogging need to be solved urgently. At present, the up-and-coming antifogging surfaces have been developing swiftly, and can effectively achieve antifogging effects primarily by preventing fog formation and rapid defogging. This review analyzes and summarizes current progress in antifogging surfaces. Firstly, some bionic and typical antifogging structures are described in detail. Then, the antifogging materials explored thus far, mainly focusing on substrates and coatings, are extensively introduced. After that, the solutions for improving the durability of antifogging surfaces are explicitly classified in four aspects. Finally, the remaining big challenges and future development trends of the ascendant antifogging surfaces are also presented.
Collapse
Affiliation(s)
- Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|
23
|
Parcheta M, Sobiesiak M. Preparation and Functionalization of Polymers with Antibacterial Properties-Review of the Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4411. [PMID: 37374596 PMCID: PMC10304131 DOI: 10.3390/ma16124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| | - Magdalena Sobiesiak
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| |
Collapse
|
24
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S, Michalska-Sionkowska M. The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers-A Review. Foods 2023; 12:foods12061343. [PMID: 36981267 PMCID: PMC10048273 DOI: 10.3390/foods12061343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
25
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|