1
|
Wang R, Liu C, Zhang K, Sun R, Liu S, Chang X, Zhang J. Effect of high hydrostatic pressure on physicochemical and digestive properties of catechin-chestnut starch complexes. Food Chem 2025; 485:144501. [PMID: 40306055 DOI: 10.1016/j.foodchem.2025.144501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Chinese chestnuts are high in starch, and becomes rapidly digestible after cooking, which increases the risk of blood glucose level disorders. In this study, a catechin-chestnut starch complex (CC-CS) was prepared using high hydrostatic pressure (HHP). The findings revealed that the complexation rate of complex prepared using HHP was 68.83 %. Compared with that of chestnut starch (CS), the solubility and swelling power of 600 MPa-6 % complex increased by 18.13 % and 4.14 %, respectively. Conversely, the freeze-thaw stability showed a decline of 16.48 %, whereas the resistant starch exhibited an increase of 39.93 %; consequently, HHP treatment reduced the digestibility of complex. The long-range ordered structure was disrupted, and the relative crystallinity diminished. The enthalpy change (ΔH) decreased, and complex showed typical weak gel behavior. In conclusion, HHP facilitates the formation of complex and enhances the physicochemical properties and anti-digestibility of chestnut products, thus aiding in the development of high-quality, low-digestibility starch-based foods.
Collapse
Affiliation(s)
- Runzheng Wang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Chang Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Ruonan Sun
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
2
|
Amobonye A, Bendoraitiene J, Peciulyte L, Rutkaite R. Review of recent advancements in starch modification: Improving the functionality of starch-based films. Int J Biol Macromol 2025; 315:144354. [PMID: 40393596 DOI: 10.1016/j.ijbiomac.2025.144354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/08/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Starch-based materials have been gained popularity as top among the most sustainable alternatives to conventional plastics due to their structural and functional diversity. However, the full potential and applicability of films derived from native starch in food packaging, as well as in other non-food applications, is limited by their inferior mechanical strength, thermal stability and barrier properties. Consequently, various scientific and industrial efforts have since been focused on modifying starch at the molecular level to circumvent these shortcomings and improve their functionality in material science. Thus, in this systematic review, the recent advancements in the chemical, physical and biological approaches of modifying starch structure, for enhanced film formation and bioplastic production were critical analysed. In recognition of the fact that the industrial utilization of starch is also impeded by their food use which creates a composite demand, various alternative sources of starch vis a vis, the underutilized sources, agricultural residues and algae, were also part of the discourse. This paper also explored the current industrial applications of starch-based films, including as packaging, adhesives, agricultural practice and drug delivery. Finally, the challenges to the real-time utilization of these innovative materials and possible solutions to be considered in the future were highlighted.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania
| | - Joana Bendoraitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania
| | - Laura Peciulyte
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania.
| |
Collapse
|
3
|
Qi H, Fu W, Liu Y, Bai J, Wang R, Zou G, Shen H, Cai Y, Luo A. Electron beam irradiation coupled ultrasound-assisted natural deep eutectic solvents extraction: A green and efficient extraction strategy for proanthocyanidin from walnut green husk. Food Chem 2025; 463:141279. [PMID: 39326317 DOI: 10.1016/j.foodchem.2024.141279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Proanthocyanidin (PAC) is recognized as a potent natural antioxidant that prevents various diseases. As societal awareness increases, eco-friendly and efficient natural product extraction technologies are gaining more attention. In this study, an electron beam irradiation (EBI) coupled with ultrasound-assisted natural deep eutectic solvents (NADES) extraction method was developed to enable the green and highly efficient extraction of PAC from walnut green husk (WGH). NADES, prepared with choline chloride and ethylene glycol, demonstrated excellent extraction capacity and storage stability for PAC. Molecular dynamics simulations elucidated the high compatibility between NADES and PAC, attributed mainly to a higher SASA value (207.85 nm2), a greater number of hydrogen bonds (330.99), an extended hydrogen bonding lifetime (4.54 ps), and lower inter-molecular interaction energy. Based on these findings, the optimal conditions (13 kGy EBI, 42 mL/g liquid-solid ratio, 38 °C extraction temperature, 70 min extraction time) resulted in a maximum PAC extraction yield of 56.34 mg/g. Notably, this yield was 32.93 % higher than that observed in samples not treated with EBI and ultrasound-assisted extraction (UAE). Analysis of tissue morphology, extract functional groups and thermal behavior suggested a possible mechanism for the synergistically enhanced PAC extraction by the EBI-NADES-UAE method. Additionally, the PAC extracted using the NADES by the EBI coupled with ultrasound-assisted method exhibited outstanding antioxidant activity (comparable to Vc), digestive enzyme inhibition (IC50: 17-0.61 mg/mL), and anti-glycation capacity (IC50: 86.49 μg/mL). Overall, this work provided a green and efficient strategy for PAC extraction from WGH, elucidated the extraction mechanism and bioactivities, and offered valuable insights for potential industrial applications.
Collapse
Affiliation(s)
- Heting Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wanjia Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yujie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Ruolin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Guangming Zou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Ding W, Tu Q, Xi X, Wu X, Bai J, Liu S, Li J, Yuan C. Effects of X-ray and electron beam irradiation on wine quality: Emphasizing phenolic compounds and aroma profiles. Food Chem X 2025; 25:102124. [PMID: 39885920 PMCID: PMC11780950 DOI: 10.1016/j.fochx.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
The content of flavor compounds in wine is limited by factors such as climate warming and the resistance of cell walls to maceration. This study used X-rays (ionizing radiation) and electron beams (particle radiation) at 0.5, 2, and 7 kGy for grape pre-treatment before winemaking. Scanning electron microscopy showed varying degrees of grape skin damage. Results indicated irradiation significantly enhanced phenolic compound extraction, with DPPH and ABTS scavenging activities increasing by up to 38.98 % and 38.70 %. Wines treated with 0.5 kGy electron beams exhibited the highest levels of esters and higher alcohols, enhancing fruity aromas. Irradiation reduced C6 compound content, decreasing green notes and improving color and complexity scores. This study demonstrates that X-ray and electron beam irradiation significantly enhance phenolic and aromatic compound extraction in wine, showing the potential of irradiation technology in the wine industry.
Collapse
Affiliation(s)
- Weikang Ding
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Qian Tu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Xuexue Xi
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Xiaojie Wu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi Province 712100, China
| | - Shuang Liu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Shaanxi 712100, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| |
Collapse
|
5
|
He C, Zhang R, Fan R, Yu J, Hu J, Peng Q, Han L, Wang M. Starch modification by low-dose electron beam irradiation: A comprehensive study between buckwheat starch, potato starch and pea starch. Int J Biol Macromol 2024; 283:137810. [PMID: 39586436 DOI: 10.1016/j.ijbiomac.2024.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Electron Beam Irradiation (EBI) is an emerging technique for food decontamination and starch modification, but a comprehensive evaluation at safe doses (<10 kGy) for different starch sources is lacking. This study investigated the effects of low-dose EBI (2-8 kGy) on the physicochemical properties of buckwheat starch (BS), potato starch (POS), and pea starch (PS), each with different crystalline types (A-, B-, and C-type, respectively). EBI significantly reduced moisture and amylose content, decreased pasting viscosity, and retarded retrogradation dose-dependently for all starches. It also altered relative crystallinity (RC), thermal properties, rheological properties, and in vitro digestion, with effects varying by starch source. EBI-treated BS and POS showed decreased RC, gelatinization temperature and enthalpy, and increased paste flowability, while EBI-treated PS exhibited the opposite trend. Digestibility of EBI-treated BS initially decreased then increased with dose, while POS digestibility increased, and PS digestibility remained unchanged. This study highlights the versatility of EBI in starch modification, emphasizing its potential in developing low-viscosity starchy foods.
Collapse
Affiliation(s)
- Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Rui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Rong Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Company Limited, Yangling 712100, China
| | - Jiaxuan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Wen J, Li Z, Yao J, Wang S, Liu Y, Liu Y. The combined application of organic and inorganic fertilizers improved the quality of colored wheat by physicochemical properties and rheological characteristics of starch. Int J Biol Macromol 2024; 282:137175. [PMID: 39510457 DOI: 10.1016/j.ijbiomac.2024.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excessive use of nitrogen fertilizer can degrade the quality of wheat grain, while appropriate use of organic fertilizer can enhance starch quality. To clarify the effects of chemical fertilizer and organic fertilizer on wheat quality. We measured indicators such as amylose content, starch granules, starch structure, gelatinization characteristics, and rheological properties of wheat under different proportions of combined application of organic fertilizer and chemical fertilizer, revealing the effects of combined application of organic fertilizer and chemical fertilizer on the physicochemical properties and structure of starch. The results showed that compared with single application of chemical fertilizer (T1), organic fertilizer instead of 30 % fertilizer (T2) significantly increased amylose content (10.13 %), starch solubility (35.54 %, 90 °C), swelling power (7.40 %, 90 °C) and wheat yield (18.78 %), but decreased relative crystallinity (37.40 %) and order degree of starch, resulted in a decrease in gelatinization temperature (3.27 %). Meanwhile, rheological analysis also proved that the starch under T2 showed strong elasticity and hardness. This research highlights the importance of organic fertilizer for grain quality and propose that replacing 30 % of chemical fertilizer with organic fertilizer could significantly enhance the starch structure of colored wheat, providing theoretical support for the improvement of wheat quality.
Collapse
Affiliation(s)
- Jialu Wen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhiyuan Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jianfeng Yao
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shuo Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yi Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Tian M, Wang Y, Sun H, Cai J, Ma Y. Effect of electron beam irradiation pretreatment on the structural, physicochemical properties of potato starch-fatty acid complexes and the proliferation of Bifidobacterium adolescentis. Int J Biol Macromol 2024; 282:137258. [PMID: 39505173 DOI: 10.1016/j.ijbiomac.2024.137258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
The effects of different electron beam irradiation doses (5 KGy, 10 KGy, 20 KGy) on the complexation of potato starch with four saturated fatty acids with different chain lengths, i.e., lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA), were investigated, including structural properties, physicochemical properties, digestive properties, and the effect of Bifidobacteria proliferation. The complexing index increased significantly with increasing irradiation dose and showed the following order: 20 KGy > 10 KGy > 5 KGy > native starch. At irradiation dose of 20 KGy, PA (88.75 %) showed the highest complexing index, followed by MA (87.40 %), SA (82.95 %) and LA (72.33 %). The results of microstructure, relative crystallinity, gelatinization enthalpy, contact angle, and resistant starch content in starch-fatty acid complexes were consistent with the complexing index. In vitro digestion indicated that at irradiation dose of 20 KGy, the addition of PA yielded the highest content of resistant starch (50.35 %), followed by MA (49.25 %), SA (47.05 %) and LA (44.72 %). The four complexes were eventually assessed for their effects on Bifidobacteria's proliferation, with PA exerting the strongest proliferative effects, followed by MA, SA and LA. Overall, electron beam irradiation exhibited good application prospects in the field of starchy food processing and functional foods development.
Collapse
Affiliation(s)
- Miaomiao Tian
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongjia Sun
- Medical Laboratory Center, The First Hospital of Lanzhou University (The first school of clinical medicine), Lanzhou 730000, China
| | - Jing Cai
- Lanzhou Pulmonary Hospital, Lanzhou 730030, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
9
|
Liang D, Liu Q, Luo H, Luo L, Temirlan K, Li W. The Effect of Maltose on Structural, Physicochemical, and Digestive Properties of Lentil Starch under Electron Beam Irradiation. Foods 2024; 13:2544. [PMID: 39200470 PMCID: PMC11353368 DOI: 10.3390/foods13162544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the effects of electron beam irradiation (EBI) on the structural, physicochemical, and functional properties of lentil starch with varying maltose content. EBI did not significantly disrupt the starch's surface structure or cause amorphization of starch and maltose crystals, but it significantly reduced the intensity of starch's XRD peaks. The presence of maltose intensified internal growth ring damage, leading to more cross-link and rearrangement between short chains, improving short-range ordering of lentil starch and enhancing starch's solubility and thermal stability. Additionally, adding maltose that EBI then treats can lead to an increased content of slowly digestible starch in samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling District, Xianyang 712100, China; (D.L.); (Q.L.); (H.L.); (L.L.); (K.T.)
| |
Collapse
|
10
|
Liu Q, Luo H, Liang D, Zheng Y, Shen H, Li W. Effect of electron beam irradiation pretreatment and different fatty acid types on the formation, structural characteristics and functional properties of starch-lipid complexes. Carbohydr Polym 2024; 337:122187. [PMID: 38710543 DOI: 10.1016/j.carbpol.2024.122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.
Collapse
Affiliation(s)
- Qing Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No.136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China.
| |
Collapse
|
11
|
Luo H, Liang D, Liu Q, Zheng Y, Shen H, Li W. Investigation of the role of sodium chloride on wheat starch multi-structure, physicochemical and digestibility properties during X-ray irradiation. Food Chem 2024; 447:139012. [PMID: 38492296 DOI: 10.1016/j.foodchem.2024.139012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
In this paper, different NaCl content was added to wheat starch and then subjected to X-ray irradiation to investigate the effect of salt on starch modification by irradiation. The results showed that the degradation of wheat starch intensified with the increase in irradiation dose. When irradiated at the same dose, wheat starch with sodium chloride produced shorter chains, lower molecular weight and amylose content, and higher crystallinity, solubility, and resistant starch than wheat starch without sodium chloride. The energy generated by X-rays dissociating sodium chloride caused damage to the glycoside bonds of the starch molecule. With a further increase in the mass fraction of NaCl, the hydrogen bonds of the starch molecules were broken, and the double helix structure was depolymerized, which exacerbated the extent of irradiation-modified wheat starch. At the same time, starch molecules will be rearranged to form a more stable structure.
Collapse
Affiliation(s)
- Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi, 712100 Yangling, People's Republic of China
| | - Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi, 712100 Yangling, People's Republic of China
| | - Qing Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi, 712100 Yangling, People's Republic of China
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi, 712100 Yangling, People's Republic of China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi, 712100 Yangling, People's Republic of China.
| |
Collapse
|
12
|
Lei X, Xu J, Han H, Zhang X, Li Y, Wang S, Li Y, Ren Y. Fine molecular structure and digestibility changes of potato starch irradiated with electron beam and X-ray. Food Chem 2024; 439:138192. [PMID: 38091788 DOI: 10.1016/j.foodchem.2023.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
The change of digestibility of starch irradiated with different types from the perspective of fine structure is not well understood. In this work, the change of internal structure, molecular weight and chain-length distribution, helical structure, lamellar structure, fractal structure and digestibility of native and treated potato starch with electron beam and X-ray was analyzed. Two irradiations caused the destruction of internal structure, the disappearance of growth rings and increase of pores. Irradiation degraded starch to produce short chains and to decrease molecular weight. Irradiation increased double helical content and the thickness and peak area of lamellar structure, resulting in the reorganization of amylopectin and increase of structure order degree. The protected glycosidic linkages increased starch resistance to hydrolase attack, thereby enhancing the anti-digestibility of irradiated starch. Pearson correlation matrix also verified the above-mentioned results. Moreover, X-ray more increased the anti-digestibility of starch by enhancing ability to change fine structure.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiayi Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaolu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yihan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yali Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| |
Collapse
|
13
|
Lin Q, Liang W, Yan M, Zhao W, Niu L, Shen H, Li W. Improvement of sorghum-wheat blended flours by E-beam irradiation: Physicochemical properties, rheological behavior, microstructure, and quality properties. Int J Biol Macromol 2024; 265:130967. [PMID: 38499122 DOI: 10.1016/j.ijbiomac.2024.130967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
To enhance the processing suitability of blended flours, this study used 4 kGy E-beam irradiated (EBI) sorghum flour in different ratios blended with wheat flour and further verified the improvement mechanism of the processed products under the optimal ratios. The results suggested that the EBI can mitigate the deterioration of the blend flour farinograph properties while enhancing the gas release during dough fermentation. Under the same addition ratio, the irradiated blend flours showed higher expansion height, gas release, cavitation time, and gas retention coefficient than the control flours. Also, irradiated blend flours retained a gluten network at a higher addition rate (20 %). Moreover, the irradiated blend flours were optimized at 10 % as its pasting and thermal properties were improved. Notably, this ameliorating effect promotes a decrease in hardness and chewiness and an increase in cohesion of the bread cores, presenting better textural attributes and delaying the aging rate during storage. The findings are instructive for applying EBI technology in the manufacture and quality improvement of mixed grain breads and open a new research avenue for processing sorghum staple foods.
Collapse
Affiliation(s)
- Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengting Yan
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Niu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
15
|
Zheng J, Zhao W, Liu X, Liang W, Zheng Y, Ge X, Shen H, Li W. Electron beam irradiation-assisted prepare pea starch nanocrystals and characterization of their molecular structure, physicochemical and rheological properties. Int J Biol Macromol 2023; 251:126384. [PMID: 37595714 DOI: 10.1016/j.ijbiomac.2023.126384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Electron beam irradiation (EBI) is an environmentally friendly physical modification technology. In this study, pea starch nanocrystals (SNC) were prepared by EBI-assisted pretreatment, and investigated the effects of EBI on the multiscale structure and physicochemical properties of SNC. EBI-assisted pretreatment didn't change the particle morphology, crystalline type and FT-IR spectra of SNC. However, EBI-SNC's relative crystallinity and short-range orderliness index (R1047/1022) significantly increased with increasing irradiation dose (5 KGy-20 KGy). In addition, EBI-assisted pretreatment caused the long chains of SNC's amylopectin to break into short chains. Moreover, EBI-assisted treatment significantly reduced the mean size, molecular weight, apparent amylose content, swelling power and SDS + RS content of SNC, while increasing the solubility, zeta potential and RDS content. Furthermore, the flow properties of the EBI-SNC samples were increased. The results show that EBI effectively changed the structural and functional properties of SNC, and the excellent functional properties are expected to broaden the application range of SNC.
Collapse
Affiliation(s)
- Jiayu Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|