1
|
Mutuyimana A, Boukind S, Ablouh EH, Cherkaoui O, Khalili H, Jaworski A, El Achaby M, Kassab Z, Sehaqui H. Straightforward association of phosphate with giant reed fibers for rapid and efficient water decontamination. Carbohydr Polym 2025; 357:123470. [PMID: 40158994 DOI: 10.1016/j.carbpol.2025.123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 04/02/2025]
Abstract
Lignocellulosics present attractive properties for sustainable water decontamination. Yet, they lack strong interactive functional groups, making their performance low compared to established adsorbents. Previous works generally focused on exhaustive chemical routes aiming at cellulose isolation from lignocellulosics and its functionalization to enhance its adsorption characteristics. Here, we show that the direct functionalization of Giant Reed (Arundo donax L) in benign Diammonium phosphate/urea system affords highly phosphorylated fibers at a high yield. The samples were characterized using SEM, XRD, FTIR, 13C and 31P NMR spectroscopies, conductometric titration, and Zeta-potential measurements to comprehend their morphology, chemistry, and surface properties. The chemical functionalization of Giant Reed (GR) leads to a significant amount of phosphates attached to the fibers, resulting in a charge content of 4.45 mmol·g-1 and a negative surface charge in a wide pH range. Consequently, the adsorption performance of GR increased more than sixtyfold after phosphorylation, reaching adsorption capacities of 365 mg·g-1 for copper ions and 606-1145 mg·g-1 for dyes. Isotherm and kinetic adsorption models identified the mechanisms governing the adsorption process. This study reveals the prospects of a single-step benign chemical functionalization of a fast growing lignocellulosic resource (GR) that yields highly phosphorylated fibers for the removal of wastewater impurities.
Collapse
Affiliation(s)
- Aimée Mutuyimana
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Soumia Boukind
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Omar Cherkaoui
- Laboratory REMTEX, High School of Textile and Clothing Industries, Casablanca, Morocco
| | - Houssine Khalili
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco.
| | - Houssine Sehaqui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco.
| |
Collapse
|
2
|
Li W, Hu J, Shao Q, Tang T, Huo J, Sun J, Dai K. High-performance amino-crosslinked phosphorylated microcrystalline cellulose/MoS 2 hybrid aerogel for polystyrene nanoplastics removal from aqueous environments. J Colloid Interface Sci 2025; 684:457-468. [PMID: 39799628 DOI: 10.1016/j.jcis.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Currently, the development of high-performance adsorbents for the removal of nanoplastics in complex aquatic environments is challenging. In this study, a functionalized polyethyleneimine-phosphorylated microcrystalline cellulose/MoS2 (PEI-PMCC/MoS2) hybrid aerogel was prepared and applied to remove carboxyl-modified polystyrene (PS-COOH) nanoplastics from the aqueous solution. Benefiting from the introduced functional groups and the expanded lamellar structure in MoS2 nanosheets as well as the highly porous 3D structure of the aerogel, PEI-PMCC/MoS2 demonstrated high efficiency in PS-COOH nanoplastics removal, achieving a 402.4 ± 7.5 mg/g maximum adsorption capacity at the optimal adsorption pH of 7.0 (C0 = 300 mg/L). The adsorption isotherm and kinetics data fitted well with the Langmuir and pseudo-second-order models, respectively, suggesting that the removal of PS-COOH nanoplastics was dominated by the monolayer chemisorption process, and the thermodynamic studies revealed the exothermic nature of the spontaneous adsorption process. Furthermore, the adsorption performance of PEI-PMCC/MoS2 in different complex aqueous environments, as well as its reusability, was evaluated, and the interactions between PEI-PMCC/MoS2 and PS-COOH nanoplastics were analyzed to elaborate the adsorption mechanism. These results confirmed the high nanoplastics removal efficiency and favorable reusability in PEI-PMCC/MoS2, laying a solid foundation for developing high-performance adsorbents for nanoplastics removal.
Collapse
Affiliation(s)
- Weijin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Water Supply Co., Ltd, Guangzhou 510600, China
| | - Junhui Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaoling Shao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Huo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kang Dai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Belasri A, Blilid S, El Assimi T, Lahcini M, El Kadib A, Beniazza R. Soft phosphorylation of cellulose and starch for effective remediation of methylene blue dye and heavy metal-contaminated water. Int J Biol Macromol 2025; 309:143107. [PMID: 40222513 DOI: 10.1016/j.ijbiomac.2025.143107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
A soft strategy for the phosphorylation of cellulose and starch has been developed to produce functionalized bio-absorbents (P-Cellulose / P-Starch) for the decontamination of polluted water. The proposed synthesis pathway utilizes only phosphorus pentachloride (PCl5), without the need for urea or acids. The biopolymers were successfully phosphorylated, as confirmed by structural characterization techniques, including solid-state (NMR), x-ray diffraction (XRD), infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Furthermore, detailed insights into the morphological and structural changes as well as the adsorption capabilities of the prepared materials, were thoroughly discussed using results from scanning electron microscopy (SEM), potential zeta measurement, and inductively coupled plasma spectrometer (ICP). Remarkably, the prepared bio-absorbents exhibited enhanced sorption properties for Methylene Blue (MB) through a wide pH range compared to their native forms. These findings shed light on how the molecular structure, reactivity, networking, and functional groups of P-Cellulose and P-Starch contribute to adsorptions efficiency. In addition to demonstrating the bio-absorbents regeneration and reuse, the prepared materials achieved heavy metal removal efficiencies of u to 70 %, significantly outperforming their native forms, which removed only 30 %. This highlights the critical role of phosphate groups and flexible networks in the uptake of contaminants from water.
Collapse
Affiliation(s)
- Abdelkarim Belasri
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco
| | - Sara Blilid
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco
| | - Taha El Assimi
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco; IMED-Laboratory, Faculty of Sciences and Techniques, Cadi Ayyad University (UCA), Avenue Abdelkrim Elkhattabi, B. P 549, 40000 Marrakech, Morocco
| | - Mohammed Lahcini
- IMED-Laboratory, Faculty of Sciences and Techniques, Cadi Ayyad University (UCA), Avenue Abdelkrim Elkhattabi, B. P 549, 40000 Marrakech, Morocco
| | | | - Redouane Beniazza
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco.
| |
Collapse
|
4
|
Ding Q, Ji C, Wang T, Wang Y, Yang H. Hairy chitin nanocrystals: Sustainable adsorbents for efficient removal of organic dyes. Int J Biol Macromol 2025; 298:139948. [PMID: 39828162 DOI: 10.1016/j.ijbiomac.2025.139948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Chitin nanocrystals (ChNCs) are typically produced using a combination of strong acid hydrolysis and mechanical treatments. In this study, a mild, energy-efficient, and environmentally friendly method was developed to prepare a novel form of chitin nanocrystals called hairy chitin nanocrystals (HChNCs) without the need of any mechanical treatments. The HChNCs were made by sequential oxidations on partially deacetylated chitin, resulting in a unique morphology with chitin molecular chains protruding from central chitin nanorods. These HChNCs have a high content of carboxyl groups, reaching up to 2.72 mmol/g, which enhances their ability to adsorb methylene blue (MB) effectively. Within just 1 min, the HChNCs can adsorb as much as 909.11 ± 17.44 mg/g of MB, a significantly higher capacity compared to other chitin-derived materials. Additionally, the HChNCs showed remarkable synergistic removal efficiency for both MB and methyl orange (MO) in a mixed dye system, making them a promising sustainable option for treating wastewater from industrial printing and dyeing processes.
Collapse
Affiliation(s)
- Qian Ding
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunyu Ji
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ting Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yifeng Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Han Yang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
5
|
Toprakçürümez H, Recepoğlu YK, Arar Ö. Quaternary ammonium-modified cellulose: A sustainable strategy for purifying aqueous solutions contaminated with sunset yellow dye. Int J Biol Macromol 2025; 294:139555. [PMID: 39778837 DOI: 10.1016/j.ijbiomac.2025.139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
This study showcases the remarkable efficacy of quaternary ammonium-modified cellulose as a highly sustainable biosorbent for removing Sunset Yellow (SY) dye from water. Detailed analysis was conducted using infrared (FTIR) spectroscopy for structural changes and Scanning Electron Microscopy (SEM) for morphological changes. A minimal yet highly effective dose of 0.05 g was identified through dedicated optimization experiments, achieving near-complete removal (99 %) of SY. The biosorbent demonstrated exceptional performance across a broad pH range (2-10), accomplishing remarkable removal within just 5 min. Langmuir modeling uncovered a monolayer sorption mechanism with a high maximum capacity (107.08 mg g-1), and thermodynamic analysis affirmed the spontaneity and favorability of the sorption process. Noteworthy is the biosorbent's impressive regeneration capabilities (up to 95 %) using 1.0 M NaOH or HCl solutions and its sustained performance over three sorption-regeneration cycles, highlighting its exceptional stability and reusability. The modified cellulose exhibited remarkable resistance to common interfering ions (chloride, nitrate, and sulfate) at 10 and 100 mg L-1 concentrations. These combined features position quaternary ammonium-modified cellulose as a promising, sustainable, and efficient option for dye wastewater treatment.
Collapse
Affiliation(s)
- Halil Toprakçürümez
- Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35040, Türkiye
| | - Yaşar Kemal Recepoğlu
- Department of Chemical Engineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Türkiye
| | - Özgür Arar
- Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35040, Türkiye.
| |
Collapse
|
6
|
Sheraz M, Sun XF, Siddiqui A, Wang Y, Hu S, Sun R. Cellulose-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:645. [PMID: 39943284 PMCID: PMC11820603 DOI: 10.3390/s25030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Among the most promising areas of research, cellulose-based electrochemical sensors stand out for their intrinsic properties such as abundance, biocompatibility, and versatility. This review is concerned with the integration and application of cellulose-derived materials in electrochemical sensors, pointing out improvements in sensitivity, selectivity, stability, and functionality for a wide variety of applications. The most relevant developments on cellulose-based sensors have been concentrated on nanocellulose composite synthesis, advanced cellulose modification, and the successful embedding in wearable technologies, medical diagnostics, and environmental monitoring. Considering these, it is worth mentioning that significant challenges still need to be overcome regarding the scalability of production, selectivity improvement, and long-term stability under real operational conditions. Future research efforts will concern the union of cellulose-based sensors with the Internet of Things (IoT) and artificial intelligence (AI) toward wiser and more sustainable health and environmental solutions. Correspondingly, this work puts cellulose in the front line among the most perspective materials for enabling the development of eco-friendly and high-performance sensing technologies.
Collapse
Affiliation(s)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.); (Y.W.); (S.H.)
| | | | | | | | | |
Collapse
|
7
|
Wu W, Tang H, Bi S, Xu X, Yang S, Wang Y. Shopping around: Comparing Cd(II) sorption performance of disparate functional groups-modified microcrystalline cellulose composites. Carbohydr Polym 2024; 346:122602. [PMID: 39245489 DOI: 10.1016/j.carbpol.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
The structure-function relationship of functionalized microcrystalline cellulose (MCC) composites as adsorbents remains unclear. Herein, the orange peel-derived MCC (i.e., OP-OH-H-25) was treated by different functional agents to prepare adsorbents for cadmium (Cd(II)) removal. Mercaptoacetic acid and orthophosphoric acid did not apparently impact MCC's surface site types and contents. Alternatively, they efficiently purified OP-OH-H-25 and generated OP-OH-SH and OP-OH-P samples with increased cellulose amounts. In contrast, the glycine modification produced OP-OH-NH2 with fewer sulfhydryl/carboxyl functional groups and more amide/amino sites. The pH-dependent Cd(II) removal trends by the MCC-related materials showed three successive stages with disparate sorption modes. The Cd(II) sorption kinetics processes on OP-OH-SH, OP-OH-P, and OP-OH-NH2 reached equilibrium after 0.25 h, faster than 0.5 h on OP-OH-H-25. The maximum Cd(II) sorption capacities of MCC-related adsorbents were OP-OH-P (151.81 mg/g) > OP-OH-SH (150.80 mg/g) > OP-OH-H-25 (124.90 mg/g) > > OP-OH-NH2 (55.23 mg/g). OP-OH-P exhibited the strongest Cd(II) sorption ability under the interference of mixed aquatic components. The intrinsic Cd(II) sorption mechanisms were identified as inner-sphere complexation and cation-π bond interaction. Overall, the select priority of modifying agents is orthophosphoric acid > mercaptoacetic acid > > glycine when preparing functionalized MCC adsorbents for purifying Cd(II)-polluted water systems.
Collapse
Affiliation(s)
- Wenyu Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haoyue Tang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shiying Bi
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xinghua Xu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shitong Yang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yongsheng Wang
- State key laboratory of electrical insulation and power equipment, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
8
|
Ait Said H, Bouharras FE, Derbani H, Abouricha S, El Karroumi J, Lahcini M, Noukrati H, Ben Youcef H. Highly phosphorylated cellulose toward efficient removal of cationic dyes from aqueous solutions. Int J Biol Macromol 2024; 280:136116. [PMID: 39353526 DOI: 10.1016/j.ijbiomac.2024.136116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Highly phosphorylated cellulose was produced under different processing parameters and used as an effective adsorbent for methylene blue (MB) dye removal from aqueous systems. The characteristics of the designed adsorbent were analyzed using different technics. The zeta potential measurement of the developed adsorbents was negative (-11.3 to -49.4 mV) in the pH range of 4 to 11. Batch removal tests were performed under different processing parameters of contact time, initial concentration, phosphorylation degree and pH. The developed adsorbent with a high substitution degree of 1.07 (13.22 % of P), revealed an outstanding retention capacity for MB dye (up to 3153.5 mg/g) during an extremely low equilibrium adsorption time (∼30 min), which is 130-fold higher than pure MCC (15.3 mg/g). Interestingly, this capacity raised up to 3236.6 mg/g when raising the pH of the solution (from 7 to 11). The experimental adsorption data in the examined conditions were well fitted by the Langmuir type isotherm and pseudo-second-order kinetic models, highlighting the significance of the reaction medium and phosphate content in determining the adsorbent's retention capacity. This investigation has demonstrated the potential of converting pure MCC into high value-added adsorbent for the efficient purification of organic dye from aqueous solutions.
Collapse
Affiliation(s)
- H Ait Said
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - F E Bouharras
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - H Derbani
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - S Abouricha
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - J El Karroumi
- Université Cadi Ayad, Faculté des sciences Semlalia, 40000 Marrakech, Morocco
| | - M Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco
| | - H Noukrati
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - H Ben Youcef
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
9
|
Awasthi S, Komal, Pandey SK. Translational applications of magnetic nanocellulose composites. NANOSCALE 2024; 16:15884-15908. [PMID: 39136070 DOI: 10.1039/d4nr01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Nanocellulose has emerged as a potential 'green' material owing to its inimitable properties. Furthermore, the significant development in technology has facilitated the design of multidimensional nanocellulose structures, including one-dimensional (1D: microparticles and nanofibers), two-dimensional (2D: coatings), and three-dimensional (3D: hydrogels/ferrogels) composites. In this case, nanocellulose composites blended with magnetic nanoparticles represent a new class of hybrid materials with improved biocompatibility and biodegradability. The application field of magnetic nanocellulose composites (MNCs) ranges from biomedicine and the environment to catalysis and sensing. In this review, we present the major applications of MNCs, emphasizing their innovative benefits and how they interconnect with translational applications in clinics and the environment. Additionally, we focus on the synthesis techniques and role of different additives in the fabrication of MNCs for achieving extremely precise and intricate tasks related to real-world applications. Subsequently, we reveal the recent interdisciplinary research on MNCs and discuss their mechanical, tribological, electrochemical, magnetic, and biological phenomena. Finally, this review concludes with a portrayal of computational modelling together with a glimpse of the various translational applications of MNCs. Therefore, it is anticipated that the current review will provide the readers with an extensive opportunity and a more comprehensive depiction related to the types, properties, and applications of MNCs.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Komal
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh, India.
| |
Collapse
|
10
|
Azaryouh L, Ait Benhamou A, Aziz K, Khalili H, Jaworski A, Ullah L, Boussetta A, Aboulkas A, Moubarik A, El Achaby M, Kassab Z. Phosphorylating Tannin in Urea System: A Simple Approach for Enhanced Methylene Blue Removal from Aqueous Media. Biomacromolecules 2024; 25:4843-4855. [PMID: 38985577 DOI: 10.1021/acs.biomac.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Tannin, after lignin, is one of the most abundant sources of natural aromatic biomolecules. It has been used and chemically modified during the past few decades to create novel biobased materials. This work intended to functionalize for the first time quebracho Tannin (T) through a simple phosphorylation process in a urea system. The phosphorylation of tannin was studied by Fourier transform infrared spectroscopy (FTIR), NMR, inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray fluorescence spectrometry (XRF), while further characterization was performed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and thermogravimetric analysis (TGA) to investigate the morphology, composition, structure, and thermal degradation of the phosphorylated material. Results indicated the occurrence of phosphorylation, suggesting the insertion of phosphate-containing groups into the tannin structure, revealing a high content of phosphate for modified tannin (PT). This elevated phosphorus content serves as evidence for the successful incorporation of phosphate groups through the functionalization process. The corresponding PT and T were employed as adsorbents for methylene blue (MB) removal from aqueous solutions. The results revealed that the Langmuir isotherm model effectively represents the adsorption isotherms. Additionally, the pseudo-second-order model indicates that chemisorption predominantly controls the adsorption mechanism. This finding also supports the fact that the introduced phosphate groups via the phosphorylation process significantly contributed to the improved adsorption capacity. Under neutral pH conditions and at room temperature, the material achieved an impressive adsorption capacity of 339.26 mg·g-1 in about 2 h.
Collapse
Affiliation(s)
- Leila Azaryouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, 43150 Ben Guerir, Morocco
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592 Beni-Mellal, Morocco
| | - Anass Ait Benhamou
- Department of Wood and Forest Sciences, Laval University, Quebec, Quebec G1V 0A6, Canada
| | - Khalid Aziz
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Houssine Khalili
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, SE-10691 Stockholm, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, SE-10691 Stockholm, Sweden
| | - Latif Ullah
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, SE-10691 Stockholm, Sweden
| | - Abdelghani Boussetta
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Adil Aboulkas
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592 Beni-Mellal, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592 Beni-Mellal, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
11
|
Ranjan R, Rai R, Naik K, Parmar AS, Dhar P. Scalable phosphorylated cellulose production with improved environmental sustainability, crosslinkability and processability using 3D bioprinting for dye remediation. Int J Biol Macromol 2024; 264:130577. [PMID: 38453115 DOI: 10.1016/j.ijbiomac.2024.130577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
In the present work, phosphorylated cellulose (PC) gel has been produced following an environmentally benign approach using agro-based chemicals with improved yield. The PC gels produced were transparent, negatively charged with high consistency, charge content (1133.33 mmol/kg), degree of substitution (DS) of 0.183 and increased yield (>87 %). The XPS and EDS analysis confirms the covalently bonded phosphate groups at weight percent of 9.42 % and 11.01 %, respectively. The life cycle assessment (LCA) shows that PC gel production via the phosphorylation route is an ecologically favourable strategy compared with traditional TEMPO oxidation, resulting in 1.67 times lower CO2 emission. The rheological studies of PC gels show shear-thinning behaviour with improved 3D printability followed by heat-induced crosslinking of phosphate groups. The mechanistic insights for the condensation of phosphate to form a phosphoric ester group during cross-linking were evaluated through 31P solid-state NMR and XPS studies. Interestingly, the 3D-printed structures showed high structural stability under both compression and tensile load in both dry and wet conditions, with high water absorption (5408.33 %) and swelling capacity of 700 %. The structures show improved methylene blue (MB) remediation capabilities with a maximum removal efficiency of 99 % for 10-200 mg/L and more than seven times reusability. This work provides a green, facile and energy-efficient strategy for fabricating PCs with easy processability through additive manufacturing techniques for producing value-added products, opening up new avenues for high-performance applications.
Collapse
Affiliation(s)
- Rahul Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Kaustubh Naik
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
12
|
El maguana Y, Chikri R, Elataoui K, Ait Said H, Benchanaa M, Elhadiri N. Highly efficient ceramic membrane synthesized from sugar scum and fly ash as sustainable precursors for dyes removal. Heliyon 2024; 10:e27915. [PMID: 38510047 PMCID: PMC10950719 DOI: 10.1016/j.heliyon.2024.e27915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recycling solid industrial wastes into valuable materials is always the priority solution in waste management. In this perspective, sugar scum and fly ash were used to produce an effective low-cost porous ceramic membrane. The impacts of the sintering temperature, amount of sugar scum, and sintering time on the properties of the prepared ceramic membrane were investigated and optimized using experimental design. A simultaneous rise in both the sintering temperature and the amount of sugar scum leads to a notable increase in porosity. Moreover, the simultaneous increase or decrease in the time and the amount of sugar scum causes a significant decrease in the compressive strength. The optimal conditions have been determined as a sintering temperature of 1197 °C, a sugar scum amount of 12.06 %, and a sintering time of 253 min. Under these conditions, the density, porosity, and compressive strength were found to be 2.16 g/cm³, 34.66 %, and 28.24 MPa, respectively. In addition, the obtained ceramic membrane has a water permeability of 2356.68 L/h m2 bar, a pore size in the range 0-4.5 μm, and excellent chemical resistance in both acidic and basic media. Finally, the performance of the prepared ceramic membrane was evaluated by the filtration of methylene blue. The results indicate that sugar scum and fly ash are suitable precursors to manufacture an effective ceramic membrane for the treatment of wastewater.
Collapse
Affiliation(s)
- Y. El maguana
- Laboratory of materials science and process optimization (SCIMATOP), Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech, Morocco
| | - R. Chikri
- Laboratory of materials science and process optimization (SCIMATOP), Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech, Morocco
| | - K. Elataoui
- Laboratory of materials science and process optimization (SCIMATOP), Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech, Morocco
| | - H. Ait Said
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P) Benguerir 43150, Morocco
| | - M. Benchanaa
- Laboratory of materials science and process optimization (SCIMATOP), Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech, Morocco
| | - N. Elhadiri
- Laboratory of materials science and process optimization (SCIMATOP), Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech, Morocco
| |
Collapse
|
13
|
Dhiman A, Thaper P, Bhardwaj D, Agrawal G. Biodegradable Dextrin-Based Microgels for Slow Release of Dual Fertilizers for Sustainable Agriculture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11860-11871. [PMID: 38410836 DOI: 10.1021/acsami.3c16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we report dextrin-based biodegradable microgels (PDXE MGs) having phosphate-based cross-linking units for slow release of urea and a potential P source to improve fertilization. PDXE MGs (∼200 nm) are synthesized by cross-linking the lauroyl-functionalized dextrin chains with sodium tripolyphosphate. The developed PDXE MGs exhibit high loading (∼10%) and encapsulation efficiency (∼88%) for urea. It is observed that functionalization of PDXE MGs with lauroyl chains slows down the release of urea (90% in ∼24 days) as compared to nonfunctionalized microgels (PDX MGs) (99% in ∼17 days) in water. Further studies of the developed formulation display that Urea@PDXE MGs significantly boost maize seed germination and overall plant growth as compared to pure urea fertilizer. Moreover, analysis of maize leaves obtained from plants treated with Urea@PDXE MGs reveals 3.5 ± 0.3% nitrogen content and 90 ± 0.7 mg/g chlorophyll content. These values are significantly higher than 1.4 ± 0.6% nitrogen content and 48 ± 0.05 mg/g chlorophyll content obtained by using bare urea. Further, acid phosphatase activity in roots is reduced upon treatment with PDXE MGs and Urea@PDXE MGs, suggesting the availability of P upon degradation of PDXE MGs by the amylase enzyme in soil. These experimental results present the developed microgel-based biodegradable formulation with a slow release feature as a potential candidate to move toward sustainable agriculture practices.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Piyush Thaper
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
14
|
Dai F, Lan K, Wang S, Chen Y, Liu H. Adsorbents prepared from epoxy-based porous materials of microcrystalline cellulose for excellent adsorption of anionic and cationic dyes. Int J Biol Macromol 2024; 260:129477. [PMID: 38232894 DOI: 10.1016/j.ijbiomac.2024.129477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
It reported a porous material prepared from microcrystalline cellulose (MCC), to achieve rapid preparation of adsorbents. The porous material was characterized by several tools including 1H NMR, FTIR, XPS, and SEM. Two adsorbents were prepared and subjected to adsorption experiments. Dye adsorption experiments show that the adsorption driving is electrostatic interactions and the process is chemisorption. The maximum capacity of Microcrystalline cellulose-g-Poly (glycidyl methacrylate)-Tannins (MPT) reached 191.3 (Methylene blue), 123.7 mg g-1 (Rhodamine B), and Microcrystalline cellulose-g-Poly (glycidyl methacrylate)-Lysine (MPL) attained 425.8 (Methylene blue), 480.7 mg g-1 (Methyl orange). The results were followed the pseudo-second-order (PSO) and agreed with the Langmuir fit model. Adsorption-desorption cycling experiments further indicate that the adsorbent possesses outstanding reproducibility. At last, epoxidized bio-porous materials are positive in the preparation of dye adsorbents with critical adsorption properties.
Collapse
Affiliation(s)
- Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| | - Ke Lan
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiran Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haochen Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
15
|
Lv Z, Wang Z, Wang H, Li J, Li K. Adsorption of cationic/anionic dyes and endocrine disruptors by yeast/cyclodextrin polymer composites. RSC Adv 2024; 14:6627-6641. [PMID: 38390511 PMCID: PMC10882443 DOI: 10.1039/d3ra07682b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Factory and natural wastewaters contain a wide range of organic pollutants. Therefore, multifunctional adsorbents must be developed that can purify wastewater. Phytic acid-cross-linked Baker's yeast cyclodextrin polymer composites (IBY-PA-CDP) were prepared using a one-pot method. IBY-PA-CDP was used to adsorb methylene blue (MB), bisphenol A (BPA), and methyl orange (MO). Studies on the ionic strength and strongly acidic ion salts confirmed that IBY-PA-CDP adsorbs MO through hydrophobic interactions. This also shows that Na+ was the direct cause of the increased MO removal. Adsorption studies on binary systems showed that MB/MO inhibited the adsorption of BPA by IBY-PA-CDP. The presence of MB increased the removal rate of MO by IBY-PA-CDP due to the bridging effect. The Langmuir isotherm model calculated the maximum adsorption capacities for MB and BPA to be 630.96 and 83.31 mg g-1, respectively. However, the Freundlich model is more suitable for fitting the experimental data for MO adsorption. To understand the rate-limiting stage of adsorption, a mass-transfer mechanism model was employed. The fitting results show that adsorption onto the active sites is the rate-determining step. After five regeneration cycles, IBY-PA-CDP could be reused with good stability and recyclability.
Collapse
Affiliation(s)
- Zhikun Lv
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
| | - Zhaoyang Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
| | - Huaiguang Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| |
Collapse
|
16
|
Yan C, Wu F, Zhou X, Luo J, Jiang K. Superadsorbent aerogel based on sunflower stem pith cellulose and layered double hydroxides modified montmorillonite for methylene blue removal from water solution. Int J Biol Macromol 2024; 257:128749. [PMID: 38104686 DOI: 10.1016/j.ijbiomac.2023.128749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sunflower stem pith, an agricultural residue, was used as a starting material for the preparation of bio-based products. Sunflower stem pith nanocellulose (SSP-C) was prepared by sodium hydroxide/urea from the SSP cellulose. The prepared SSP-C was typical of cellulose II. To improve the adsorption capacity of the SSP-C, a bio-based aerogel (SSP-MH) with adsorbed methylene blue (MB) was prepared by compounding layered double hydroxides modified montmorillonite (MH) with SSP-C-based adsorbent, and the chemical characteristics and topology of the adsorbent were determined. The removal performance of SSP-MH in different MB concentrations was examined. Adsorption tests showed that hydrogels containing the same content of MH had higher removal efficiency. The removal rate of MB by SSP-MH was >87.5 % in MB solution (1 g/L), and its maximum adsorption capacity was 263.3 mg/g. The kinetics studies of MB removal were well by quasi-secondary adsorption kinetic model and Langmuir isotherm model. Moreover, the standard free Gibbs energy change of adsorption (ΔG0) was <0, which was favorable for adsorption of MB. The adsorption efficiency of SSP-MH on MB was still above 95 % by the five cycles of the adsorption/desorption experiment. The prepared samples were conducive to the high-value utilization of SSP.
Collapse
Affiliation(s)
- Chen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fangyu Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 311399, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jing Luo
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology. Changzhou 213001, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 311399, China
| |
Collapse
|
17
|
Ait Said H, Elbaza H, Lahcini M, Barroug A, Noukrati H, Ben Youcef H. Development of calcium phosphate-chitosan composites with improved removal capacity toward tetracycline antibiotic: Adsorption and electrokinetic properties. Int J Biol Macromol 2024; 257:128610. [PMID: 38061531 DOI: 10.1016/j.ijbiomac.2023.128610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Two eco-friendly and highly efficient adsorbents, namely brushite-chitosan (DCPD-CS), and monetite-chitosan (DCPA-CS) composites were synthesized via a simple and low-cost method and used for tetracycline (TTC) removal. The removal behavior of TTC onto the composite particles was studied considering various parameters, including contact time, pollutant concentration, and pH. The maximum TTC adsorption capacity was 138.56 and 112.48 mg/g for the DCPD-CS and DCPA-CS, respectively. Increasing the pH to 11 significantly enhanced the adsorption capacity to 223.84 mg/g for DCPD-CS and 205.92 mg/g for DCPA-CS. The antibiotic adsorption process was well-fitted by the pseudo-second-order kinetic and Langmuir isotherm models. Electrostatic attractions, complexation, and hydrogen bonding are the main mechanisms governing the TTC removal process. Desorption tests demonstrated that the (NH4)2HPO4 solution was the most effective desorbing agent. The developed composites were more efficient than DCPD and DCPA reference samples and could be used as valuable adsorbents of TTC from contaminated wastewater.
Collapse
Affiliation(s)
- Hamid Ait Said
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Hamza Elbaza
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Mohammed Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Allal Barroug
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000 Marrakech, Morocco
| | - Hassan Noukrati
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Hicham Ben Youcef
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
18
|
Du J, Fan D, Yang X, Dong Z, Zhao L. Facile fabrication of Artemisia sphaerocephala krasch gum hydrogels by radiation induced cross-linking polymerization and enhanced ultrahigh adsorption for methylene blue. Int J Biol Macromol 2023; 249:126074. [PMID: 37524276 DOI: 10.1016/j.ijbiomac.2023.126074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Although Artemisia sphaerocephala krasch gum (ASKG) has attracted growing attention in the field of medical engineering and food industries, however, there are few studies on the gelation of ASKG. In this paper, acrylic acid modified ASKG hydrogels were prepared by radiation induced grafting, cross-linking and polymerization technique for the first time. The semi-IPN structure was prepared by the cross-linked ASKG network and poly-AAc dispersed within the network. The effects of the adsorbed dose on the swelling ratio and gel fraction were investigated. The different acrylic acid content modified ASKG hydrogels (ASKGAAc1 and ASKGAAc2) for methyl blue (MB) adsorption were investigated, and the ASKG hydrogels was also studied for comparison. The influence of pH, contact time, initial concentration, temperature, ion strength on MB adsorption were tested. The results showed that acrylic acid can promote the formation of hydrogel and greatly enhanced the adsorption of ASKG. The adsorption isotherms were well obeyed the Langmuir model, and the maximum adsorption capacity for MB of ASKG, ASKGAAc1 and ASKGAAc2 were 571.43, 1517.8 and 1654.9 mg/g, respectively. Moreover, the MB adsorption by ASKG based hydrogels was exothermic, spontaneous, and more favorable at lower temperature. Furthermore, the adsorption-desorption experiments demonstrated a good reusability of these hydrogels.
Collapse
Affiliation(s)
- Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongcheng Fan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhen Dong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
19
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|