1
|
Al Fahad MA, Lee HY, Park M, Lee BT. A cardiac extracellular matrix-based bilayer vascular graft with controlled microstructures for the reconstruction of small-diameter blood vessels. Biomaterials 2025; 320:123264. [PMID: 40121829 DOI: 10.1016/j.biomaterials.2025.123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Despite recent progress, challenges with small-diameter vascular grafts, including mechanical strength, intimal hyperplasia, thrombosis, and poor endothelialization, remain unresolved. The present study reports a novel bilayer vascular graft designed to mimic the anatomical features of small-diameter blood vessels. The electrospun graft consists of a dense micro/nanofibrous inner layer of cardiac extracellular matrix (cECM), polycaprolactone (PCL) loaded with heparin (P-cECM-H), and a super porous and micro-fibrous PCL outer layer. Liquid chromatography-mass spectrometry (LC-MS/MS) proteome analysis of the cECM revealed that it is enriched with several bioactive proteins related to angiogenesis, wound regeneration, cell migration, etc. The porosities of the two layers are tailored according to endothelial and smooth muscle cell biology. The graft exhibited excellent mechanical properties, and the heparinized P-cECM inner layer improved hemocompatibility and anticoagulation efficacy. A significant increase in endothelial cell proliferation was noted in the P-cECM-H group after 7 days compared with the control group (p < 0.05). The bilayer graft maintained 100 % patency after 10 weeks of rat abdominal aorta implantation. Histological evaluation revealed smooth muscle cell infiltration inside the highly porous outer layer and neointima regeneration in the inner layer with a complete endothelial lining. RNA sequencing (RNA-Seq) analysis further confirmed smooth muscle formation and endothelial layer formation. The gene expression data also suggested that the hypoxia-inducible factor-1 (HIF-) and vascular endothelial growth factor (VEGF) signaling pathways are involved in endothelial layer remodeling. These promising results indicate that cECM could be a key material for vascular tissue regeneration.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
2
|
Ibne Mahbub MS, Park M, Park SS, Won MJ, Lee BR, Kim HD, Lee BT. dECM and β-TCP incorporation effect on the highly porous injectable bio-glass bead for enhanced bone regeneration: In-vitro, in-vivo insights. Int J Biol Macromol 2025; 305:141040. [PMID: 39978514 DOI: 10.1016/j.ijbiomac.2025.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Mi Jin Won
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | | | - Hai-Doo Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
3
|
Ren RY, Zhao TG, Li LX, Tang XY, Li JL, Jiang F, Liu CG. Immunomodulatory All-Natural Kelp Decellularized Scaffold Prepared Using Deep Eutectic Solvent with Angiogenic Properties for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2025; 11:2306-2320. [PMID: 40111406 DOI: 10.1021/acsbiomaterials.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Excessive oxidative stress, chronic inflammation, and impaired vascularization are the main barriers to diabetic wound repair. A decellularized extracellular matrix (dECM) with a native ECM structure is a promising biomaterial candidate for diabetic wound healing. However, the traditional decellularization process (reagents) can diminish the structural stability, mechanical properties, and bioactive components of dECM. To address these issues, we developed an intrinsically bioactive kelp decellularized scaffold (Im-Gly2) using natural and gentle deep eutectic solvents (DES) for accelerating diabetic wound healing. Im-Gly2 had a stable porous 3D structure (80.7 μm) and suitable mechanical properties, which could support cell growth, proliferation, and migration. Due to the retention of fucoidan, polyphenols (735.3 μg/g), and flavonoids, Im-Gly2 demonstrated intrinsic antioxidant and immunomodulatory effects. It effectively reduced reactive oxygen species (ROS) production in RAW264.7 macrophages and promoted their differentiation into the M2 phenotype. Notably, Im-Gly2 promoted tube formation through paracrine mechanisms by inducing the expression of transforming and proliferative cytokines from the RAW264.7 macrophage. In vivo, Im-Gly2 accelerated the healing of diabetic wounds by alleviating inflammation, angiogenesis, granulation tissue formation, collagen deposition, and re-epithelialization. Taken together, our study provides a novel strategy for fabricating a bioactive kelp dECM without cross-linking with exogenous substances for accelerating chronic diabetic wound healing.
Collapse
Affiliation(s)
- Ru-Yi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Tian-Ge Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Lu-Xi Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xin-Yi Tang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Jia-Le Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Fei Jiang
- Medical College, Linyi University, Shuangling Road, Linyi, 276005, China
| | - Chen-Guang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
4
|
Jahan N, Al Fahad MA, Shanto PC, Kim H, Lee BT, Bae SH. Development of self-gelling powder combining chitosan/ bentonite nanoclay/ sodium polyacrylate for rapid hemostasis: In vitro and in vivo study. Int J Biol Macromol 2025; 291:139123. [PMID: 39719233 DOI: 10.1016/j.ijbiomac.2024.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Although hemostatic powders are commonly used in clinical and emergency settings, they frequently show poor absorption, raise cytotoxicity issues, and are not effective for fatal non-compressible bleeding. The purpose of this research is to create a self-gelling hemostatic powder based on chitosan, bentonite, and sodium polyacrylate (CBS) to improve the hemostatic effect. When liquid comes into contact with CBS powders, they can fuse and form a stable hydrogel in less than 30s. Here, the concentration of the superabsorbent polymer is the primary determinant of the self-gel's creation. CBS groups exhibited excellent in vitro biocompatibility and hemocompatibility. In terms of bleeding and hemostatic time, the in vivo hemostatic results demonstrate the superiority of CBS-3 powder (∼57 s in rat liver avulsion model) and (∼64 s in rat tail amputation model) over a commercial product group called ARISTA. Additionally, the fabricated CBS powders can quickly absorb large amounts of blood, which can also aggregate platelets and blood cells. After four weeks of rat liver implantation, CBS-3 significantly accelerated the angiogenesis and wound healing processes. Thus, the hemostatic CBS self-gelling powder could be an effective solution for treating blood loss and liver wounds.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hyeyoung Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea.
| |
Collapse
|
5
|
Du W, Wang X, Zhou Y, Wu W, Huang H, Jin Z. From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges. J Nanobiotechnology 2025; 23:57. [PMID: 39881355 PMCID: PMC11776322 DOI: 10.1186/s12951-025-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever. These symptoms are induced by a hyperinflammatory response and oxidative stress. In recent years, research has focused on developing anti-inflammatory and antioxidative therapies for the treatment of acute pancreatitis (AP). However, there are still limitations to this approach, including poor drug stability, low bioavailability and a short half-life. The advent of nanotechnology has opened up a novel avenue for the management of acute pancreatitis (AP). Nanomaterials can serve as an efficacious vehicle for conventional pharmaceuticals, enhancing their targeting ability, improving bioavailability and prolonging their half-life. Moreover, they can also exert a direct therapeutic effect. This review begins by introducing the general situation of acute pancreatitis (AP). It then discusses the pathogenesis of acute pancreatitis (AP) and the current status of treatment. Finally, it considers the literature related to the treatment of acute pancreatitis (AP) by nanomaterials. The objective of this study is to provide a comprehensive review of the existing literature on the use of nanomaterials in the treatment of acute pancreatitis (AP). In particular, the changes in inflammatory markers and therapeutic outcomes following the administration of nanomaterials are examined. This is done with the intention of offering insights that can inform subsequent research and facilitate the clinical application of nanomaterials in the management of acute pancreatitis (AP).
Collapse
Affiliation(s)
- Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuyan Zhou
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory, Department of Medical Ultrasound, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Kim JY, Sen T, Lee JY, Cho DW. Degradation-controlled tissue extracellular sponge for rapid hemostasis and wound repair after kidney injury. Biomaterials 2024; 307:122524. [PMID: 38513435 DOI: 10.1016/j.biomaterials.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Patients diagnosed with T1a cancer undergo partial nephrectomy to remove the tumors. In the process of removing the tumors, loss of kidney volume is inevitable, and current surgical methods focus solely on hemostasis and wound closure. Here, we developed an implantable form of decellularized extracellular matrix sponge to target both hemostasis and wound healing at the lesion site. A porous form of kidney decellularized matrix was achieved by fabricating a chemically cross-linked cryogel followed by lyophilization. The prepared kidney decellularized extracellular matrix sponge (kdES) was then characterized for features relevant to a hemostasis as well as a biocompatible and degradable biomaterial. Finally, histological evaluations were made after implantation in rat kidney incision model. Both gelatin sponge and kdES displayed excellent hemocompatibility and biocompatibility. However, after a 4-week observation period, kdES exhibited more favorable wound healing results at the lesion site. This suggests a promising potential for kdES as a supportive material in facilitating wound closure during partial nephrectomy surgery. KdES not only achieved rapid hemostasis for managing renal hemorrhage that is comparable to commercial hemostatic sponges, but also demonstrated superior wound healing outcomes.
Collapse
Affiliation(s)
- Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Tugce Sen
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jae Yeon Lee
- Department of Companion Animal Health, Daegu Haany University, Gyeongsan, 38609, Republic of Korea.
| | - Dong-Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
7
|
Shanto PC, Fahad MAA, Jung HI, Park M, Kim H, Bae SH, Lee BT. Multi-functional dual-layer nanofibrous membrane for prevention of postoperative pancreatic leakage. Biomaterials 2024; 307:122508. [PMID: 38394713 DOI: 10.1016/j.biomaterials.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Postoperative pancreatic leakage due to pancreatitis in patients is a life-threatening surgical complication. The majority of commercial barriers are unable to meet the demands for pancreatic leakage due to poor adhesiveness, toxicity, and inability to degrade. In this study, we fabricated mitomycin-c and thrombin-loaded multifunctional dual-layer nanofibrous membrane with a combination of alginate, PCL, and gelatin to resolve the leakage due to suture line disruption, promote hemostasis, wound healing, and prevent postoperative tissue adhesion. Electrospinning was used to fabricate the dual-layer system. The study results demonstrated that high gelatin and alginate content in the inner layer decreased the fiber diameter and water contact angle, and crosslinking allowed the membrane to be more hydrophilic, making it highly biodegradable, and adhering firmly to the tissue surfaces. The results of in vitro biocompatibility and hemostatic assay revealed that the dual-layer had a higher cell proliferation and showed effective hemostatic properties. Moreover, the in vivo studies and in silico molecular simulation indicated that the dual layer was covered at the wound site, prevented suture disruption and leakage, inhibited hemorrhage, and reduced postoperative tissue adhesion. Finally, the study results proved that dual-layer multifunctional nanofibrous membrane has a promising therapeutic potential in preventing postoperative pancreatic leakage.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea.
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyeyoung Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
8
|
Zhao Y, Liu M, Li W, Tao G. Topical lyophilized thrombin application improves wound healing for posterior spinal surgery. Heliyon 2024; 10:e31335. [PMID: 38813190 PMCID: PMC11133810 DOI: 10.1016/j.heliyon.2024.e31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background The erector spinae plane block (ESPB) was proposed as a part of the postoperative multimodal analgesic regimen to improve pain management after posterior spinal surgery. However, ESPB might cause more surgical incisional wound exudate and poor wound healing, which might be improved after topical lyophilized thrombin application. Materials and methods We performed a retrospective study on patients who received posterior spinal surgery between January 2018 and December 2021. These patients were assigned into three groups: group A (general anesthesia), group B (general anesthesia with ESPB), and group C (general anesthesia with ESPB and topical 1000-unit thrombin application). Postoperative outcomes, including times of dressing changes, duration of suture removal, and incisional wound healing, were compared among these groups. Results Our study included 89 patients, with 48, 20, and 21 patients in groups A, B, and C, respectively. Baseline demographics, height, weight, comorbidities, and operation duration were comparable among the three groups. Group B required statistically significantly more dressing changes and had a prolonged duration of suture removal than group A (9.4 ± 4.7 versus 6.5 ± 2.0 times, 16.2 ± 3.7 versus 14.2 ± 1.4 days, respectively), which could be statistically significantly improved after the thrombin application in group C. Group B also had more frequent poor wound healing (25.0 %), which could also be improved after the thrombin application (0.0 %). Conclusions ESPB could cause more dressing changes and poor surgical wound healing after posterior spinal surgery, which could be improved by topical lyophilized thrombin powder application.
Collapse
Affiliation(s)
- Yinjie Zhao
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| | - Ming Liu
- Department of Orthopedics and Sports Medicine, Heyou International Hospital, Guangdong, 528000, China
| | - Wenyao Li
- Department of Pain Management, Guigian International General Hospital, Gui Yang, 550024, China
| | - Guocai Tao
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| |
Collapse
|
9
|
Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int J Biol Macromol 2024; 264:130683. [PMID: 38458289 DOI: 10.1016/j.ijbiomac.2024.130683] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.
Collapse
Affiliation(s)
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, The Nilgiris, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan.
| | | | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Yogendra Pal
- Department of Pharmaceutical Chemistry, CT College of Pharmacy, Shahpur, Jalandhar, Punjab 144020, India
| | - Russul Thabit
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Akter Y, Islam MM, Akter MS, Afrin K, Alam MS, Haque P, Bahadur NM. Silver nanoparticle reinforced polylactic acid and gelatin composite films for advanced wound dressing. J Biomater Appl 2024; 38:915-931. [PMID: 38346020 DOI: 10.1177/08853282241233720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Multifunctional and biodegradable dressings with high mechanical strength and good antibacterial activity are crucial in fundamental health services. This study was initiated to prepare a novel curative wound dressing film consisting of natural biodegradable gelatin (G) and polylactic acid (PLA) with silver nanoparticles (AgNPs) where glutaraldehyde (GA) was used as compatibilizer. The prepared composite films addressed the poor thermal and biological stability of G and the limited fluid retention capacity of PLA. Silver nanoparticles were prepared by basic chemical reduction and reinforced on polymer films using simple solvent casting, which obviated common clinical infections and accelerated wound closure rate (p < .05). Fourier transform infrared (FTIR) studies confirmed composite formation through H-bonding and X-ray diffraction (XRD) revealed increased crystallinity due to incorporating AgNPs. Films with G, PLA & GA (50:50:5 by volume) introduced the best elasticity & strength with excellent fluid retention properties (p < .05). Scanning electron microscopy (SEM) images unfolded surface morphology and presence of agglomerated AgNPs on film surfaces. Prepared films exhibited significant antimicrobial efficacy against Staphylococcus aureus and Pseudomonas sp. and showed excellent cell viability (>97 %) in Vero cell line. Finally, an in vivo mouse model study showed 99.7 % contraction (p < .05) within 12 days, which was most effectual and 12 % faster than conventional gauge bandages. These results demonstrated the promising and cost-effective potential of the prepared film for wound healing.
Collapse
Affiliation(s)
- Yeasmin Akter
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Minhajul Islam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Md Shamim Akter
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Khodeja Afrin
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Saiful Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Papia Haque
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
11
|
Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J Funct Biomater 2023; 14:518. [PMID: 37888183 PMCID: PMC10607724 DOI: 10.3390/jfb14100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The process of tissue regeneration requires the utilization of a scaffold, which serves as a structural framework facilitating cellular adhesion, proliferation, and migration within a physical environment. The primary aim of scaffolds in tissue engineering is to mimic the structural and functional properties of the extracellular matrix (ECM) in the target tissue. The construction of scaffolds that accurately mimic the architecture of the extracellular matrix (ECM) is a challenging task, primarily due to the intricate structural nature and complex composition of the ECM. The technique of decellularization has gained significant attention in the field of tissue regeneration because of its ability to produce natural scaffolds by removing cellular and genetic components from the extracellular matrix (ECM) while preserving its structural integrity. The present study aims to investigate the various decellularization techniques employed for the purpose of isolating the extracellular matrix (ECM) from its native tissue. Additionally, a comprehensive comparison of these methods will be presented, highlighting their respective advantages and disadvantages. The primary objective of this study is to gain a comprehensive understanding of the anatomical and functional features of the native liver, as well as the prevalence and impact of liver diseases. Additionally, this study aims to identify the limitations and difficulties associated with existing therapeutic methods for liver diseases. Furthermore, the study explores the potential of tissue engineering techniques in addressing these challenges and enhancing liver performance. By investigating these aspects, this research field aims to contribute to the advancement of liver disease treatment and management.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Ajay Kumar Sahi
- School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Meghana Koppadi
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Torun, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
12
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
13
|
Cui D, Li M, Zhang P, Rao F, Huang W, Wang C, Guo W, Wang T. Polydopamine-Coated Polycaprolactone Electrospun Nanofiber Membrane Loaded with Thrombin for Wound Hemostasis. Polymers (Basel) 2023; 15:3122. [PMID: 37514511 PMCID: PMC10385294 DOI: 10.3390/polym15143122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Hemorrhagic shock is the primary cause of death in patients with severe trauma, and the development of rapid and efficient hemostatic methods is of great significance in saving the lives of trauma patients. In this study, a polycaprolactone (PCL) nanofiber membrane was prepared by electrospinning. A PCL-PDA loading system was developed by modifying the surface of polydopamine (PDA), using inspiration from mussel adhesion protein, and the efficient and stable loading of thrombin (TB) was realized to ensure the bioactivity of TB. The new thrombin loading system overcomes the disadvantages of harsh storage conditions, poor strength, and ease of falling off, and it can use thrombin to start a rapid coagulation cascade reaction, which has the characteristics of fast hemostasis, good biocompatibility, high safety, and a wide range of hemostasis. The physicochemical properties and biocompatibility of the PCL-PDA-TB membrane were verified by scanning electron microscopy, the cell proliferation test, the cell adhesion test, and the extract cytotoxicity test. Red blood cell adhesion, platelet adhesion, dynamic coagulation time, and animal models all verified the coagulation effect of the PCL-PDA-TB membrane. Therefore, the PCL-PDA-TB membrane has great potential in wound hemostasis applications, and should be widely used in various traumatic hemostatic scenarios.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Ming Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Feng Rao
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Chuanlin Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Wei Guo
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
14
|
Lu B, Hu E, Ding W, Wang W, Xie R, Yu K, Lu F, Lan G, Dai F. Bioinspired Hemostatic Strategy via Pulse Ejections for Severe Bleeding Wounds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0150. [PMID: 37223487 PMCID: PMC10202099 DOI: 10.34133/research.0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Efficient hemostasis during emergency trauma with massive bleeding remains a critical challenge in prehospital settings. Thus, multiple hemostatic strategies are critical for treating large bleeding wounds. In this study, inspired by bombardier beetles to eject toxic spray for defense, a shape-memory aerogel with an aligned microchannel structure was proposed, employing thrombin-carrying microparticles loaded as a built-in engine to generate pulse ejections for enhanced drug permeation. Bioinspired aerogels, after contact with blood, can rapidly expand inside the wound, offering robust physical barrier blocking, sealing the bleeding wound, and generating a spontaneous local chemical reaction causing an explosive-like generation of CO2 microbubbles, which provide propulsion thrust to accelerate burst ejection from arrays of microchannels for deeper and faster drug diffusion. The ejection behavior, drug release kinetics, and permeation capacity were evaluated using a theoretical model and experimentally demonstrated. This novel aerogel showed remarkable hemostatic performance in severely bleeding wounds in a swine model and demonstrated good degradability and biocompatibility, displaying great potential for clinical application in humans.
Collapse
Affiliation(s)
- Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit,
Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology,
The Hong Kong Polytechnic University, Hong Kong, China.
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| |
Collapse
|
15
|
Ibne Mahbub MS, Kim YJ, Choi H, Lee BT. Papaverine loaded injectable and thermosensitive hydrogel system for improving survival of rat dorsal skin flaps. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:28. [PMID: 37209216 PMCID: PMC10199301 DOI: 10.1007/s10856-023-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Vasospasm during reconstructive microsurgery is a common, uncertain, and devastating phenomena concerning flap survival. Topical vasodilators as antispasmodic agents are widely used to reduce vasospasm and enhance microvascular anastomosis in reconstructive microsurgery. In this study, thermo-responsive hydrogel (CNH) was fabricated by grafting chitosan (CS) and hyaluronic acid (HA) to poly(N-isopropylacrylamide) (PNIPAM). Papaverine, an anti-spasmodic agent, was then loaded to evaluate its effect on rat skin flap survival. Post-operative flap survival area and water content of rat dorsal skin flap were measured at 7 days after intradermal application of control hydrogel (CNHP0.0) and papaverine loaded hydrogel (CNHP0.4). Tissue malondialdehyde (MDA) content and superoxide dismutase (SOD) activity was measured using enzyme linked immunosorbent assay (ELISA) to determine oxidative stress in flaps. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) were performed to evaluate flap angiogenesis and inflammatory markers. Results showed that CNHP0.4 hydrogel could reduce tissue edema (35.63 ± 4.01%), improve flap survival area (76.30 ± 5.39%), increase SOD activity and decrease MDA content. Consequently, it also increased mean vessel density, upregulated expression of CD34 and VEGF, decreased macrophage infiltration, and reduced CD68 and CCR7 expression based on IHC staining. Overall, these results indicate that CNHP0.4 hydrogel can enhance angiogenesis with anti-oxidative and anti-inflammatory effects and promote skin flap survival by preventing vascular spasm.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Yeong Jin Kim
- Department of Plastic & Reconstructive Surgery, Soonchunhyang University Hospital, Cheonan, South Korea
| | - Hwanjun Choi
- Department of Plastic & Reconstructive Surgery, Soonchunhyang University Hospital, Cheonan, South Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
16
|
Jahan N, Ibne Mahbub MS, Lee BT, Bae SH. In Vivo and In Vitro Investigation of a Novel Gelatin/Sodium Polyacrylate Composite Hemostatic Sponge for Topical Bleeding. J Funct Biomater 2023; 14:jfb14050265. [PMID: 37233375 DOI: 10.3390/jfb14050265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Designing a functional and efficient blood-clotting agent is a major challenge. In this research, hemostatic scaffolds (GSp) were prepared from the superabsorbent, inter-crosslinked polymer sodium polyacrylate (Sp) bound to a natural protein gelatin (G) loaded with thrombin (Th) by a cost-effective freeze-drying method. Five compositions were grafted (GSp0.0, Gsp0.1, GSp0.2, GSp0.3, GSp0.3-Th) where the concentration of Sp varied but the ratios of G remained the same. The fundamental physical characteristics that increased the amounts of Sp with G gave synergistic effects after interacting with thrombin. Due to the presence of superabsorbent polymer (SAP) swelling capacities in GSp0.3 and GSp0.3-Th surge forward 6265% and 6948%, respectively. Pore sizes became uniform and larger (ranging ≤ 300 μm) and well-interconnected. The water-contact angle declined in GSp0.3 and GSp0.3-Th to 75.73 ± 1.097 and 75.33 ± 0.8342 degrees, respectively, thus increasing hydrophilicity. The pH difference was found to be insignificant as well. In addition, an evaluation of the scaffold in in vitro biocompatibility with the L929 cell line showed cell viability >80%, so the samples were nontoxic and produced a favorable environment for cell proliferation. The composite GSp0.3-Th revealed the lowest HR (%) (2.601%), and the in vivo blood-clotting time (s) and blood loss (gm) supported hemostasis. Overall, the results showed that a novel GSp0.3-Th scaffold can be a potential candidate as a hemostatic agent.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| |
Collapse
|
17
|
Sun Z, Xiong H, Lou T, Liu W, Xu Y, Yu S, Wang H, Liu W, Yang L, Zhou C, Fan C. Multifunctional Extracellular Matrix Hydrogel with Self-Healing Properties and Promoting Angiogenesis as an Immunoregulation Platform for Diabetic Wound Healing. Gels 2023; 9:gels9050381. [PMID: 37232972 DOI: 10.3390/gels9050381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Treating chronic wounds is a global challenge. In diabetes mellitus cases, long-time and excess inflammatory responses at the injury site may delay the healing of intractable wounds. Macrophage polarization (M1/M2 types) can be closely associated with inflammatory factor generation during wound healing. Quercetin (QCT) is an efficient agent against oxidation and fibrosis that promotes wound healing. It can also inhibit inflammatory responses by regulating M1-to-M2 macrophage polarization. However, its limited solubility, low bioavailability, and hydrophobicity are the main issues restricting its applicability in wound healing. The small intestinal submucosa (SIS) has also been widely studied for treating acute/chronic wounds. It is also being extensively researched as a suitable carrier for tissue regeneration. As an extracellular matrix, SIS can support angiogenesis, cell migration, and proliferation, offering growth factors involved in tissue formation signaling and assisting wound healing. We developed a series of promising biosafe novel diabetic wound repair hydrogel wound dressings with several effects, including self-healing properties, water absorption, and immunomodulatory effects. A full-thickness wound diabetic rat model was constructed for in vivo assessment of QCT@SIS hydrogel, in which hydrogels achieved a markedly increased wound repair rate. Their effect was determined by the promotion of the wound healing process, the thickness of granulation tissue, vascularization, and macrophage polarization during wound healing. At the same time, we injected the hydrogel subcutaneously into healthy rats to perform histological analyses of sections of the heart, spleen, liver, kidney, and lung. We then tested the biochemical index levels in serum to determine the biological safety of the QCT@SIS hydrogel. In this study, the developed SIS showed convergence of biological, mechanical, and wound-healing capabilities. Here, we focused on constructing a self-healing, water-absorbable, immunomodulatory, and biocompatible hydrogel as a synergistic treatment paradigm for diabetic wounds by gelling the SIS and loading QCT for slow drug release.
Collapse
Affiliation(s)
- Zhenghua Sun
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Tengfei Lou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Weixuan Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Yi Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Shiyang Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Wanjun Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Liang Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Cunyi Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| |
Collapse
|
18
|
Borges MF, Maurmann N, Pranke P. Easy-to-Assembly System for Decellularization and Recellularization of Liver Grafts in a Bioreactor. MICROMACHINES 2023; 14:449. [PMID: 36838149 PMCID: PMC9962055 DOI: 10.3390/mi14020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Decellularization of organs creates an acellular scaffold, ideal for being repopulated by cells. In this work, a low-cost perfusion system was created to be used in the process of liver decellularization and as a bioreactor after recellularization. It consists of a glass chamber to house the organ coupled to a peristaltic pump to promote liquid flow through the organ vascular tree. The rats' liver decellularization was made with a solution of sodium dodecyl sulfate. The recellularization was made with 108 mesenchymal stromal/stem cells and cultivated for seven days. The decellularized matrices showed an absence of DNA while preserving the collagen and glycosaminoglycans quantities, confirming the efficiency of the process. The functional analyses showed a rise in lactate dehydrogenase levels occurring in the first days of the cultivation, suggesting that there is cell death in this period, which stabilized on the seventh day. Histological analysis showed conservation of the collagen web and some groups of cells next to the vessels. It was possible to establish a system for decellularization and a bioreactor to use for the recellularization method. It is easy to assemble, can be ready to use in little time and be easily sterilized.
Collapse
Affiliation(s)
- Maurício Felisberto Borges
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| | - Natasha Maurmann
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| |
Collapse
|