1
|
Cheng YG, Li JL, Li P, Yang SQ, Zang Y, Wang Y, Yu YT, Xie X, Li HF, Hao XL, Wang YL, Tan JY. Neuroprotective triterpenoids from Astragalus membranaceus stems and leaves: Anti-inflammatory and anti-apoptotic mechanisms for memory improvement via in vivo and in vitro models. Bioorg Chem 2025; 160:108492. [PMID: 40280011 DOI: 10.1016/j.bioorg.2025.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Astragalus membranaceus is a versatile plant resource that can be used for both medicinal and food purposes. The stems and leaves of A.membranaceus (AMSL), which are by-products generated during the processing of its medicinal roots, are commonly reused as a feed additive for animals. Given the rising prevalence of memory impairment, particularly in aging populations and neurodegenerative diseases like Alzheimer's, identifying novel therapeutic agents to alleviate cognitive deficits is of critical importance. This study aimed to explore the therapeutic effects and mechanisms of AMSL in alleviating memory impairment, as well as to identify its active ingredients responsible for such effects. Using a mouse model of memory deficits induced by D-gal combined with AlCl₃, it was demonstrated that AMSL significantly alleviated memory impairment. Meanwhile, through a combination of multiple chromatographic techniques along with LC-MS and NMR spectroscopy, ten new triterpenoids (1-10) coupled with six analogues (11-16) were isolated, purified, and identified from AMSL. Notably, compounds 1 and 12 were found to attenuate inflammatory responses-evidenced by reduction in pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and to inhibit apoptotic pathways, as reflected by downregulated expression of Caspase-3, Bax, and Cytochrome C in PC12 cells induced by Aβ25-35. These findings provide valuable insights into the potential applications of AMSL in neuroprotective interventions and highlight its potential as a therapeutic agent for memory-related disorders.
Collapse
Affiliation(s)
- Yan-Gang Cheng
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Jian-Li Li
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Pei Li
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Si-Qi Yang
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Yun Zang
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Yan Wang
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Yue-Tong Yu
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Xin Xie
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Hui-Feng Li
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China
| | - Xu-Liang Hao
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China; Shanxi traditional Chinese medicine institute, Shanxi, Taiyuan 030012, China.
| | - Ying-Li Wang
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China.
| | - Jin-Yan Tan
- Shanxi Modern Chinese Medicine Engineering Laboratory, Shanxi University of Chinese Medicine, Shanxi, Jinzhong 030619, China.
| |
Collapse
|
2
|
Hafeez E, Du D, Ni H, Zhu K, Hu F, Zhou J, Chen D. Regulation and mechanism of Bletilla striata polysaccharide on delaying aging in Drosophila melanogaster. Int J Biol Macromol 2025; 310:143382. [PMID: 40268010 DOI: 10.1016/j.ijbiomac.2025.143382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/12/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Bletilla striata polysaccharide (BSP) is a natural bioactive compound known for its promising health benefits, including antioxidant, immunomodulatory, and anti-inflammatory effects. However, its potential in combating aging remains largely unexplored. This study aims to investigate the anti-aging effects of BSP in the Drosophila melanogaster model. The results show that BSP supplementation significantly extends the lifespan of flies in a concentration-dependent manner, with the most pronounced effects observed at a concentration of 3 mg/mL. Lifespan extension is associated with enhanced antioxidative capacities, as evidenced by increased SOD and CAT activities, and decreased MDA content. Additionally, BSP ameliorates age-related symptoms, including improved climbing ability and enhanced intestinal barrier function. Furthermore, BSP supplementation enhances resistance to H2O2-induced oxidative and starvation stresses, attenuates the lead (Pb)-induced toxicity, and delays the onset of Alzheimer's phenotypes in flies. RNA-Seq analysis reveals that BSP supplementation leads to the differential expression of 992 genes. KEGG pathway analysis highlights significant changes in metabolic pathways, including galactose metabolism, starch and sucrose metabolism, and carbon metabolism. Key genes such as Mal-A1, Amy-d, Men-b, Pgm-1, Mdh1, and Hex-C are downregulated, while CG32026, CG11291, and Ald2 are upregulated. These findings suggest BSP exhibits significant anti-aging and protective properties, making it a potential therapeutic agent.
Collapse
Affiliation(s)
- Eqra Hafeez
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hang Ni
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Kai Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jihai Zhou
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
3
|
Li X, Su Q, Xue J, Wei S. Mechanisms, structure-activity relationships, and skin applications of natural polysaccharides in anti-aging: A review. Int J Biol Macromol 2025; 310:143320. [PMID: 40258559 DOI: 10.1016/j.ijbiomac.2025.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Natural polysaccharides, a class of biological macromolecules found in nature, have recently attracted considerable interest owing to their notable anti-aging capabilities. This article provides a comprehensive review of the intricate mechanisms through which natural polysaccharides combat aging, as well as their applications in addressing skin aging. Primarily, these polysaccharides manifest their anti-aging effects via diverse pathways, such as antioxidation, gut microbiota regulation, metabolic modulation, and immune system regulation. The anti-aging efficacy of natural polysaccharides is intrinsically linked to their structure-activity relationships, with critical determinants including molecular weight, monosaccharide composition, and chemical architecture. Polysaccharides with lower molecular weights typically demonstrate enhanced biological activity, whereas specific monosaccharide configurations and chemical modifications can markedly augment their anti-aging potential. The utilization of natural polysaccharides in skin aging holds significant promise, offering benefits such as anti-aging, wrinkle reduction, anti-glycation, and the facilitation of skin regeneration. In conclusion, this article synthesizes the advancements in research on natural polysaccharides within the anti-aging sector and forecasts future trajectories, to establish a robust foundation for the innovation of new polysaccharide-derived anti-aging formulations.
Collapse
Affiliation(s)
- Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Qingqi Su
- Skills Training Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
4
|
Chen K, Qin C, Ji C, Yu Y, Wu Y, Xu L, Jiang Y, Zou G. Astragalus polysaccharide alleviates oxidative stress and senescence in chondrocytes in osteoarthritis via GCN2/ATF4/TXN axis. Int J Biol Macromol 2025; 310:143285. [PMID: 40253033 DOI: 10.1016/j.ijbiomac.2025.143285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The treatment of osteoarthritis (OA) remains challenging, with oxidative stress in the cartilage emerging as a key therapeutic target. This study investigates how Astragalus polysaccharide (APS) exerts antioxidant effects in OA using in vivo and in vitro models. In mice, APS mitigates OA progression following surgical destabilization of the medial meniscus (DMM) and protects against oxidative damage. Immunofluorescence analysis revealed decreased thioredoxin (TXN) expression in DMM cartilage, which was restored by APS. APS preserved mitochondrial function, redox balance, and matrix synthesis in chondrocytes in vitro while suppressing metalloproteinase expression. APS also reduced senescence markers (p53, p21INK4a, and p16), DNA damage, and β-galactosidase activity in tert-butyl hydroperoxide (tBHP)-treated chondrocytes. TXN knockdown significantly diminishes the protective effects of APS Further analysis showed that ATF4 overexpression supports the GCN2-ATF4 pathway's involvement in APS. GCN2 inhibition using GCN2iB reduced the regulatory impact of APS on TXN, indicating the crucial role GCN2 in APS-mediated protection. These findings demonstrated that APS protects chondrocytes from oxidative stress and senescence in OA via the GCN2/TXN pathway, suggesting its potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Kai Chen
- The Yancheng Clinical College of Xuzhou Medical University, People's Republic of China; Department of Orthopedics, The First People's Hospital of Yancheng, People's Republic of China
| | - Chaoren Qin
- The Yancheng Clinical College of Xuzhou Medical University, People's Republic of China; Department of Orthopedics, The First People's Hospital of Yancheng, People's Republic of China
| | - Chenfei Ji
- Department of Respiratory, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yaohui Yu
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ya Wu
- The Yancheng Clinical College of Xuzhou Medical University, People's Republic of China; Department of Orthopedics, The First People's Hospital of Yancheng, People's Republic of China
| | - Lei Xu
- The Yancheng Clinical College of Xuzhou Medical University, People's Republic of China; Department of Orthopedics, The First People's Hospital of Yancheng, People's Republic of China
| | - Yiqiu Jiang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Guoyou Zou
- The Yancheng Clinical College of Xuzhou Medical University, People's Republic of China; Department of Orthopedics, The First People's Hospital of Yancheng, People's Republic of China.
| |
Collapse
|
5
|
Zhu K, Du D, Shi Y, Hu F, Zhang W, Ni H, Hafeez E, Chen D. Poria cocos Polysaccharide Delays Aging by Enhancing the Antioxidant Ability and Suppressing the Expression of the Branched-Chain Amino Acid Transferase-Encoding Gene in Drosophila melanogaster. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9033-9046. [PMID: 40178444 DOI: 10.1021/acs.jafc.4c12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Poria cocos polysaccharides (PCP), the main component of Poria cocos, possess a variety of biological activities, including antitumor, immunomodulatory, and antioxidant effects. However, whether PCP has an antiaging effect remains unclear. Here, we studied the beneficial effects and the mechanism of PCP on delaying aging using the Drosophila model. The results showed that the dietary supplementation of PCP significantly extended the lifespan, improved the climbing ability, attenuated intestinal barrier dysfunction, alleviated gastrointestinal acid-base imbalance, and prevented intestinal stem cells (ISCs) hyperproliferation. In addition, PCP notably increased the activities of SOD and CAT and reduced the content of MDA. Furthermore, RNA-Seq showed that PCP supplementation led to the differential expression of 638 genes. KEGG analysis revealed that these differentially expressed genes were strongly enriched in the signaling pathway of cofactor biosynthesis. Among these genes, the expression of the branched-chain amino acid transferase-encoding gene (bcat) was significantly downregulated. The bcat-knockdown prolonged the flies' lifespan, while bcat-overexpression reduced the lifespan. Interestingly, PCP addition can rescue the flies' lifespan in the background of bcat-overexpression. Taken together, our data indicate that PCP delays aging by enhancing the antioxidant ability and suppressing the expression of the bcat gene in Drosophila.
Collapse
Affiliation(s)
- Kai Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuxia Shi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenting Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hang Ni
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Eqra Hafeez
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
6
|
Lin J, Yu J, Wang X, Shi R, Liang Y, Li J, Zhou T, Chen C, Duan X, Deng Y, Yang S, Zeng S, Shen X, Chen X, Wang Y, Sun G, Shu Z. Research progress on the anti-aging effect of polysaccharides of traditional Chinese medicine: Using Caenorhabditis elegans as an animal model. FASEB J 2025; 39:e70454. [PMID: 40085128 DOI: 10.1096/fj.202403250rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
With the growing elderly population and increasing incidence of various aging-related diseases, the scientific community is faced with an urgent challenge to identify natural anti-aging agents. Traditional Chinese medicine (TCM) polysaccharides have been proven to have good anti-aging activities. This article reviews the literature on the anti-aging pathways of traditional Chinese medicine polysaccharides applied to Caenorhabditis elegans models in the past decade. In our study, we found that 45 TCM polysaccharides from 28 genera and 26 families could delay the aging process of C. elegans. Traditional Chinese medicine polysaccharides delay the aging of C. elegans mainly by anti-oxidative stress, eliminating free radicals, repairing DNA damage, and insulin/insulin-like growth factor signaling pathway (IIS signaling pathway). In addition, an increasing number of traditional Chinese medicine polysaccharides have been found to prolong the lifespan of C. elegans by reducing inflammation, regulating intestinal flora, and affecting immune cell function. In this paper, C. elegans was used as an animal model to clarify the anti-aging pathway of traditional Chinese medicine polysaccharides, so as to provide theoretical guidance for future research and clinical experiments on the anti-aging effect of traditional Chinese medicine polysaccharides.
Collapse
Affiliation(s)
- Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Jianhua Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Chengkai Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Xiaodong Duan
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yongan Deng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Simin Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Shuting Zeng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Xuejuan Shen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Xiangyu Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibo Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| |
Collapse
|
7
|
Wang S, Zhou S, Jiang X, Yang D, He J, Xiu M. Acute hypoxia induces sleep disorders via sima/HIF-1α regulation of circadian rhythms in adult Drosophila. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110192. [PMID: 40086680 DOI: 10.1016/j.cbpc.2025.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
The atmospheric oxygen concentration is significantly reduced in highland regions compared to lowland areas. The first entering the plateau can induce sleep disorders in individuals, primarily attributed to insufficient oxygen supply. This study used Drosophila melanogaster as a model organism to better understand the molecular mechanism of acute hypoxia-induced sleep disorders. The Drosophila activity monitoring system (DAMS) was employed to observe the sleep-wake in adult (w1118, simaKG07607, and clockjrk) female flies. Quantifying the relative mRNA expression levels of sima and circadian clock genes in the head of flies was accomplished by utilizing qRT-PCR. Acute hypoxia caused sleep disorders in w1118 flies, such as shortened sleep duration and length, and prolonged sleep latency. PCR results showed that sima and clock genes were up-regulated in ZT6 and ZT12 and down-regulated in ZT0 and ZT18 in acute hypoxic w1118 flies compared to normoxic w1118 flies. Under normoxic conditions, sleep indexes in simaKG07607 flies were not substantially different from w1118 flies. However, clockjrk flies demonstrated a reduced sleep duration, decreased sleep bout length, and increased sleep latency and activities. Sleep and gene expression in simaKG07607 flies under acute hypoxic conditions were not significantly different from those under normoxic conditions. Surprisingly, sleep and gene expression in clockjrk flies showed opposite trends to w1118 flies. The present study indicates that acute hypoxia disrupt circadian rhythms through the activation of sima/HIF-1α, leading to the onset of sleep disorders, with Clock signaling potentially serving as a contributing factor.
Collapse
Affiliation(s)
- Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaolin Jiang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Dan Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
8
|
Yang D, Xiu M, Jiang X, Kang Q, Fu J, Zhou S, Liu Y, He J. Caffeic Acid Alleviates Chronic Sleep Deprivation-Induced Intestinal Damage by Inhibiting the IMD Pathway in Drosophila. J Inflamm Res 2025; 18:3485-3498. [PMID: 40093942 PMCID: PMC11908395 DOI: 10.2147/jir.s500892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Background Sleep is vital for maintaining the health of the organism. Chronic sleep deprivation (CSD) is a key contributor to significant health risks, including the induction of gastrointestinal disorders. However, the mechanism of CSD caused intestinal damage remains unclear. Methods Drosophila melanogaster as an in vivo model was used to investigate the mechanism of CSD-induced intestinal injury, as well as the ameliorative effect of caffeic acid. Results CSD resulted in reduced survival and severely affected intestinal homeostasis in flies, as evidenced by disruption of intestinal acid-base homeostasis, increased feeding, increased intestinal permeability and shortened intestinal length. Meanwhile, the expressions of the immune deficiency (IMD) pathway-related genes PGRP-SB1, Dpt, AttA, AttB and Mtk were significantly up-regulated in the intestine of CSD flies. On the other hand, Caffeic acid supplementation restored intestinal acid-base homeostasis and intake, while improving intestinal barrier permeability and intestinal length, and effectively reducing intestinal damage. In addition, administration of caffeic acid decreased the expressions of PGRP-SB1, Dpt, AttA and Mtk genes in the CSD flies gut. Discussion These results suggested that CSD could disrupt gut homeostasis in adult flies by overactivating the IMD pathway, while Caffeic acid has an obvious protective role on the gut homeostasis.
Collapse
Affiliation(s)
- Dan Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Xiaolin Jiang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Qian Kang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Jinyu Fu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
9
|
Li J, Li H, Wei C, Chen C, Zheng Z. Astragalus polysaccharide attenuates retinal ischemia reperfusion-induced microglial activation through sortilin-related vacuolar protein sorting 10 domain containing receptor 2/laminin subunit alpha 1 upregulation. Cytojournal 2025; 22:2. [PMID: 39958884 PMCID: PMC11829307 DOI: 10.25259/cytojournal_131_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/29/2024] [Indexed: 02/18/2025] Open
Abstract
Objective Microglial activation is a hallmark of pathogenic retinal conditions such as retinal ischemia-reperfusion (RIR). While sortilin-related vacuolar protein sorting 10 domain containing receptor 2 (Sorcs2) and laminin subunit alpha 1 (Lama1) have been implicated in neuroinflammatory processes, their roles in regulating microglial activation in RIR are not reported. The current work studied the potential of Sorcs2 and Lama1 as negative regulators of microglial activation in RIR and assessed the therapeutic potential of Astragalus polysaccharide (AP). Material and Methods Transcriptome profiling was conducted in retinal specimens of RIR group 72 h after RIR induction. Oxygen-glucose deprivation/reperfusion (OGD/R) in rat microglial cells was employed as the cellular induction model of RIR. The functional role of Sorcs2 and Lama1 in dictating microglial activation was investigated in vitro and in vivo using lentivirus-based gene expression. Further, the potential effect of AP on RIR-mediated microglial activation was investigated. Results Sorcs2 and Lama1 were identified as two downregulated genes in retinal samples following RIR. OGD/R induction triggered pro-inflammatory microglial activation and induced the downregulation of Sorcs2 and Lama1. Sorcs2 or Lama1 overexpression hindered OGD/R-induced microglial activation in vitro and attenuated inflammatory expansion of microglia cells in RIR-induced rat retinal samples. AP treatment was able to neutralize the oxidative stress, promote the expression of Sorcs2 and Lama1, and suppress microglial activation. Conclusion Our findings pinpoint Sorcs2 and Lama1 as negative regulators of microglial activation in RIR. AP could be employed as an antioxidant to attenuate microglial activation and ameliorate the inflammatory damages in RIR.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Hua Li
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Chunling Wei
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Chen Chen
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Zhikun Zheng
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| |
Collapse
|
10
|
Zhao Y, Lu Q, Ma J, Ding G, Wang X, Qiao X, Wang Y, Cheng X. CD8+T cell infiltration-associated barrier function of brain endothelial cells is enhanced by astragalus polysaccharides via inhibiting the PI3K/AKT signaling pathway. J Leukoc Biol 2024; 117:qiae186. [PMID: 39226137 DOI: 10.1093/jleuko/qiae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Pathogenic CD8+T cells play an essential role in neuroinflammation and neural injury, which leads to the progression of inflammatory neurological disorders. Thus, blocking the infiltration of CD8+T cells is necessary for the treatment of neuroinflammatory diseases. Our previous study demonstrated that astragalus polysaccharide (APS) could significantly reduce the infiltration of CD8+T cells in experimental autoimmune encephalomyelitis mice. However, the mechanism by which APS suppresses CD8+T cell infiltration remains elusive. In this study, we further found that APS could reduce the CD8+T cell infiltration in experimental autoimmune encephalomyelitis and lipopolysaccharide (LPS)-induced neuroinflammatory model. Furthermore, we established the mouse brain endothelial cell (bEnd.3) inflammatory injury model by interleukin-1β or LPS in vitro. The results showed that APS treatment downregulated the expression of vascular cell adhesion molecule1 to decrease the adhesion of CD8+T cells to bEnd.3 cells. APS also upregulated the expression of zonula occludens-1 and vascular endothelial cadherin to reduce the transendothelial migration of CD8+T cells. The PI3K/AKT signaling pathway might mediate this protective effect of APS on bEnd.3 cells against inflammatory injury. In addition, we demonstrated the protective effect of APS on the integrity of brain endothelial cells in an LPS-induced neuroinflammatory model. In summary, our results indicate that APS can reduce peripheral CD8+T cell infiltration via enhancing the barrier function of brain endothelial cells; it may be a potential for the prevention of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Xiaohan Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| |
Collapse
|
11
|
Lu Q, Ma J, Zhao Y, Ding G, Wang Y, Qiao X, Cheng X. Disruption of blood-brain barrier and endothelial-to-mesenchymal transition are attenuated by Astragalus polysaccharides mediated through upregulation of ETS1 expression in experimental autoimmune encephalomyelitis. Biomed Pharmacother 2024; 180:117521. [PMID: 39383730 DOI: 10.1016/j.biopha.2024.117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
Blood-brain barrier (BBB) breakdown, an early hallmark of multiple sclerosis (MS), remains crucial for MS progression. Our previous works have confirmed that Astragalus polysaccharides (APS) can significantly ameliorate demyelination and disease progression in experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS protects BBB and the potential mechanism. In this study, we found that APS effectively reduced BBB leakage in EAE mice, which was accompanied by a decreased level of endothelial-to-mesenchymal transition (EndoMT) in the central nervous system (CNS). We further induced EndoMT in the mouse brain endothelial cells (bEnd.3) by interleukin-1β (IL-1β) in vitro. The results showed that APS treatment could inhibit IL-1β-induced EndoMT and endothelial cell dysfunction. In addition, the transcription factor ETS1 is a central regulator of EndoMT related to the compromise of BBB. We tested the regulation of APS on ETS1 and identified the expression of ETS1 was upregulated in both EAE mice and bEnd.3 cells by APS. ETS1 knockdown facilitated EndoMT and endothelial cell dysfunction, which completely abolished the regulatory effect of APS. Collectively, APS treatment could protect BBB integrity by inhibiting EndoMT, which might be associated with upregulating ETS1 expression. Our findings indicated that APS has potential value in the prevention of MS.
Collapse
Affiliation(s)
- Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
12
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
13
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024; 15:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
14
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
15
|
Kim H, Xue H, Li X, Yue G, Zhu J, Eh T, Wang S, Jin LH. Orostachys malacophylla (pall.) fisch extracts alleviate intestinal inflammation in Drosophila. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118215. [PMID: 38641073 DOI: 10.1016/j.jep.2024.118215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys malacophylla (Pall.) Fisch (O. malacophylla) is a succulent herbaceous plant that is the Orostachys genus of Crassulaceae family. O. malacophylla has been widely used as a traditional Chinese medicine with antioxidant, anti-inflammatory, anti-febrile, antidote, anti-Toxoplasma gondii properties. However, the biological function of alleviating intestinal inflammation and key bioactive compounds were still unknown. AIM OF THE STUDY We used a Drosophila model to study the protective effects and bioactive compounds of O. malacophylla water extract (OMWE) and butanol extract (OMBE) on intestinal inflammation. MATERIALS AND METHODS Drosophila intestinal inflammation was induced by oral invasion of dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15). We revealed the protective effects of two extracts by determining intestinal reactive oxygen species (ROS) and antimicrobial peptide (AMP) levels and intestinal integrity, and using network pharmacology analysis to identify bioactive compounds. RESULTS We demonstrated that both OMWE and OMBE could ameliorate the detrimental effects of DSS, including a decreased survival rate, elevated ROS levels, increased cell death, excessive proliferation of ISCs, acid-base imbalance, and disruption of intestinal integrity. Moreover, the overabundance of lipid droplets (LDs) and AMPs by Ecc15 infection is mitigated by these extracts, thereby enhancing the flies' resistance to adverse stimuli. In addition, we used widely targeted metabolomics and network pharmacology analysis to identify bioactive compounds associated with IBD healing that are present in OMWE and OMBE. CONCLUSIONS In summary, our research indicates that OMWE and OMBE significantly mitigate intestinal inflammation and have the potential to be effective therapeutic agents for IBD in humans.
Collapse
Affiliation(s)
- Hyonil Kim
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China; College of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea.
| | - Hongmei Xue
- Department of Children's Emergency Medicine, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Xiao Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| | - Guanhua Yue
- Department of Basic Medical, Shenyang Medical College, Shenyang, China.
| | - Jiahua Zhu
- Department of Basic Medical, Shenyang Medical College, Shenyang, China.
| | - Tongju Eh
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China; College of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea.
| | - Sihong Wang
- Analysis and Test Center, Yanbian University, Yanji 133002, Jilin Province, PR China.
| | - Li Hua Jin
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
16
|
Shi Y, Ma P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front Pharmacol 2024; 15:1449101. [PMID: 39156112 PMCID: PMC11327089 DOI: 10.3389/fphar.2024.1449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aβ accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ping Ma
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Huo Z, Li J, Li X, Xiao H, Lin Y, Ma Y, Li J, Yang H, Zhang C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int J Biol Macromol 2024; 271:132580. [PMID: 38788871 DOI: 10.1016/j.ijbiomac.2024.132580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
18
|
Feng A, Zhao Z, Liu C, Du C, Gao P, Liu X, Li D. Study on characterization of Bupleurum chinense polysaccharides with antioxidant mechanisms focus on ROS relative signaling pathways and anti-aging evaluation in vivo model. Int J Biol Macromol 2024; 266:131171. [PMID: 38574920 DOI: 10.1016/j.ijbiomac.2024.131171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
This study explored the structures of three polysaccharides from Bupleurum chinense DC. (BCPRs), and evaluated their antioxidant and anti-aging properties. The HPGPC and ion chromatography analyses revealed that the molecular weights of the BCPRs ranged from 12.05 to 21.20 kDa, and were primarily composed of rhamnose, arabinose, xylose, galactose, glucose and galacturonic acid. Methylation and NMR studies identified 10 PMAAs, establishing the various backbones of BCPRs 1-3. BCPR-3 demonstrated potent antioxidant activities, including DPPH, ABTS, hydroxy, and superoxide radicals scavenging in vitro. At concentrations between 125 and 500 μg/mL, BCPR-3 increased T-AOC, SOD and GSH-Px activities, while decreasing MDA levels in H2O2-induced SH-SY5Y cells. In addition, RNA-seq results indicated that BCPR-3 considerably downregulated the expression of 49 genes and upregulated five genes compared with the control group. KEGG analysis suggested that these differentially expressed genes (DEGs) were predominantly involved in the TNF and PI3K/Akt signaling pathways. Furthermore, in vivo experiment with Drosophila melanogaster showed that BCPR-3 could extend the average lifespan of flies. In conclusion, polysaccharides from B. chinense exhibited potential antioxidant and anti-aging activities, which could be developed as new ingredients to combat oxidative stress damage and slow the aging process.
Collapse
Affiliation(s)
- Anqi Feng
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Ziwei Zhao
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Changfeng Liu
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning, 100016, China
| | - Pinyi Gao
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
| | - Xuegui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang 110142, China; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Danqi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang 110142, China.
| |
Collapse
|
19
|
Li B, Xiu M, He L, Zhou S, Yi S, Wang X, Cao W, Liu Y, He J. Protective effect of San Huang Pill and its bioactive compounds against ulcerative colitis in Drosophila via modulation of JAK/STAT, apoptosis, Toll, and Nrf2/Keap1 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117578. [PMID: 38104873 DOI: 10.1016/j.jep.2023.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San Huang Pill (SHP) is a prescription in Dunhuang Ancient Medical Prescription, which has the efficacy of heat-clearing and dampness-drying, and is a traditional formula for the treatment of gastrointestinal diseases. However, its efficacy and mechanism in treating ulcerative colitis (UC) are still unclear. AIM OF THE STUDY To investigate the protective effects of SHP and its bioactive compounds against Dextran Sulfate Sodium (DSS)-induced intestinal damage using the Drosophila melanogaster model, and to detect the molecular mechanism of SHP in the treatment of UC. METHODS Survival rate, locomotion, feeding, and excretion were used to explore the anti-inflammatory effects of SHP. The pharmacotoxicity of SHP was measured using developmental analysis. Intestinal integrity, intestinal length, intestinal acid-base homeostasis, and Tepan blue assay were used to analyze the protective effect of SHP against DSS-induced intestinal damage. The molecular mechanism of SHP was detected using DHE staining, immunofluorescence, real-time PCR, 16 S rRNA gene sequencing, and network pharmacology analysis. Survival rate, intestinal length, and integrity analysis were used to detect the protective effect of bioactive compounds of SHP against intestinal damage. RESULTS SHP supplementation significantly increased the survival rate, restored locomotion, increased metabolic rate, maintained intestinal morphological integrity and intestinal homeostasis, protected intestinal epithelial cells, and alleviated intestinal oxidative damage in adult flies under DSS stimulation. Besides, administration of SHP had no toxic effect on flies. Moreover, SHP supplementation remarkably decreased the expression levels of genes related to JAK/STAT, apoptosis, and Toll signaling pathways, increased the gene expressions of the Nrf2/Keap1 pathway, and also reduced the relative abundance of harmful bacteria in DSS-treated flies. Additionally, the ingredients in SHP (palmatine, berberine, baicalein, wogonin, rhein, and aloeemodin) had protection against DSS-induced intestinal injury, such as prolonging survival rate, increasing intestinal length, and maintaining intestinal barrier integrity. CONCLUSION SHP had a strong anti-inflammatory function, and remarkably alleviated DSS-induced intestinal morphological damage and intestinal homeostatic imbalance in adult flies by regulating JAK/STAT, apoptosis, Toll and Nrf2/Keap1 signaling pathways, and also gut microbial homeostasis. This suggests that SHP may be a potential complementary and alternative medicine herb therapy for UC, which provides a basis for modern pharmacodynamic evaluation of other prescriptions in Dunhuang ancient medical prescription.
Collapse
Affiliation(s)
- Botong Li
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Li He
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wangjie Cao
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Xiao L, Sun R, Han Y, Xia L, Lin K, Fu W, Zhong K, Ye Y. NAMPT‑NAD + is involved in the senescence‑delaying effects of saffron in aging mice. Exp Ther Med 2024; 27:123. [PMID: 38410190 PMCID: PMC10895469 DOI: 10.3892/etm.2024.12411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024] Open
Abstract
As the proportion of the elderly population grows rapidly, the senescence-delaying effects of Traditional Chinese Medicine is being investigated. The aim of the present study was to investigate the senescence-delaying effects of saffron in naturally aging mice. The active ingredients in an aqueous saffron extract were determined using high-performance liquid chromatography (HPLC). Mice were divided into saffron (8- and 16-months-old) and control groups (3-, 8-, and 16-months-old), and saffron extract was administered to the former groups for 8 weeks. The open field test and Barnes maze test were used to evaluate the locomotor activity, learning and memory function of the mice. The levels of inflammatory factors in the brain were determined by ELISA. In addition, the activities of acetylcholinesterase (AChE) and superoxide dismutase, and the contents of malondialdehyde and nicotinamide adenine dinucleotide (NAD+) were detected by enzyme immunoassay, and the content of NAMPT was detected by ELISA, western blotting and reverse transcription-quantitative PCR. The cellular distribution of NAMPT and synaptic density were evaluated by immunofluorescence, and the pathological morphologies of the liver, skin, kidneys were observed by hematoxylin and eosin staining. HPLC revealed that the crocin and picrocrocin contents of the saffron extract were 19.56±0.14 and 12.00±0.13%, respectively. Saffron exhibited the potential to improve the learning and memory function in aging mice as it increased synaptic density and decreased AChE activity. Also, saffron ameliorated the pathological changes associated with organ aging, manifested by increasing the number of hepatocytes and the thickness of the skin, and preventing the aging-induced ballooning and bleeding in the kidneys. Furthermore, saffron increased the contents of NAMPT and NAD+ in the brain and decreased the content of NAMPT in the serum. In addition, it changed the cellular distribution of NAMPT in aging mice, manifested as reduced NAMPT expression in microglia and astrocytes, and increased NAMPT expression in neurons. Saffron also decreased the contents of proinflammatory cytokines and oxidative stress factors in aging mice. Altogether, these findings indicate that saffron exerts senescence-delaying effects in naturally aging mice, which may be associated with the NAMPT-NAD+ pathway.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Runxuan Sun
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Yubin Han
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Linhan Xia
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Kexin Lin
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Wanyan Fu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| |
Collapse
|
21
|
Hu L, Zhang M, Hu P, Zhang J, Niu C, Lu X, Jiang X, Ma Y. Dual-channel hypergraph convolutional network for predicting herb-disease associations. Brief Bioinform 2024; 25:bbae067. [PMID: 38426326 PMCID: PMC10939431 DOI: 10.1093/bib/bbae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Herbs applicability in disease treatment has been verified through experiences over thousands of years. The understanding of herb-disease associations (HDAs) is yet far from complete due to the complicated mechanism inherent in multi-target and multi-component (MTMC) botanical therapeutics. Most of the existing prediction models fail to incorporate the MTMC mechanism. To overcome this problem, we propose a novel dual-channel hypergraph convolutional network, namely HGHDA, for HDA prediction. Technically, HGHDA first adopts an autoencoder to project components and target protein onto a low-dimensional latent space so as to obtain their embeddings by preserving similarity characteristics in their original feature spaces. To model the high-order relations between herbs and their components, we design a channel in HGHDA to encode a hypergraph that describes the high-order patterns of herb-component relations via hypergraph convolution. The other channel in HGHDA is also established in the same way to model the high-order relations between diseases and target proteins. The embeddings of drugs and diseases are then aggregated through our dual-channel network to obtain the prediction results with a scoring function. To evaluate the performance of HGHDA, a series of extensive experiments have been conducted on two benchmark datasets, and the results demonstrate the superiority of HGHDA over the state-of-the-art algorithms proposed for HDA prediction. Besides, our case study on Chuan Xiong and Astragalus membranaceus is a strong indicator to verify the effectiveness of HGHDA, as seven and eight out of the top 10 diseases predicted by HGHDA for Chuan-Xiong and Astragalus-membranaceus, respectively, have been reported in literature.
Collapse
Affiliation(s)
- Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Menglong Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Pengwei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Jun Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Chao Niu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physicsand Chemistry,Chinese Academy of Sciences Urumqi, China
| | - Xueying Lu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physicsand Chemistry,Chinese Academy of Sciences Urumqi, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,Chinese Academy of Sciences Shanghai, China
| | - Yupeng Ma
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| |
Collapse
|
22
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Tang J, Yousaf M, Wu YP, Li QQ, Xu YQ, Liu DM. Mechanisms and structure-activity relationships of polysaccharides in the intervention of Alzheimer's disease: A review. Int J Biol Macromol 2024; 254:127553. [PMID: 37865357 DOI: 10.1016/j.ijbiomac.2023.127553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. Despite several decades of research, the development of effective treatments and responses for Alzheimer's disease remains elusive. The utilization of polysaccharides for Alzheimer's disease became more popular due to their beneficial characteristics, notably their multi-target activity and low toxicity. This review mainly focuses on the researches of recent 5 years in the regulation of AD by naturally derived polysaccharides, systematically lists the possible intervention pathways of polysaccharides from different mechanisms, and explores the structure-activity relationship between polysaccharide structural activities, so as to provide references for the intervention and treatment of AD by polysaccharides.
Collapse
Affiliation(s)
- Jun Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ya-Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Qin-Qin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Yi-Qian Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
24
|
He J, Han S, Wang Y, Kang Q, Wang X, Su Y, Li Y, Liu Y, Cai H, Xiu M. Irinotecan cause the side effects on development and adult physiology, and induces intestinal damage via innate immune response and oxidative damage in Drosophila. Biomed Pharmacother 2023; 169:115906. [PMID: 37984304 DOI: 10.1016/j.biopha.2023.115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Chemotherapy leads to significant side effects in patients, especially in the gut, resulting in various clinical manifestations and enhanced economic pressure. Until now, many of the underlying mechanisms remain poorly understood. Here, we used Drosophila melanogaster (fruit fly) as in vivo model to delineate the side effects and underlying mechanisms of Irinotecan (CPT-11). The results showed that administration of CPT-11 delayed larval development, induced imbalance of male to female ratio in offspring, shortened lifespan, impaired locomotor ability, changed metabolic capacity, induced ovarian atrophy, and increased excretion. Further, CPT-11 supplementation dramatically caused intestinal damages, including decreased intestinal length, increased crop size, disrupted gastrointestinal acid-based homeostasis, induced epithelial cell death, and damaged the ultrastructure and mitochondria structure of epithelial cells. The cross-comparative analysis between transcriptome and bioinformation results showed that CPT-11 induced intestinal damage mainly via regulating the Toll-like receptor signaling, NF-kappa B signaling, MAPK signaling, FoxO signaling, and PI3K-AKT signaling pathways. In addition, CPT-11 led to the intestinal damage by increasing ROS accumulation. These observations raise the prospects of using Drosophila as a model for the rapid and systemic evaluation of chemotherapy-induced side effects and high-throughput screening of the protective drugs.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Qian Kang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yun Su
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yaling Li
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Hui Cai
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Minghui Xiu
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
25
|
Tao L, Liao J, Zheng R, Zhang X, Shang H. Association of Drinking Herbal Tea with Activities of Daily Living among Elderly: A Latent Class Analysis. Nutrients 2023; 15:2796. [PMID: 37375699 DOI: 10.3390/nu15122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to explore whether drinking herbal tea and tea would positively benefit activities of daily living (ADL) in the elderly. We used data from the Chinese longitudinal healthy longevity survey (CLHLS) to explore the association. Drinking herbal tea and drinking tea were divided into three groups using latent class analysis (LCA): frequently, occasionally, and rarely. ADL disability was measured by the ADL score. Multivariate COX proportional hazards models with competing risks were used to explore the impact of drinking herbal tea and tea on ADL disability, statistically adjusted for a range of potential confounders. A total of 7441 participants (mean age 81.8 years) were included in this study. The proportions of frequently and occasionally drinking herbal tea were 12.0% and 25.7%, respectively. Additionally, 29.6% and 28.2% of participants reported drinking tea, respectively. Multivariate COX regression showed that compared with rarely drinking, frequently drinking herbal tea could effectively reduce the incidence of ADL disability (HR = 0.85, 95% CI = 0.77-0.93, p = 0.005), whereas tea drinking had a relatively weaker effect (HR = 0.92, 95% CI = 0.83-0.99, p = 0.040). Subgroup analysis found that frequently drinking herbal tea was more protective for males under 80 years old (HR = 0.74 and 0.79, respectively), while frequently drinking tea was somewhat protective for women (HR = 0.92). The results indicate that drinking herbal tea and tea may be associated with a lower incidence of ADL disability. However, the risks associated with using Chinese herb plants still deserve attention.
Collapse
Affiliation(s)
- Liyuan Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jiaojiao Liao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Xiaoyu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
26
|
Yang S, Xiu M, Li X, Shi Y, Wang S, Wan S, Han S, Yang D, Liu Y, He J. The antioxidant effects of hedysarum polybotrys polysaccharide in extending lifespan and ameliorating aging-related diseases in Drosophila melanogaster. Int J Biol Macromol 2023; 241:124609. [PMID: 37105250 DOI: 10.1016/j.ijbiomac.2023.124609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Hedysarum polybotrys polysaccharide (HPS) is one of the main active ingredients of Hedysarum with many health-beneficial properties, including antioxidant property, immunomodulatory, anti-inflammatory, and anti-tumor. However, the effect of HPS on anti-aging is still unclear. This study was to explore the protective function of HPS on aging and age-related diseases using Drosophila melanogaster. The results demonstrated that HPS supplementation promoted hatchability and prolonged lifespan by enhancing the antioxidative capacity. Administraction of HPS ameliorated age-related symptoms such as imbalanced intestinal homeostasis, sleep disturbances, and beta-amyloid (Aβ) induced Alzheimer's disease (AD) in flies, but did not modulate neurobehavioral deficits in the AD model of tauopathy and the Parkinson's disease (PD) model of Pink1 mutation. Overall, this study reveals that HPS has strong potential in the prevention of aging and age-related diseases, and provided a new candidate for the development of anti-aging drugs.
Collapse
Affiliation(s)
- Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shengfang Wan
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Dan Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
27
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|