1
|
Zhang B, Zhao C, Zhao L, Wang F, Wen S. Site-Directed Immobilization of Pseudomonas fluorescens Lipase Based on SnoopCatcher/SnoopTag System for Biodiesel Production. Int J Mol Sci 2025; 26:5385. [PMID: 40508191 PMCID: PMC12155513 DOI: 10.3390/ijms26115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/24/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
The site-directed immobilization of enzymes has demonstrated significant potential in industrial applications due to its ability to minimize enzyme heterogeneity and maximize retained activity. However, existing approaches often require the introduction of unnatural amino acids or excessive specific ligase to achieve this goal. In this study, a self-catalyzed protein capture system (i.e., the SnoopCatcher/SnoopTag pair) was utilized for the directed immobilization of lipase on magnetic carriers. By tagging the Pseudomonas fluorescens lipase (PFL) with a SnoopTag at the C-terminal, the fused lipase PFL-SnoopTag (PSNT) readily conjugated with the SnoopCatcher partner via a spontaneously formed isopeptide bond between them. Novel magnetic particles functionalized by SnoopCatcher proteins were prepared using a co-precipitation method, achieving a loading capacity of around 0.8 mg/g carrier for the SnoopCatcher. This functionalized magnetic carrier enabled the site-directed immobilization of lipase PSNT at 81.4% efficiency, while the enzyme loading capacity reached 3.04 mg/g carriers. To further assess the practical performance of site-directed immobilized lipases, they were applied in biodiesel production and achieved a yield of 88.5%. Our results demonstrate a universal platform for the site-directed immobilization of enzymes with high performance, which offers significant advantages, e.g., single-step purification and catalyst-free immobilization of engineered enzymes, as well as easy recovery, highlighting its potential for industrial applications.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chenxi Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Liangyu Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Sai Wen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Holyavka MG, Goncharova SS, Artyukhov VG. Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain. Int J Mol Sci 2025; 26:547. [PMID: 39859263 PMCID: PMC11764635 DOI: 10.3390/ijms26020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties. The objective of this study is to evaluate the impact of covalent immobilization under different conditions on the proteolytic activity of the enzymes. The most favorable results were achieved by immobilizing ficin and bromelain through covalent bonding to medium and high molecular weight chitosans, using 5 and 3.33% glutaraldehyde solutions, respectively. For papain, 5 and 6.67% glutaraldehyde solutions proved to be more effective as crosslinking agents. These findings indicate that covalent immobilization can enhance the performance of these enzymes as biocatalysts, with potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Marina G. Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
- Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Svetlana S. Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
| | - Valeriy G. Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
| |
Collapse
|
3
|
Siar EH, Abellanas-Perez P, Morellon-Sterling R, Bolivar JM, Rocha-Martin J, Fernandez-Lafuente R. Designing tailor-made steric matters to improve the immobilized ficin specificity for small versus large proteins. J Biotechnol 2024; 395:12-21. [PMID: 39260701 DOI: 10.1016/j.jbiotec.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
The development of strategies that can permit to adjust the size specificity of immobilized proteases by the generation of steric hindrances may enlarge its applicability. Using as a model ficin immobilized on glyoxyl agarose, two strategies were assayed to generate tailor made steric hindrances. First, ficin has been coimmobilized on supports coated with large proteins (hemoglobin or bovine serum albumin (BSA)). While coimmobilization of ficin with BSA presented no effect on the activity versus any of the assayed substrates, coimmobilization with hemoglobin permitted to improve the immobilized ficin specificity for casein versus hemoglobin, but still significant activity versus hemoglobin remained. Second, aldehyde-dextran has been employed to modify the immobilized ficin, trying to generate steric hindrances to avoid the entry of large proteins (hemoglobin) while enabling the entry of small ones (casein). This also increased the size specificity of ficin, but still did not suppress the activity versus hemoglobin. The combination of both strategies and the use of 37ºC during the proteolysis enabled to almost fully nullify the hydrolytic activity versus hemoglobin while preserving a high percentage of the activity versus casein. The modifications improved enzyme stability and the biocatalyst could be reused for 5 cycles without alteration of its properties.
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Agri-food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | | | - Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave, Madrid 28040, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
4
|
Siar EH, Abellanas-Perez P, Rocha-Martin J, Fernandez-Lafuente R. Tailoring the specificity of ficin versus large hemoglobin and small casein by co-immobilizing inert proteins on the immobilized enzyme layer and further modification with aldehyde dextran. Int J Biol Macromol 2024; 277:134487. [PMID: 39102910 DOI: 10.1016/j.ijbiomac.2024.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.5 M urea, as the enzyme was not inhibited under standard conditions, very likely because the catalytic Cys was not fully exposed to the medium. Activity could be fully recovered by incubation with 1 M mercaptoethanol. This biocatalyst could hydrolyze hemoglobin and casein. The objective of this paper was to increase the enzyme specificity versus small proteins by generating steric hindrances to the access of large proteins. The step by step blocking via ionic exchange of the biocatalyst with aminated bovine serum albumin (BSA), aldehyde dextran and a second layer of aminated BSA produced a biocatalyst that maintained its activity versus small synthetic substrates, increased the biocatalyst stability, while reduced its activity to over 50 % versus casein. Interestingly, this treatment almost fully annulled the activity versus hemoglobin, more effectively at 37 °C than at 55 °C. The biocatalyst could be reused 5 times without changes in activity. The changes could be caused by steric hindrances, but it cannot be discarded some changes in enzyme sequence specificity caused by the modifications.
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Transformation and Food Product Elaboration Laboratory, Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Constantine, Algeria
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
5
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
6
|
Zhou H, Fang Y, Zhang J, Xiong T, Peng F. Site-directed immobilization of enzymes on nanoparticles using self-assembly systems. BIORESOURCE TECHNOLOGY 2024; 397:130505. [PMID: 38423485 DOI: 10.1016/j.biortech.2024.130505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Enzyme immobilization is an effective method for improving the stability and reusability. However, linking at random sites on the enzyme results in low catalytic efficiency due to blockage of the active site or conformational changes. Therefore, controlling the orientation of enzymes on the carrier has been developed. Here, the site-specific mutation and the SpyTag/SpyCatcher systems were used to prepare a site-directed immobilized enzyme. The thermal stability of the immobilized enzyme was better than that of the free enzyme, and ≥80 % of the catalytic activity was retained after 30 days of storage. Furthermore, the Michaelis constant (Km) and the turnover number (kcat) of the immobilized enzyme were 5.23-fold lower and 6.11-fold higher than those of the free enzyme, respectively, which appeared to be related to changes in secondary structure after immobilization. These findings provide a new and effective option for enzyme-directed immobilization.
Collapse
Affiliation(s)
- Haili Zhou
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yuling Fang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jing Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|