1
|
Malik A, Khan JM, Rehman MT, Alamri A, Amir M, Sharma P, FAlAjmi M, Fatima S. Biophysical insights into sodium lauroyl sarcosine induced amyloid fibrillation of human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125976. [PMID: 40049020 DOI: 10.1016/j.saa.2025.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Sodium lauroyl sarcosinate (SLS), an anionic surfactant is known to solubilize recombinant proteins during purification processes. Though SLS has been shown to induce amyloid fibrillation in proteins, the specific role of SLS in amyloid formation remains less understood. Despite its well-established use in protein solubilization, further research is needed to clarify its potential influence on amyloid fibrillation pathways. In this context, we studied the effects of SLS on Human serum albumin (HSA) using a variety of biophysical techniques, including turbidity, right-angle Light Scattering (RLS) kinetics, Thioflavin T (ThT) binding, intrinsic fluorescence, far-UV circular dichroism (CD) and transmission electron microscopy (TEM). Turbidity measurements showed that SLS below 0.3 mM did not induce aggregation. However, when the concentration exceeded 0.3 mM, HSA aggregation was observed. The RLS kinetics data suggested the SLS-induced aggregation to be very fast. ThT fluorescence, far-UV CD, and TEM data indicated that SLS-induced HSA aggregates exhibit amyloid-like characteristics as evidenced by the high ThT fluorescence signals in the aggregated samples and the transformation of HSA's α-helical structure into mixed β-sheet structures. Molecular docking analysis complements in vitro results in that electrostatic and hydrophobic interactions between HSA and SLS at an acidic pH are involved, which may trigger the aggregation of the protein. These biophysical data suggested that while SLS is commonly used for protein solubilization, it also has a potential characteristic to promote amyloid fibrillation in protein under certain conditions, warranting further investigation into its role in amyloid fibrillation.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Amir
- Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Prerna Sharma
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509-3240, United States
| | - Mohamed FAlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Basha S, Mukunda DC, Pai AR, Mahato KK. Assessing amyloid fibrils and amorphous aggregates: A review. Int J Biol Macromol 2025; 311:143725. [PMID: 40324497 DOI: 10.1016/j.ijbiomac.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation play a central role in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. These aggregates manifest either as structured amyloid fibrils enriched in β-sheet conformations or as irregular amorphous aggregates with diverse morphologies. Understanding their formation, structure, and behavior is critical for deciphering disease mechanisms and developing targeted diagnostics and therapeutics. This review presents an integrated overview of both conventional and advanced techniques used to detect, distinguish, and structurally characterize these protein aggregates. It covers a range of spectroscopic and spectrometric tools, such as fluorescence, Raman, and mass spectrometry that facilitate aggregate identification. Microscopy methods, including atomic force and electron microscopy, are highlighted for morphological analysis. The review also discusses in situ detection strategies using fluorescent dyes, conformation-specific antibodies, enzymatic reporters, and real-time imaging. Separation methods like centrifugation, electrophoresis, and chromatography are outlined alongside structural analysis tools such as X-ray diffraction. Furthermore, the growing utility of computational approaches and artificial intelligence in predicting aggregation propensities and integrating biological data is emphasized. By critically evaluating each method's capabilities and limitations, this review provides a practical and forward-looking resource for researchers studying the complex landscape of protein aggregation.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Hekmat A, Kostova I, Saboury AA. Application of metallic nanoparticles-amyloid protein supramolecular materials in tissue engineering and drug delivery: Recent progress and perspectives. Colloids Surf B Biointerfaces 2024; 244:114185. [PMID: 39226848 DOI: 10.1016/j.colsurfb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Irena Kostova
- Faculty of Pharmacy, Medical University Sofia, Bulgaria
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
5
|
Hisamuddin M, Rizvi I, Malik A, Nabi F, Hassan MN, Ali SM, Khan JM, Khan TH, Khan RH. Characterization of pH-induced conformational changes in recombinant DENV NS2B-NS3pro. Int J Biol Macromol 2023; 253:126823. [PMID: 37703975 DOI: 10.1016/j.ijbiomac.2023.126823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
The increasing frequency of Dengue is a cause of severe epidemics and therefore demands strategies for effective prevention, diagnosis, and treatment. DENV-protease is being investigated as a potential therapeutic target. However, due to the flat and highly charged active site of the DENV-protease, designing orthosteric medicines is very difficult. In this study, we have done a thorough analysis of pH-dependent conformational changes in recombinantly expressed DENV protease using various spectroscopic techniques. Our spectroscopic study of DENV protease (NS2B-NS3pro) at different pH conditions gives important insights into the dynamicity of structural conformation. At physiological pH, the DENV-protease exists in a random-coiled state. Lowering the pH promotes the formation of alpha-helical and beta-sheet structures i.e. gain of secondary structure as shown by Far-UV CD. The light scattering and Thioflavin T (ThT)-binding assay proved the aggregation-prone tendency of DENV-protease at pH 4.0. Further, the confocal microscopy image intensity showed the amorphous aggregate formation of DENV protease at pH 4.0. Thus, the DENV protease acquires different conformations with changes in pH conditions. Together, these results have the potential to facilitate the design of a conformation destabilizer-based therapeutic strategy for dengue fever.
Collapse
Affiliation(s)
- Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Tabish H Khan
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, MO, USA
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
6
|
Malik A, Khan JM, Al-Amri AM, Altwaijry N, Sharma P, Alhomida A, Sen P. Hexametaphosphate, a Common Food Additive, Aggregated the Hen Egg White Lysozyme. ACS OMEGA 2023; 8:44086-44092. [PMID: 38027328 PMCID: PMC10666150 DOI: 10.1021/acsomega.3c06210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Polyphosphate polymers are chains of phosphate monomers chemically bonded together via phosphoanhydride bonds. They are found in all prokaryotic and eukaryotic organisms and are among the earliest, most anionic, and most mysterious molecules known. They are everywhere, from small cellular components to additives in our food. There is a strong association between hyperphosphatemia and mortality. That is why it is crucial to assess how polyphosphates, as food additives, affect the quality of edible proteins. This study investigated the effect of inexpensive and widely used food additives (hexametaphosphate labeled as E452) on bakery items, meat products, fish, and soft drinks. Using various spectroscopic and microscopic techniques, we examined how hexametaphosphate affected the aggregation propensity, structure, and stability of a commonly used food protein: hen egg white lysozyme (HEWL). The solubility of HEWL is affected in a bimodal fashion by the concentration of hexametaphosphate. The bimodal concentration-dependent effect was also observed in the tertiary and secondary structural changes. Hexametaphosphate-induced HEWL aggregates were amorphous, as evidenced by ThT fluorescence, far-UV CD, and TEM imaging. This study showed that the food additive (hexametaphosphate) may denature and aggregate proteins and may lead to undesirable health issues.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine Scranton, Scranton, Pennsylvania 18509-3240, United States
| | - Abdullah Alhomida
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| |
Collapse
|
7
|
Henrickson A, Montina T, Hazendonk P, Lomonte B, Neves-Ferreira AGC, Demeler B. SDS-induced hexameric oligomerization of myotoxin-II from Bothrops asper assessed by sedimentation velocity and nuclear magnetic resonance. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:445-457. [PMID: 37209172 PMCID: PMC10526984 DOI: 10.1007/s00249-023-01658-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023]
Abstract
We report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A2 homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution. We observed the formation of a stable and discrete, hexameric form of myotoxin-II, but only in the presence of small amounts of SDS. In SDS-free medium, myotoxin-II was insensitive to mass action and remained monomeric at all concentrations examined (up to 3 mg/ml, 218.2 μM). At SDS concentrations above the critical micelle concentration, only dimers and trimers were observed, and at intermediate SDS concentrations, aggregates larger than hexamers were observed. We found that the amount of SDS required to form a stable hexamer varies with protein concentration, suggesting the need for a precise stoichiometry of free SDS molecules. The discovery of a stable hexameric species in the presence of a phospholipid mimetic suggests a possible physiological role for this oligomeric form, and may shed light on the poorly understood membrane-disrupting mechanism of this myotoxic protein class.
Collapse
Affiliation(s)
- Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología San José, Universidad de Costa Rica, San José, Costa Rica
| | | | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.
| |
Collapse
|