1
|
Li Y, Li X, Zhu L, Liu T, Huang L. Chitosan-based biomaterials for bone tissue engineering. Int J Biol Macromol 2025; 304:140923. [PMID: 39947561 DOI: 10.1016/j.ijbiomac.2025.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Common critical size bone defects encountered in clinical practice often result in inadequate bone regeneration,primarily due to the extent of damage surpassing the inherent capacity of the body for self-healing. Bone tissue engineering scaffolds possess the desirable characteristics of biomimetic bone structure, simulated extracellular matrix, optimal mechanical strength, and biological functionality, rendering them the preferred option for the treatment of bone defects. Chitosan demonstrates favorable biocompatibility, plasticity, and a range of biological activities, rendering it a highly appealing material. Chitosan and its derivatives have been found to exert an impact on bone repair through their ability to modulate macrophage polarization, angiogenesis, and the delicate equilibrium of bone remodeling. However, the efficacy of pure chitosan is constrained, necessitating its combination with other bioactive substances to achieve an optimal biomimetic scaffold that is compatible with the specific bone defect site. Chitosan is commonly utilized in the field of bone repair in four different application forms: rigid scaffold, hydrogel, membranes, and microspheres. In order to enhance comprehension of the benefits and constraints associated with chitosan, this review provides a comprehensive overview of the structure and biological properties of chitosan, the molecular mechanisms by which chitosan promotes osteogenic differentiation, the diverse methods of chitosan preparation for various applications, and the impacts of chitosan when loaded with bioactive substances.
Collapse
Affiliation(s)
- Youbin Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
2
|
Li K, Cao H, Huang H, Tang S, Wang H, Yang Q, Hu Y, Weng J, Chen X. Advances in copper-containing biomaterials for managing bone-related diseases. Regen Biomater 2025; 12:rbaf014. [PMID: 40259976 PMCID: PMC12011366 DOI: 10.1093/rb/rbaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 04/23/2025] Open
Abstract
Bone-related diseases pose a major challenge in contemporary society, with significant implications for both health and economy. Copper, a vital trace metal in the human body, facilitates a wide range of physiological processes by being crucial for the function of proteins and enzymes. Numerous studies have validated copper's role in bone regeneration and protection, particularly in the development and expansion of bone collagen. Owing to copper's numerous biological advantages, an increasing number of scientists are endeavoring to fabricate novel, multifunctional copper-containing biomaterials as an effective treatment strategy for bone disorders. This review integrates the current understanding regarding the biological functions of copper from the molecular and cellular levels, highlighting its potential for bone regeneration and protection. It also reviews the novel fabrication techniques for developing copper-containing biomaterials, including copper-modified metals, calcium phosphate bioceramics, bioactive glasses, bone cements, hydrogels and biocomposites. The fabrication strategies and various applications of these biomaterials in addressing conditions such as fractures, bone tumors, osteomyelitis, osteoporosis, osteoarthritis and osteonecrosis are carefully elaborated. Moreover, the long-term safety and toxicity assessments of these biomaterials are also presented. Finally, the review addresses current challenges and future prospects, in particular the regulatory challenges and safety issues faced in clinical implementation, with the aim of guiding the strategic design of multifunctional copper-based biomaterials to effectively manage bone-related diseases.
Collapse
Affiliation(s)
- Kunwei Li
- School of Life Science and Engineering, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Huan Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hao Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Songyuan Tang
- School of Life Science and Engineering, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Han Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu 610014, China
| | - Qing Yang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yonghe Hu
- College of Medicine, Southwest Jiao Tong University, Chengdu 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiao Tong University, Chengdu, Sichuan 610031, China
| | - Xin Chen
- School of Life Science and Engineering, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| |
Collapse
|
3
|
Zhu T, Ni Q, Wang W, Guo D, Li Y, Chen T, Zhao D, Ma X, Zhang X. Cu-MOF-Decorated 3D-Printed Scaffolds for Infection Control and Bone Regeneration. J Funct Biomater 2025; 16:83. [PMID: 40137362 PMCID: PMC11942848 DOI: 10.3390/jfb16030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Infection control and bone regeneration remain critical challenges in bone defect treatment. We developed a 3D-printed scaffold incorporating copper-based metal-organic framework-74 (Cu-MOF-74) within a polycaprolactone/hydroxyapatite composite. The synthesized Cu-MOF-74 exhibited a well-defined crystalline structure and rod-like morphology, as confirmed by TEM, EDS, FTIR, and XRD analyses. The scaffolds exhibited hierarchical pores (100-200 μm) and demonstrated tunable hydrophilicity, as evidenced by the water contact angles decreasing from 103.3 ± 2.02° (0% Cu-MOF-74) to 63.60 ± 1.93° (1% Cu-MOF-74). A biphasic Cu2+ release profile was observed from the scaffolds, reaching cumulative concentrations of 98.97 ± 3.10 ppm by day 28. Antimicrobial assays showed concentration-dependent efficacy, with 1% Cu-MOF-74 scaffolds achieving 90.07 ± 1.94% and 80.03 ± 2.17% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Biocompatibility assessments using bone marrow-derived mesenchymal stem cells revealed enhanced cell proliferation at Cu-MOF-74 concentrations ≤ 0.2%, while concentrations ≥ 0.5% induced cytotoxicity. Osteogenic differentiation studies highlighted elevated alkaline phosphatase activity and mineralization in scaffolds with 0.05-0.2% Cu-MOF-74 scaffolds, particularly at 0.05% Cu-MOF-74 scaffolds, which exhibited the highest calcium deposition and upregulation of bone sialoprotein and osteopontin expression. These findings demonstrate the dual functional efficacy of Cu-MOF-74/PCL/HAp scaffolds in promoting both infection control and bone regeneration. These optimized Cu-MOF-74 concentrations (0.05-0.2%) effectively balance antimicrobial and osteogenic properties, presenting a promising strategy for bone defect repair in clinical applications.
Collapse
Affiliation(s)
- Ting Zhu
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Ni
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Wenjie Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Dongdong Guo
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yixiao Li
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Tianyu Chen
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Dongyang Zhao
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Xingyu Ma
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Xiaojun Zhang
- School of Medicine, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Wang W, Chen H, Xiao J, Luo D, Hou Y, Zhan J, Hou Y, Li X, Yang H, Chen S, Lin D. Microenvironment-responsive injectable hydrogel for neuro-vascularized bone regeneration. Mater Today Bio 2024; 29:101369. [PMID: 39687796 PMCID: PMC11647231 DOI: 10.1016/j.mtbio.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bone is a richly innervated and vascularized tissue, whereas nerve-vascular network reconstruction was often ignored in biomaterial design, resulting in delayed or incomplete bone healing. Inspired by the bone injury microenvironments, here we report a controllable drug delivery strategy using a pH and reactive oxygen species (ROS) dual-response injectable hydrogel. Based on the dynamic borate ester bond covalent crosslinking, nano-hydroxyapatite (HA) and curculigoside (CCG) are integrated into PVA/TSPBA (PT) to construct a responsive injectable hydrogel (PTHC), which scavenges excessive ROS from the injury microenvironment and responsively releases HA and CCG, providing favorable homeostasis and in situ sustained release drug delivery system for bone repair. Additionally, PTHC hydrogel can alleviate ROS-mediated intracellular oxidative and exhibit multiple biological activities of angiogenesis, neurogenesis, and osteogenesis. Furthermore, it reconstructs the microvascular network, accelerates sensory nerve repair, secretes neurotransmitters and bioactive factors, and improves neuro-vascularized bone regeneration. This multi-bioactive injectable hydrogel system offers a promising advance in therapeutic materials for bone repair.
Collapse
Affiliation(s)
- Wanshun Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Hu Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Jiacong Xiao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Xing Li
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Shudong Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Chinese Medicine Guangdong Laboratory, Hengqin 519031, Guangdong, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Chinese Medicine Guangdong Laboratory, Hengqin 519031, Guangdong, China
| |
Collapse
|
5
|
Dai M, Lin X, Hua P, Wang S, Sun X, Tang C, Zhang C, Liu L. Antibacterial sequential growth factor delivery from alginate/gelatin methacryloyl microspheres for bone regeneration. Int J Biol Macromol 2024; 275:133557. [PMID: 38955293 DOI: 10.1016/j.ijbiomac.2024.133557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Autologous or allogeneic bone tissue grafts remain the mainstay of treatment for clinical bone defects. However, the risk of infection and donor scarcity in bone grafting pose challenges to the process. Therefore, the development of excellent biomaterial grafts is of great clinical importance for the repair of bone defects. In this study, we used gas-assisted microfluidics to construct double-cross-linked hydrogel microspheres with good biological function based on the ionic cross-linking of Cu2+ with alginate and photo-cross-linking of gelatin methacryloylamide (GelMA) by loading vascular endothelial growth factor (VEGF) and His-tagged bone morphogenetic protein-2 (BMP2) (AGMP@VEGF&BMP2). The Cu2+ component in the microspheres showed good antibacterial and drug-release behavior, whereas VEGF and BMP2 effectively promoted angiogenesis and bone tissue repair. In in vitro and in vivo experiments, the dual cross-linked hydrogel microspheres showed good biological function and biocompatibility. These results demonstrate that AGMP@VEGF&BMP2 microspheres could be used as a bone defect graft substitute to promote effective healing of bone defects and may be applied to other tissue engineering studies.
Collapse
Affiliation(s)
- Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiufei Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Peng Hua
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Simeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiaoliang Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Chi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
6
|
Yang M, Cai X, Wang C, Li P, Chen S, Liu C, Wang Y, Qian K, Dong Q, Xue F, Chu C, Bai J, Liu Q, Ni X. Humidity-Responsive Amorphous Calcium-Magnesium Pyrophosphate/Cassava Starch Scaffold for Enhanced Neurovascular Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35964-35984. [PMID: 38968558 DOI: 10.1021/acsami.4c03204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.
Collapse
Affiliation(s)
- Mengmeng Yang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiang Cai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Pengyin Li
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Shaoqing Chen
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Chun Liu
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Yao Wang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kun Qian
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Qiangsheng Dong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing 211212, China
| | - Qizhan Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xinye Ni
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| |
Collapse
|
7
|
Wang J, Jing Z, Yin C, Wang Z, Zeng S, Ma X, Zheng Y, Cai H, Liu Z. Coatless modification of 3D-printed Ti6Al4V implants through tailored Cu ion implantation combined with UV photofunctionalization to enhance cell attachment, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2024; 238:113891. [PMID: 38615392 DOI: 10.1016/j.colsurfb.2024.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity. The newly constructed functional 3DTi (UV/Ti-Cu) achieved stable and controllable Cu doping, sustained Cu2+ releasing, and increased surface hydrophilicity. By performing cellular experiments, we determined that the safe dose range of Cu ion implantation was less than 5×1016 ions/cm2. The implanted Cu2+ enhanced the ALP activity and the apatite formation ability of bone marrow stromal cells (BMSCs) while slightly decreasing proliferation ability. When combined with UV photofunctionalization, cell adhesion and proliferation were significantly promoted and bone mineralization was further increased. Meanwhile, UV/Ti-Cu was conducive to the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, theoretically facilitating vascular coupling osteogenesis. In conclusion, UV/Ti-Cu is a novel attempt to apply two coatless techniques for the surface modification of 3DTi. In addition, it is considered a potential bone substrate for repairing bone defects.
Collapse
Affiliation(s)
- Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China.
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China.
| | - Chuan Yin
- Beijing Surface Medical Technology Co., Ltd., Beijing 100176, China.
| | - Zhengguang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China.
| | - Shengxin Zeng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China.
| | - Xiaolin Ma
- Beijing AKEC Medical Co., Ltd., Beijing 102200, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China.
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China.
| |
Collapse
|
8
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|