1
|
Jogaiah S, Mujtaba AG, Mujtaba M, Archana, De Britto S, Geetha N, Belorkar SA, Shetty HS. Chitosan-metal and metal oxide nanocomposites for active and intelligent food packaging; a comprehensive review of emerging trends and associated challenges. Carbohydr Polym 2025; 357:123459. [PMID: 40158990 DOI: 10.1016/j.carbpol.2025.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
In recent years, significant advancements in biopolymer-based packaging have emerged as a response to the environmental challenges posed by traditional petroleum-based materials. The drive for sustainable, renewable, and degradable alternatives to fossil-based components in the packaging industry has led to an increased focus on chitosan, the second most abundant biopolymer after cellulose. Chitosan offers intrinsic properties such as biodegradability, biocompatibility, antimicrobial activity, excellent barrier and film-forming capabilities, positioning it as an ideal candidate for food packaging applications. However, limitations including inferior mechanical, thermal, barrier properties, and brittleness compared to conventional plastics have limiting its widespread adoption in the food packaging industry. Chitosan has been extensively utilized in various forms, particularly as nanocomposites incorporating metal nanoparticles, leading to chitosan-based nanocomposite films/coatings that synergistically combine the advantageous properties of both chitosan and metal nanoparticles. Through an in-depth analysis of the current research (primarily the last 5 years), this review delves into the physicochemical, mechanical, sensing, and antimicrobial properties of chitosan nanocomposite as an innovative food packaging material. This review will provide insights into the potential toxicity and environmental impact of nanoparticle migration, as well as the prospects and challenges associated with chitosan-metal/metal oxide nanocomposite films in the development of sustainable packaging solutions.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) - 671316, Kasaragod (DT), Kerala, India.
| | | | - Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Archana
- Nanobiotechnology laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Nagaraja Geetha
- Nanobiotechnology laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Seema A Belorkar
- Microbiology and Bioinformatics Department, Atal Bihari Vajpayee University, Bilaspur (C.G), India
| | - Hunthrike Shekar Shetty
- Nanobiotechnology laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
2
|
Yang B, Zhang R, Ren Y, Tong M, Li K, Yan T, He J. Application of nano chitosan synthesized from Exopalaemon modestus shell to control the infection of cherry tomato leaves by Alternaria alternata. Int J Biol Macromol 2025; 308:142456. [PMID: 40157670 DOI: 10.1016/j.ijbiomac.2025.142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The early blight (EB) caused by Alternaria alternata was a major challenge in tomato production worldwide, often leading to serious yield loss. Induced resistance was currently one of the promising strategies to replace traditional chemical pesticides for controlling plant diseases. Here, nano-chitosan (Em-CNPs) were synthesized from chitosan (Em-CS) extracted from Taihu Lake Exopalaemon modestus by ion crosslinking method under the condition of the 5:3 ratio of Em-CS solution to tripolyphosphate solution at pH 4.5 for 1 h. The synthesized Em-CNPs were spherical shape and average particle size of 38.40 nm. Em-CNPs exhibited a significant inhibitory effect on the spore germination and mycelium growth of A. alternata. Furthermore, application of Em-CNPs significantly reduced the lesion area of cherry tomato leaves inoculated with A. alternata by 29.52 % and 16.59 %, compared with the control and Em-CS treatment, respectively. Multivariate analysis indicated that Em-CNPs enhanced the resistance of leaves to A. alternata by directly antifungal activity and increasing the activity of defense enzymes and the content of secondary metabolites in cherry tomato leaves. To sum up, Em-CNPs can be used as an environmentally friendly fungicide and inducer to control tomato EB in agricultural production.
Collapse
Affiliation(s)
- Boya Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Runan Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Mingsi Tong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ke Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
3
|
Wang X, He M, Wang X, Liu S, Luo L, Zeng Q, Wu Y, Zeng Y, Yang Z, Sheng G, Ren P, Ouyang H, Jia R. Emerging Nanochitosan for Sustainable Agriculture. Int J Mol Sci 2024; 25:12261. [PMID: 39596327 PMCID: PMC11594357 DOI: 10.3390/ijms252212261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Chemical-intensive agriculture challenges environmental sustainability and biodiversity and must be changed. Minimizing the use of agrochemicals based on renewable resources can reduce or eliminate ecosystems and biodiversity threats. Nanochitosan as a sustainable alternative offers promising solutions for sustainable agricultural practices that work at multiple spatial and temporal scales throughout the plant growth cycle. This review focuses on the potential of nanochitosan in sustainable agricultural production and provides insights into the mechanisms of action and application options of nanochitosan throughout the plant growth cycle. We emphasize the role of nanochitosan in increasing crop yields, mitigating plant diseases, and reducing agrochemical accumulation. The paper discusses the sources of nanochitosan and its plant growth promotion, antimicrobial properties, and delivery capacity. Furthermore, we outline the challenges and prospects of research trends of nanochitosan in sustainable agricultural production practices and highlight the potential of nanochitosan as a sustainable alternative to traditional agrochemicals.
Collapse
Affiliation(s)
- Xia Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Maolin He
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Xueli Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Song Liu
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Lin Luo
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zeng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Yangjin Wu
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Yinan Zeng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Zhonglin Yang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Guoqiang Sheng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Ping Ren
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| | - Han Ouyang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jia
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; (X.W.); (Z.Y.); (P.R.)
| |
Collapse
|
4
|
Komarova T, Shipounova I, Kalinina N, Taliansky M. Application of Chitosan and Its Derivatives Against Plant Viruses. Polymers (Basel) 2024; 16:3122. [PMID: 39599213 PMCID: PMC11598201 DOI: 10.3390/polym16223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Chitosan is a natural biopolymer that is industrially produced from chitin via deacetylation. Due to its unique properties and a plethora of biological activities, chitosan has found application in diverse areas from biomedicine to agriculture and the food sector. Chitosan is regarded as a biosafe, biodegradable, and biocompatible compound that was demonstrated to stimulate plant growth and to induce a general plant defense response, enhancing plant resistance to various pathogens, including bacteria, fungi, nematodes, and viruses. Here, we focus on chitosan application as an antiviral agent for plant protection. We review both the pioneer studies and recent research that report the effect of plant treatment with chitosan and its derivatives on viral infection. Special attention is paid to aspects that affect the biological activity of chitosan: polymer length and, correspondingly, its molecular weight; concentration; deacetylation degree and charge; application protocol; and experimental set-up. Thus, we compare the reported effects of various forms and derivatives of chitosan as well as chitosan-based nanomaterials, focusing on the putative mechanisms underlying chitosan-induced plant resistance to plant viruses.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Shipounova
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
5
|
Chen A, Peng C, Su C, Ma Y, Zhan X, Chen J, Liang W, Zhang W. Chitosan-Copper Hybrid Nanoflowers: A Novel Nanopesticide for Controlling Rhizoctonia solani Infection in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39367837 DOI: 10.1021/acs.jafc.4c06345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Copper-based nanomaterials are effective alternatives to traditional pesticides due to their antibacterial properties. However, the high cost and low dispersity limit their application. In this study, we synthesized cost-effective, eco-friendly, and stable chitosan-copper hybrid nanoflowers (CS-Cu HNFs) through facile self-assembly to manage agricultural diseases caused by the fungal pathogen (Rhizoctonia solani). The results show that CS-Cu HNFs, which utilized chitosan and copper phosphate as primary scaffolds, were formed via a series of nucleation, aggregation, self-assembly, and anisotropic growth processes. 200 mg/L CS-Cu HNFs exhibited an excellent inhibitory effect on R. solani, which was 6.11 times that of CuO nanoparticles, despite CS-Cu HNFs containing only 45% of Cu as that in CuO nanoparticles. Additionally, CS-Cu HNFs significantly reduced R. solani infection in various crops and displayed broad-spectrum antibacterial activity. This research provides new insights into the preparation and application of organic-inorganic hybrid nanoflowers as nanopesticides.
Collapse
Affiliation(s)
- Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yixin Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Jun Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Yadav N, Bora S, Devi B, Upadhyay C, Singh P. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108796. [PMID: 38901229 DOI: 10.1016/j.plaphy.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Nanotechnology has emerged as a promising field with the potential to revolutionize agriculture, particularly in enhancing plant defense mechanisms. Nanoparticles (NPs) are instrumental in plant defense priming, where plants are pre-exposed to controlled levels of stress to heighten their alertness and responsiveness to subsequent stressors. This process improves overall plant performance by enabling quicker and more effective responses to secondary stimuli. This review explores the application of NPs as priming agents, utilizing their unique physicochemical properties to bolster plants' innate defense mechanisms. It discusses key findings in NP-based plant defense priming, including various NP types such as metallic, metal oxide, and carbon-based NPs. The review also investigates the intricate mechanisms by which NPs interact with plants, including uptake, translocation, and their effects on plant physiology, morphology, and molecular processes. Additionally, the review examines how NPs can enhance plant responses to a range of stressors, from pathogen attacks and herbivore infestations to environmental stresses. It also discusses NPs' ability to improve plants' tolerance to abiotic stresses like drought, salinity, and heavy metals. Safety and regulatory aspects of NP use in agriculture are thoroughly addressed, emphasizing responsible and ethical deployment for environmental and human health safety. By harnessing the potential of NPs, this approach shows promise in reducing crop losses, increasing yields, and enhancing global food security while minimizing the environmental impact of traditional agricultural practices. The review concludes by emphasizing the importance of ongoing research to optimize NP formulations, dosages, and delivery methods for practical application in diverse agricultural settings.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sunayana Bora
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Bandana Devi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Chandan Upadhyay
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
7
|
Chandrasekaran M, Paramasivan M. Chitosan derivatives act as a bio-stimulants in plants: A review. Int J Biol Macromol 2024; 271:132720. [PMID: 38845257 DOI: 10.1016/j.ijbiomac.2024.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by β-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, 209, Neundong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | | |
Collapse
|
8
|
Zhao L, Zhou X, Kang Z, Peralta-Videa JR, Zhu YG. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168640. [PMID: 37989394 DOI: 10.1016/j.scitotenv.2023.168640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Under a changing climate, keeping the food supply steady for an ever-increasing population will require crop plants adapted to environmental fluctuations. Genetic engineering and genome-editing approaches have been used for developing climate-resilient crops. However, genetically modified crops have yet to be widely accepted, especially for small-scale farmers in low-income countries and some societies. Nano-priming (seed exposure to nanoparticles, NPs) has appeared as an alternative to the abovementioned techniques. This technique improves seed germination speed, promotes seedlings' vigor, and enhances plant tolerance to adverse conditions such as drought, salinity, temperature, and flooding, which may occur under extreme weather conditions. Moreover, nano-enabled seed treatment can increase the disease resistance of crops by boosting immunity, which will reduce the use of pesticides. This unsophisticated, farmer-available, cost-effective, and environment-friendly seed treatment approach may help crop plants fight climate change challenges. This review discusses the previous information about nano-enabled seed treatment for enhancing plant tolerance to abiotic stresses and increasing disease resistance. Current knowledge about the mechanisms underlying nanomaterial-seed interactions is discussed. To conclude, the review includes research questions to address before this technique reaches its full potential.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaoding Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
9
|
Li P, Liang C, Jiao J, Ruan Z, Sun M, Fu X, Zhao J, Wang T, Zhong S. Exogenous priming of chitosan induces resistance in Chinese prickly ash against stem canker caused by Fusarium zanthoxyli. Int J Biol Macromol 2024; 259:129119. [PMID: 38185296 DOI: 10.1016/j.ijbiomac.2023.129119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Stem canker is a highly destructive disease that threatens prickly ash plantations in China. This study demonstrated the effective control of stem canker in prickly ash using chitosan priming, reducing lesion areas by 46.77 % to 75.13 % across all chitosan treatments. The mechanisms underlying chitosan-induced systemic acquired resistance (SAR) in prickly ash were further investigated. Chitosan increased H2O2 levels and enhanced peroxidase and catalase enzyme activities. A well-constructed regulatory network depicting the genes involved in the SAR and their corresponding expression levels in prickly ash plants primed with chitosan was established based on transcriptomic analysis. Additionally, 224 ZbWRKYs were identified based on the whole genome of prickly ash, and their phylogenetic evolution, conserved motifs, domains and expression patterns of ZbWRKYs were comprehensively illustrated. The expression of 12 key genes related to the SAR was significantly increased by chitosan, as determined using reverse transcription-quantitative polymerase chain reaction. Furthermore, the activities of defensive enzymes and the accumulation of lignin and flavonoids in prickly ash were significantly enhanced by chitosan treatment. Taken together, this study provides valuable insights into the chitosan-mediated activation of the immune system in prickly ash, offering a promising eco-friendly approach for forest stem canker control.
Collapse
Affiliation(s)
- Peiqin Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Chaoqiong Liang
- Shaanxi Academy of Forestry, Xi'an, Shaanxi 710082, People's Republic of China
| | - Jiahui Jiao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhao Ruan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mengjiao Sun
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiao Fu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Junchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ting Wang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Siyu Zhong
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
10
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
11
|
Zhu B, Li C, Wang M, Chen J, Hu Y, Huang W, Wang H. Comparative transcriptome provides insights into gene regulation network associated with the resistance to Fusarium wilt in grafted wax gourd Benincasa hispida. FRONTIERS IN PLANT SCIENCE 2023; 14:1277500. [PMID: 37964995 PMCID: PMC10641703 DOI: 10.3389/fpls.2023.1277500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Introduction Wilt is a soil-borne disease caused by Fusarium that has become a serious threat to wax gourd production. Disease-resistant graft wax gourds are an effective treatment for Fusarium wilt. However, there are few reports on the defense mechanism of graft wax gourd against wilt diseases. Methods In the present study, disease and growth indices were compared between grafted and original wax gourds after infection with Fusarium. High level of disease resistance was observed in the grafted wax gourd, with a lower disease index and low impacts on growth after infection. RNA-seq was performed to identify the differentially expressed genes (DEGs) between the adjacent treatment time points in the grafted and original wax gourds, respectively. Then a comparative temporal analysis was performed and a total of 1,190 genes were identified to show different gene expression patterns between the two wax gourd groups during Fusarium infection. Result and discussion Here, high level of disease resistance was observed in the grafted wax gourd, with a lower disease index and low impacts on growth after infection. The DEG number was higher in grafted group than original group, and the enriched functional categories and pathways of DEGs were largely inconsistent between the two groups. These genes were enriched in multiple pathways, of which the mitogen-activated protein kinase (MAPK) signaling pathway enhanced the early defense response, and cutin, suberin, and wax biosynthesis signaling pathways enhanced surface resistance in grafted wax gourd in comparison to original group. Our study provides insights into the gene regulatory mechanisms underlying the resistance of grafted wax gourds to Fusarium wilt infection, which will facilitate the breeding and production of wilt-resistant rootstocks.
Collapse
Affiliation(s)
- Baibi Zhu
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Chunqiang Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Min Wang
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Jianjun Chen
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Yanping Hu
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Wenfeng Huang
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Huifang Wang
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agro-Products, Hainan Academy of Agricultural Sciences), Haikou, Hainan, China
| |
Collapse
|
12
|
Cui J, Sun Y, Wang L, Tan W, Guo Z. Preparation of chitosan derivatives containing aromatic five-membered heterocycles for efficient antimicrobial and antioxidant activities. Int J Biol Macromol 2023; 247:125850. [PMID: 37460067 DOI: 10.1016/j.ijbiomac.2023.125850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
In this study, nine chitosan derivatives containing aromatic five-membered heterocycles were prepared and the effects of different grafting methods on the biological activities of chitosan derivatives were investigated. The structures of all the compounds were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy, while the antioxidant, antifungal and antibacterial activities of the chitosan derivatives were tested. The experimental data suggested that the chitosan derivatives had outstanding inhibitory ability against Fusarium graminearum, Fusarium oxysporum f.sp.cucumbrum, Staphylococcus aureus and Escherichia coli. At the same time, some of the compounds showed strong scavenging ability against DPPH radical and superoxide radical. Cytotoxicity experiments have demonstrated that some chitosan derivatives are non-toxic to L929 cells. More importantly, compared to chitosan, these chitosan derivatives have good water solubility and can be used as potential polymers for antifungal and antibacterial biomaterials in agriculture.
Collapse
Affiliation(s)
- Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linqing Wang
- School of Chemical and Materials Science, Ludong University, Yantai 264025, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Kashyap S, Sharma I, Dowarah B, Barman R, Gill SS, Agarwala N. Plant and soil-associated microbiome dynamics determine the fate of bacterial wilt pathogen Ralstonia solanacearum. PLANTA 2023; 258:57. [PMID: 37524889 DOI: 10.1007/s00425-023-04209-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
MAIN CONCLUSION Plant and the soil-associated microbiome is important for imparting bacterial wilt disease tolerance in plants. Plants are versatile organisms that are endowed with the capacity to withstand various biotic and abiotic stresses despite having no locomotory abilities. Being the agent for bacterial wilt (BW) disease, Ralstonia solanacearum (RS) colonizes the xylem vessels and limits the water supply to various plant parts, thereby causing wilting. The havoc caused by RS leads to heavy losses in crop productivity around the world, for which a sustainable mitigation strategy is urgently needed. As several factors can influence plant-microbe interactions, comprehensive understanding of plant and soil-associated microbiome under the influence of RS and various environmental/edaphic conditions is important to control this pathogen. This review mainly focuses on microbiome dynamics associated with BW disease and also provide update on microbial/non-microbial approaches employed to control BW disease in crop plants.
Collapse
Affiliation(s)
- Sampurna Kashyap
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Indrani Sharma
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Bhaskar Dowarah
- Department of Botany, Bahona College, Bahona, Jorhat, Assam, 785101, India
| | - Ramen Barman
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|
14
|
Mishra D, Chitara MK, Upadhayay VK, Singh JP, Chaturvedi P. Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet ( Eleusine coracana (L.) Gaertn.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137002. [PMID: 37255562 PMCID: PMC10225717 DOI: 10.3389/fpls.2023.1137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
Collapse
Affiliation(s)
- Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Jagat Pal Singh
- Department of Physics, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| |
Collapse
|
15
|
Wang Y, Yang L, Zhou X, Wang Y, Liang Y, Luo B, Dai Y, Wei Z, Li S, He R, Ding W. Molecular mechanism of plant elicitor daphnetin-carboxymethyl chitosan nanoparticles against Ralstonia solanacearum by activating plant system resistance. Int J Biol Macromol 2023; 241:124580. [PMID: 37100321 DOI: 10.1016/j.ijbiomac.2023.124580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop protection. Due to its good biocompatibility and water solubility, carboxymethyl chitosan (CMCS) has been widely applied as a pesticide carrier biomaterial. However, the mechanism by which carboxymethyl chitosan-grafted natural product nanoparticles induce tobacco systemic resistance against bacterial wilt remains largely unknown. In this study, water-soluble CMCS-grafted daphnetin (DA) nanoparticles (DA@CMCS-NPs) were successfully synthesized, characterized, and assessed for the first time. The grafting rate of DA in CMCS was 10.05 %, and the water solubility was increased. In addition, DA@CMCS-NPs significantly increased the activities of CAT, PPO and SOD defense enzymes, activated the expression of PR1 and NPR1, and suppressed the expression of JAZ3. DA@CMCS-NPs could induce immune responses against R. solanacearum in tobacco, including increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. The application of DA@CMCS-NPs effectively suppressed the development of tobacco bacterial wilt in pot experiments, and the control efficiency was as high as 74.23 %, 67.80 %, 61.67 % at 8, 10, and 12 days after inoculation. Additionally, DA@CMCS-NPs has excellent biosafety. Therefore, this study highlighted the application of DA@CMCS-NPs in manipulating tobacco to generate defense responses against R. solanacearum, which can be attributed to systemic resistance.
Collapse
Affiliation(s)
- Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiao Zhou
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ye Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yijia Liang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binshao Luo
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuhao Dai
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhouling Wei
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Rong He
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China.
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Zhao X, Zhu D, Tan J, Wang R, Qi G. Cooperative Action of Fulvic Acid and Bacillus paralicheniformis Ferment in Regulating Soil Microbiota and Improving Soil Fertility and Plant Resistance to Bacterial Wilt Disease. Microbiol Spectr 2023; 11:e0407922. [PMID: 36861975 PMCID: PMC10100657 DOI: 10.1128/spectrum.04079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
Excessive continuous cropping and soil degradation, such as acidification, hardening, fertility decline, and the degradation of microbial community, lead to the epidemic of soilborne diseases and cause great loss in agriculture production. Application of fulvic acid can improve the growth and yield of various crops and effectively suppress soilborne plant diseases. Bacillus paralicheniformis strain 285-3 producing poly-gamma-glutamic acid is used to remove the organic acid that can cause soil acidification and increase the fertilizer effect of fulvic acid and the effect of improving soil quality and inhibiting soilborne disease. In field experiments, the application of fulvic acid and Bacillus paralicheniformis ferment effectively reduced the incidence of bacterial wilt disease and improved soil fertility. Both fulvic acid powder and B. paralicheniformis ferment improved soil microbial diversity and increased the complexity and stability of the microbial network. For B. paralicheniformis ferment, the molecular weight of poly-gamma-glutamic acid became smaller after heating, which could better improve the soil microbial community and network structure. In fulvic acid and B. paralicheniformis ferment-treated soils, the synergistic interaction between microorganisms increased and the number of keystone microorganisms increased, which included antagonistic bacteria and plant growth-promoting bacteria. Changes in the microbial community and network structure were the main reason for the reduced incidence of bacterial wilt disease. Application of fulvic acid and Bacillus paralicheniformis ferment improved soil physicochemical properties and effectively controlled bacterial wilt disease by changing microbial community and network structure and enriching antagonistic and beneficial bacteria. IMPORTANCE Continuous cropping tobacco has led to soil degradation and caused soilborne bacterial wilt disease. Fulvic acid as a biostimulator was applied to restore soil and control bacterial wilt disease. For improving its effect, fulvic acid was fermented with Bacillus paralicheniformis strain 285-3 producing poly-gamma-glutamic acid. Fulvic acid and B. paralicheniformis ferment inhibited bacterial wilt disease, improved soil quality, enriched beneficial bacteria, and increased microbial diversity and microbial network complexity. Some keystone microorganisms in fulvic acid and B. paralicheniformis ferment-treated soils had potential antimicrobial activity and plant growth-promoting attributes. Fulvic acid and B. paralicheniformis 285-3 ferment could be used to restore soil quality and microbiota and control bacterial wilt disease. This study found new biomaterial to control soilborne bacterial disease by combining fulvic acid and poly-gamma-glutamic acid application.
Collapse
Affiliation(s)
- Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Tan
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Rui Wang
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Saengsanga T, Phakratok N, Rattana T. Bioformulations Derived from Enterobacter sp. NRRU-N13 and Oligochitosan Alleviate Drought Stress in Thai Jasmine Rice (Oryza sativa L. var. KDML105). Microbes Environ 2023; 38:ME23025. [PMID: 37914312 PMCID: PMC10728635 DOI: 10.1264/jsme2.me23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/03/2023] Open
Abstract
Climate change is predicted to increase the length, severity, and frequency of drought, which limits plant development by changing various physiological and biochemical processes. Therefore, the present study investigated the effects of drought stress on indole-3-acetic and exopolysaccharide production by Enterobacter sp. NRRU-N13, developed bioformulations of plant growth-promoting Enterobacter sp. NRRU-N13, and evaluated the synergistic effects of these bioformulations in combination with different chitosans on the physiological responses of rice under drought stress. Drought stress inhibited the biosynthesis of indole-3-acetic and exopolysaccharides by Enterobacter sp. NRRU-N13. The viability and stability of Enterobacter sp. NRRU-N13 in bioformulations ranged between 4.70 and 5.70 log CFU g-1 after 80 days at an ambient temperature. Oligochitosan and chitosan at 40 mg L-1 were appropriate concentrations for improving rice seedling growth, namely, plant height, root length, shoot and root fresh weights, biomass, and the vigor index (P<0.05). The abilities of these bioformulations, in combination with oligochitosan and chitosan, to alleviate drought stress in rice were examined. The results obtained revealed that the combined application of oligochitosan (40 mg L-1) and the FON13 bioformulation (filter cake+40 mg kg-1 oligochitosan+10% Enterobacter sp. NRRU-N13) exerted the strongest synergistic effects to alleviate drought stress in rice plants by increasing ascorbate peroxidase and catalase activities, chlo-rophyll concentrations, and relative water content and suppressing proline accumulation and electrolyte leakage from rice plants under drought stress. The present results indicate that the application of oligochitosan combined with these bioformulations effectively improved plant physiology and development. Therefore, the combined application of oligochitosan and a bioformulation of Enterobacter sp. NRRU-N13 is recommended to alleviate drought stress in rice plants.
Collapse
Affiliation(s)
- Thanakorn Saengsanga
- Environmental Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Nutthida Phakratok
- Environmental Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Tarntip Rattana
- Environmental Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
18
|
Villalba-Rodríguez AM, González-González RB, Martínez-Ruiz M, Flores-Contreras EA, Cárdenas-Alcaide MF, Iqbal HMN, Parra-Saldívar R. Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin. Mar Drugs 2022; 20:782. [PMID: 36547929 PMCID: PMC9780941 DOI: 10.3390/md20120782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) have attracted significant research attention worldwide due to their unique properties and advantageous attributes, such as superior optical properties, biocompatibility, easy surface functionalization, and more. Moreover, biomass-derived CDs have attracted much attention because of their additional advantages related to more environmentally friendly and lower-cost synthesis. In this respect, chitosan has been recently explored for the preparation of CDs, which in comparison to other natural precursors exhibited additional advantages. Beyond the benefits related to the eco-friendly and abundant nature of chitosan, using it as a nanomaterial precursor offers additional benefits in terms of structure, morphology, and dopant elements. Furthermore, the high content of nitrogen in chitosan allows it to be used as a single carbon and nitrogen precursor for the preparation of N-doped CDs, significantly improving their fluorescent properties and, therefore, their performances. This review addresses the most recent advances in chitosan-based CDs with a special focus on synthesis methods, enhanced properties, and their applications in different fields, including biomedicine, the environment, and food packaging. Finally, this work also addresses the key challenges to be overcome to propose future perspectives and research to unlock their great potential for practical applications.
Collapse
Affiliation(s)
- Angel M. Villalba-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda A. Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - María Fernanda Cárdenas-Alcaide
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|