1
|
Chen Q, Yang F, Hou Y, Li Z, Yuan D, Liu C, Hu F, Zhao R, Wang H, Liu W, Zhang F, Wang Q, Yu D. Bacterial cellulose-based Pickering emulsions reinforced with silver and silica nanoparticles for advanced antibacterial and hydrophobic food packaging solutions. Carbohydr Polym 2025; 355:123357. [PMID: 40037725 DOI: 10.1016/j.carbpol.2025.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Conventional packaging materials typically exhibit insufficient barrier performance and limited antimicrobial efficacy, constraining their utility in food preservation. Enhancing attributes such as moisture resistance, antimicrobial potency, and stability in biodegradable matrices has presented a longstanding challenge. Herein, we report the design of an ODSA-based Pickering emulsion coating of bacterial cellulose, further modified with AgNPs and SiO2 (TAS), engineered to elevate food preservation standards within packaging applications. TAS demonstrates pronounced hydrophobicity, achieving a stable contact angle of 110°, thus offering robust water repellency-a crucial quality in moisture-resistant coatings. Moreover, the emulsion displays significant antibacterial activity, producing inhibition zones against E. coli and S. aureus, attributable to the bactericidal action of AgNPs. The TAS coating notably mitigates weight loss in fruits; strawberries treated with TAS retained over 98 % of their initial weight after seven days, compared to a 6 % weight reduction in untreated counterparts. The ODSA-TAS emulsion serves as an effective UV and IR barrier, markedly diminishing transmittance at 365 nm and 700 nm, thereby protecting produce from oxidative degradation. These results underscore the multifunctional capabilities of ODSA-TAS, affirming its potential as a sustainable solution to extend food shelf life.
Collapse
Affiliation(s)
- Qimin Chen
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Fan Yang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Yalong Hou
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Zhiyang Li
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Di Yuan
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Chao Liu
- School of Environmental Science and Engineering, Qilu University of Technology Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Feihong Hu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Rui Zhao
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huili Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Qiang Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| |
Collapse
|
2
|
Yang T, Bian Y, Qu Z, Zhang Y, Li S, Chen G, Chen Y. Gastrointestinal pH-sensitive Pickering emulsions stabilized by glycosylated zein conjugates ferulic acid nanoparticles: Improving oral bioaccessibility of Coenzyme Q10. Colloids Surf B Biointerfaces 2025; 249:114502. [PMID: 39799611 DOI: 10.1016/j.colsurfb.2025.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied. The results showed that covalent embedding of ferulic acid (ZGF-con) effectively improved the surface properties of zein nanoparticles based on glycosylation modification of zein, further regulating their behavior at the oil-water interface. In addition, the particle size of ZGF-con was small (92.93 nm), the wettability was moderate (89.85 °), and it was spherical, with orderly transition of secondary structure, which was conducive to the formation of stable emulsion at the oil-water interface. The stable Pickering emulsion formed by ZGF-con showed ideal emulsification performance, and the electrostatic repulsion between droplets and the formation of a robust spatial network structure promoted the stability of the emulsion. In addition, the encapsulation efficiency of CoQ10 in ZGF-con stabilized Pickering emulsion reached 96.11 %. In vitro simulated digestion, ZGF-con stabilized Pickering emulsion was relatively stable in the gastric acid environment, and slowly released in the small intestine, realizing the small intestine targeted release of CoQ10, which increased its bioaccessibility from 10.57 % to 56.42 %. This study provides an effective strategy for the preparation of pH-sensitive Pickering emulsion to improve the bioaccessibility of hydrophobic active ingredients.
Collapse
Affiliation(s)
- Tongliang Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Bian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihan Qu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yifu Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhong Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guiyun Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ye Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Aguado RJ, Fiol N, Tarrés Q, Pèlach MÀ, Delgado-Aguilar M. Co-dispersion of cellulose nanofibers and 3,3',5,5'-tetramethylbenzidine in water: Different strategies for colorimetric probes. Int J Biol Macromol 2025; 307:141771. [PMID: 40057073 DOI: 10.1016/j.ijbiomac.2025.141771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
3,3',5,5'-tetramethylbenzidine (TMB), insoluble in water, is known to change color in the presence of strong oxidizers. Responsive aqueous dispersions of TMB were obtained with anionic cellulose nanofibers (CNFs) as the only stabilizing agent. A Pickering emulsion approach and the use of a miscible co-solvent were also explored, combining an aqueous CNF suspension with a solution of TMB in either chloroform or ethanol, respectively. The minimum CNF consistency to attain visual homogeneity was 0.18-0.30 wt%, depending on the strategy. A stability study showed that the co-solvent approach (with ethanol) was the best at protecting TMB under common storage conditions. Then, dispersions were used to detect iron(III) in water by their optical response: from colorless or whitish to blue (1-electron oxidation). In this regard, emulsions of TMB/chloroform in water outperformed the other systems. After 30 min of reaction, their limit of detection (LOD) for iron(III) was 1.5 mg/L. Although lowering the pH to 4 via acetate buffer allowed for lower LOD and faster kinetics, stability was compromised. Furthermore, TMB dispersions were also apt for paper impregnation, resulting in visually responsive dipsticks. It is concluded that the advantages of nanocellulose stabilization could be extrapolated to other colorimetric systems involving TMB.
Collapse
Affiliation(s)
- Roberto J Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, C. Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| | - Núria Fiol
- LEPAMAP-PRODIS Research Group, University of Girona, C. Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Quim Tarrés
- LEPAMAP-PRODIS Research Group, University of Girona, C. Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - M Àngels Pèlach
- LEPAMAP-PRODIS Research Group, University of Girona, C. Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research Group, University of Girona, C. Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
4
|
Li K, Peng L, Li J, Zhu X. Multi-responsive Pickering emulsions stabilized by amphiphilic cellulose nanocrystals for building smart release systems of hydrophobic drugs. Carbohydr Polym 2025; 355:123348. [PMID: 40037723 DOI: 10.1016/j.carbpol.2025.123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/06/2025]
Abstract
In this study, cellulose nanocrystals (CNC) were first extracted from peanut shells. Then, the monomers DMAEMA and MAA were grafted on the surface of CNC using reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare multi-stimuli responsive nanoparticles (CNC/PDM), and they were used to stabilize Pickering emulsions. The effects of such factors as pH, nanoparticle concentration, water-to-oil ratio, and oil polarity on the stability of Pickering emulsions were investigated in detail. Pickering emulsions showed good smart response properties in pH, temperature and CO2 environmental stimuli. At the same time, the emulsifier showed excellent stability in various real oil phases, which had a wide range of practical applications. In addition, curcumin was encapsulated in the oil phase of the emulsions and the encapsulation efficiency (EE) was determined to be higher than 80 %. Simulated in vitro digestion experiments revealed that both the release of free fatty acids and the bioaccessibility of curcumin in curcumin-loaded emulsions were dramatically improved (bioaccessibility increased by about 4.3 times). Consequently, the present study provided an effective strategy for the preparation of multi-responsive Pickering emulsions, which offered new perspectives for improving the bioavailability of fat-soluble drugs.
Collapse
Affiliation(s)
- Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, PR China.
| | - Lifei Peng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Jing Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiaoping Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
5
|
Xu Y, Guo J, Wei Z, Xue C. Cellulose-based delivery systems for bioactive ingredients: A review. Int J Biol Macromol 2025; 299:140072. [PMID: 39842568 DOI: 10.1016/j.ijbiomac.2025.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Considering the outstanding advantages including abundant resources, structure-performance designability, impressive mechanical strength, and 3D network structure-forming ability, cellulose is an ideal material for encapsulating bioactive ingredients. Due to its low solubility in water, large-scaled morphology and poor flexibility, cellulose is unsuitable for the construction of carriers. Consequently, the majority of cellulose is employed following physical or chemical modification. Cellulose and its derivatives are extensively employed in the food industry, including fat replacement, food packaging composites, food additives, 3D-printed food and delivery systems. Their benefits in food delivery systems are particularly pronounced. Therefore, the distinguishing features, preparation methods, recent developments and effectiveness of different cellulose-based delivery systems for bioactive ingredients are discussed. Cellulose-based delivery systems offer unique advantages in terms of environmental impact reduction, modification facilitation, stimuli-responsive release as well as tailored design, and their application has gained widespread recognition. However, they are facing challenges in the application process comprising modification methods for cellulose-based materials, new methods for commercial preparation on a wide scale, cellulose-based multifunctional conveyance systems and systematic evaluation using in vivo experiments. In conclusion, this review provides theoretical references for the development of novel delivery carriers as well as the efficient application and popularization of cellulose-based delivery systems.
Collapse
Affiliation(s)
- Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jiarui Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Ma H, Zhang L, Niu X, Zhang Y, Yang X, Li L. Soy protein-gellan gum noncovalent complexes stabilized emulsion: Effect of heating and pH on emulsion stability. Int J Biol Macromol 2025; 301:140067. [PMID: 39832586 DOI: 10.1016/j.ijbiomac.2025.140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This paper investigated the effects of heating and pH on the stability of emulsions of non-covalent complexes of gellan gum (GG) and soy protein isolate (SPI). As a result, the GG-SPI complexes stabilized emulsion exhibited a minimum emulsion particle size (945 ± 23 nm), a maximum absolute values of zeta-potential (-32.7 ± 0.81 mV), the highest values of emulsion activity index (EAI) and stability index (ESI) (132 ± 4.7 min) when emulsion was prepared under the following conditions: oil phase ratio of 18 %, polysaccharide-protein proportion of 1:8 (w/w), homogeneous pressure at 80 MPa and homogeneous time at 4 min. GG-SPI emulsion had the best emulsification performance at pH 9.0 and 75 °C owing to the protein defolding occurred, the content of α-Helix increased, hydrophobic groups were exposed, and the number of negative groups on the surface of proteins increased under the high pH and high temperature conditions. The experimental results revealed the key role of heating and pH treatment for protein emulsion stability regulation, which will enrich the application of gellan gum in soy protein emulsions and provide an important theoretical basis for the future application of emulsion modification.
Collapse
Affiliation(s)
- Haizhu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinran Niu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yinuo Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Sun C, Du K, Zhu Z, Wang C, He Z, Hu Y, Xie Q, Du X. Starch nanoparticles regulate the steric conformation of soy protein isolate to stabilize high internal phase Pickering emulsions for curcumin encapsulation. Int J Biol Macromol 2025; 302:140560. [PMID: 39904433 DOI: 10.1016/j.ijbiomac.2025.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
This study aimed to the fabrication of high internal phase Pickering emulsions (HIPEs) via regulating the complexation of starch nanoparticles (SNPs) with soy protein isolate (SPI) at the oil-water interface. The formation of SNPs-SPI complexes was driven by the electrostatic adsorption and hydrogen bond interactions, which enhanced the biphasic wettability and reduced the interfacial tension. The SNPs-SPI complexes exhibited the superior emulsifying properties compared to those of SPI, with the SNPs3-SPI achieving the highest emulsion activity index (EAI, 65.67 m2/g) and emulsion stability index (ESI, 138.48 min). The rheological measurement revealed that the HIPEs stabilized by SNPs-SPI complexes (SNPs-SPI-E) exhibited the higher viscoelastic and gel-like structure than those of HIPEs stabilized by SPI (SPI-E). The adsorption of SNPs at the oil-water interface endowed the SNPs-SPI-E with higher encapsulation efficiency of curcumin (83.19 %-92.37 %) than that of SPI-E (75.42 %), which impeded the degradation and oxidation of curcumin. Moreover, the SNPs-SPI-E possessed the excellent storage and thermal stabilities than those of SPI-E. The curcumin encapsulated in SNPs-SPI-E exhibited the increased bioaccessibility, with SNPs3-SPI-E reaching the highest value of 38.92 %. This research would be beneficial to development of SNPs-SPI complexes interface for stabilizing HIPEs and modulating the encapsulation of bioactive ingredients.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Jeon EJ, Jung S, Jang Y, Lee S, Choi S, Jeon SY, Yoon L, Kim BK, Kim TJ, Park K, Chung S, Shin Y, Kim S, Sung H, Kim SK. Thermally Triggered Double Emulsion-Integrated Hydrogel Microparticles for Multiplexed Molecular Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408158. [PMID: 39823132 PMCID: PMC11948052 DOI: 10.1002/advs.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Indexed: 01/19/2025]
Abstract
During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed. The DE securely stores nucleic acid reagents like primers and probes within the polymer network until heating releases them for the reaction. The TaqPIN RT-qPCR demonstrates an amplification efficiency of 93.8% and can detect as few as 20 copies/µL. By loading the multiple microparticles into a single reaction, a multiplexed assay with only one optical channel is enabled. In practice, a nine-plex assay is designed to distinguish between variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even subtle variations of a single nucleotide can be simultaneously detected. Testing on 75 nasopharyngeal swab samples yields 100% sensitivity and specificity for SARS-CoV-2 detection and 94% accuracy in variant discrimination.
Collapse
Affiliation(s)
- Eui Ju Jeon
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seungwon Jung
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of HY‐KIST Bio‐convergenceHanyang UniversitySeoul04763South Korea
| | - Yoon‐ha Jang
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Seoyoung Lee
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Song‐Ee Choi
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - So Young Jeon
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Lankyeong Yoon
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Bong Kyun Kim
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Tae Jong Kim
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Kuenyoul Park
- Department of Laboratory MedicineSanggye Paik HospitalSchool of MedicineInje UniversitySeoul01757Republic of Korea
| | - Seok Chung
- Department of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yong Shin
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoul03722Republic of Korea
| | - Sung‐Han Kim
- Department of Infectious DiseasesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Heungsup Sung
- Department of Laboratory MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Sang Kyung Kim
- Center for Advanced Biomolecular RecognitionBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| |
Collapse
|
9
|
Froelich A. Pickering Emulsion-Based Gels with Halloysite as a Stabilizer: Formulation, Mechanical Properties and In Vitro Drug Release Studies. Molecules 2025; 30:1087. [PMID: 40076311 PMCID: PMC11902037 DOI: 10.3390/molecules30051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Lidocaine is an analgesic agent frequently incorporated in topical formulations intended for application in minor surgical procedures or relieving neuropathic pain associated with numerous conditions, including post-herpetic neuralgia or diabetic peripheral neuropathy. In this study, Pickering o/w emulsions with halloysite nanotubes as a stabilizing agent and lidocaine incorporated in the internal phase were formulated with the use of the Quality by Design (QbD) approach. The selected emulsions were transformed into semisolid gels with poloxamer 407 as a thickening agent, and investigated for rheological and textural properties, indicating the mechanical features of the obtained gels. Moreover, the obtained formulations were tested for lidocaine release with the use of vertical Franz diffusion cells in order to assess the relationship between the applied composition and potential clinical applicability of the analyzed gels. The obtained results indicate that the emulsion droplet diameter is affected mostly by the oil and halloysite contents. The yield stress points, hardness and cohesiveness values of the obtained gels increased with the oil content. The drug release rate seems to be affected mostly by the concentration of the active ingredient in the oil phase.
Collapse
Affiliation(s)
- Anna Froelich
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
10
|
Moussaei M, Tajik E, Haddadi-Asl V, Mazloumi SA, Heydarinasab H, Abdollahi E, Haj-Sadeghi F, Ahmadi H, Gholizadeh MR. Achieving enhanced stabilization and controlled release of curcumin via cross-linked polydopamine particles. Heliyon 2025; 11:e41379. [PMID: 39811346 PMCID: PMC11729636 DOI: 10.1016/j.heliyon.2024.e41379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles. This method yields XPDPs with a mean particle size of 0.55 μm, significantly smaller than PDA particles (1.025 μm), resulting in a higher surface area favorable for drug loading. The adsorption mechanism involves electron sharing and covalent bonding between the carrier and drug molecules. The adsorption, release, and drug delivery kinetics of the XPDPs are compared with those of the non-crosslinked PDA particles. The results demonstrate that XPDPs exhibit improved adsorption properties due to their crosslinked structure and increased positive charge due to presence of secondary amines. During a 28-h period, curcumin release from PDA declines from around 80 %-40 %, while for XPDA, it decreases from approximately 60 %-35 % as the pH shifts from 7.4 to 5. While PDA particles display a burst release profile, XPDPs show a more gradual and sustained release, attributed to their enhanced structural stability. Molecular simulations were conducted to estimate the solubility parameters, confirming the compatibility between PDA and dextran for effective drug loading.
Collapse
Affiliation(s)
- Majid Moussaei
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Ebrahim Tajik
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - S. Ali Mazloumi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Helia Heydarinasab
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Elahe Abdollahi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Fatemeh Haj-Sadeghi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Hanie Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mohammad Reza Gholizadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
11
|
Ding JW, Zhou EM, Wang X, Jiang H, Su HF, Gao Q, Guo LN, Fu YS, Li MC, Li DQ, Li J. Cellulose nanocrystals-based Pickering emulsion with enhanced foliar adhesion and pH responsiveness for intelligent delivery of pesticides. Int J Biol Macromol 2025; 286:138192. [PMID: 39638167 DOI: 10.1016/j.ijbiomac.2024.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Pickering emulsions stabilized by functionalized natural macromolecules have emerged with promising responsiveness for pesticide encapsulation and release. This study developed Pickering emulsions using amine-modified cellulose nanocrystals (ACNCs) as stabilizers. The resultant O/W ACNCs-Pickering emulsions (ACNCs-Pickering) exhibited long-term storage stability and showed increasing emulsion stability depending on the concentration of ACNCs. Imidacloprid (IMI) was subsequently loaded onto the ACNCs-Pickering to form the IMI@ACNCs-Pickering via the in-situ loading route. The release rate of IMI demonstrated a notable pH responsiveness. Moreover, the IMI@ACNCs-Pickering prepared with an ACNCs concentration of 3 wt% showed optimal performances. Its foliar adhesion on Chinese cabbage (Brassica rapa L.ssp.pekinensis) was significantly higher than that of the commercial IMI formulation (70 WS, Bayer®, LS200032) (DG). In detail, the pesticide residue for the IMI@ACNCs-Pickering was 3.8 folds to that for DG after spraying and washing for 10 min. Also, the green peach aphid mortality rate was 98.33 %, which was 1.1 folds higher than that of the DG group. The present work developed a Pickering emulsion-based fat-soluble pesticide formulation with excellent foliar adhesion, resistance to rainfall washout, and insecticidal effect. It provided a new option to ensure the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Jia-Wei Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Er-Min Zhou
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Xiao Wang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Hui-Fen Su
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Qin Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Li-Na Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Yong-Sheng Fu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Mei-Chan Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China.
| |
Collapse
|
12
|
Rajoo A, Siva SP, Sia CS, Chan ES, Tey BT, Low LE. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024; 205:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Ge Y, Jiang X, Peng W, Liu Y, Ge Y, Wang Z, Wang Y, Wu W, Zhang C. Preparation, characterization, and stability of chitosan-tremella polysaccharide layer-by-layer encapsulated astaxanthin nanoemulsion delivery system. Int J Biol Macromol 2024; 282:136741. [PMID: 39433184 DOI: 10.1016/j.ijbiomac.2024.136741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
In this study, a layer-by-layer (LBL) encapsulated astaxanthin (Ast) nanoemulsion delivery system based on chitosan (CS) and tremella polysaccharide (TP) was successfully developed. The system constructed an Ast-CS-TP emulsion with high encapsulation efficiency and an excellent stability profile by utilizing the opposite charge properties of CS and TP. This study evaluated the effects of different stresses (including temperature, salt addition, pH, UV irradiation, and centrifugal force) on the emulsion's stability. To further investigate the protective mechanism of the emulsions, we performed antioxidant activity experiments after UV treatment. Additionally, an in vitro digestion experiment was conducted to assess the behavior of Ast emulsion under simulated gastrointestinal conditions. The stability correlation coefficients were calculated using the Python database Pandas. The results showed that Ast-CS-TP emulsions exhibited turbidity and enhanced homogeneity with a small particle size of around 400 nm and a high absolute zeta potential of 35 mV and exhibited excellent stability under various stresses. The Ast-CS-TP emulsions also exhibited pH-responsive release at pH ≥ 7, consistent with pH changes in the gastrointestinal tract, and were stable in highly concentrated salt solutions. We found that the CS and TP layers significantly improved the photostability of Ast. CS and TP significantly enhanced Ast's oral bioavailability. The stability correlation coeffcients showed that pH and salt concentration were the largest factors that affected the stability of the emulsion. This study provided important insights into the encapsulation and targeting of Ast, providing a theoretical foundation and technical guidance for the comprehensive utilization of Ast.
Collapse
Affiliation(s)
- Yunbo Ge
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xinjian Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Peng
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanhong Ge
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zihao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yating Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chaoyan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Wang C, Wen HX, Yang S, Ma CY, Wang XM, Tu ZC, Shao YH, Liu J. Effect of dynamic high-pressure microfluidization on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate. Int J Biol Macromol 2024; 283:137720. [PMID: 39551325 DOI: 10.1016/j.ijbiomac.2024.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The effects of dynamic high-pressure microfluidization (DHPM) on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate (WPI) were investigated. The results demonstrated that WPI treated with 100 MPa DHPM exhibited superior emulsification performance. This can be attributed to the conformational changes induced by 100 MPa DHPM in WPI, leading to a transformation from disordered structures to ordered structures and an increased exposure of fluorophore such as tryptophan residues and hydrophobic groups, reduced aggregation state and particle size of WPI. These factors facilitated the migration of WPI towards the oil-water interface, resulting in the formation of a robust and compact adsorption layer which reduces interfacial tension and enhances emulsification stability. Furthermore, it was observed that while DHPM did not significantly affect the digestibility of WPI, it did enhance exposure to antioxidant amino acids in the digestive products thereby enhanced their antioxidant properties. In summary, structural modification induced by DHPM treatment enhanced both emulsification and antioxidant properties of WPI. These findings highlight the significant potential of DHPM treatment for enhancing the quality of meat products with an emulsion-type structure.
Collapse
Affiliation(s)
- Chen Wang
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Han-Xing Wen
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Su Yang
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chang-Yue Ma
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Hong Shao
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Jun Liu
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
15
|
Pei Y, Zhang Z, Duan Z, Gao T, Jiang Q, Hu S, Tang Z, Chen Y, Yuan S, Yan X, Yuan M. Preparation and characterization of high-methoxyl pectin/glycerides emulsion for pH-responsive, targeting, and sustained release of fat-soluble substances. Int J Biol Macromol 2024; 282:136675. [PMID: 39426770 DOI: 10.1016/j.ijbiomac.2024.136675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
In this study, a pH-responsive emulsion system was prepared, combining high-methoxyl pectin (HMP) with camellia oil glycerides (CG). The emulsion was characterized as O/W type, with HMP serving as the wall material and CG as the oil phase. The physicochemical properties, pH responsiveness, digestion stability, and encapsulated delivery capabilities of the HMP-CG emulsion were investigated. The emulsion showed an average droplet size of 480.47 ± 76.19 nm, possessing a negative charge and a pronounced core-shell structure. HMP package CG enhanced hydrophilic ability and enabled targeted release within the small intestine through the structural changes of HMP. The presence of HMP and CG increased droplet dispersion and target digestibility of the emulsion system, leading to sustainable small intestine-specific release. Overall, HMP-CG emulsion system, composed of natural materials, exhibited the ability to achieve targeted and controllable release via pH-responsive mechanisms, offering an alternative for developing gel materials incorporating fat-soluble substances.
Collapse
Affiliation(s)
- Yinghong Pei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhonghao Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhihao Duan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Tao Gao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qingye Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | | | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; State Key Laboratory Foundation of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Li J, Wu C, Xu HJ, Ding JW, Li YJ, Jiang H, Su HF, Chen S, Li X, Javaid MA, Li DQ. Fabrication of thermo-responsive microcapsule pesticide delivery system from maleic anhydride-functionalized cellulose nanocrystals-stabilized pickering emulsion template. Carbohydr Polym 2024; 344:122531. [PMID: 39218553 DOI: 10.1016/j.carbpol.2024.122531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The overuse of pesticides has shown their malpractices. Novel and sustainable formulations have consequently attracted abundant attention but still appear to have drawbacks. Here, we use a maleic anhydride-functionalized cellulose nanocrystals-stabilized Pickering emulsions template to prepare thermo-responsive microcapsules for a pesticide delivery system via radical polymerization with N-isopropyl acrylamide. The microcapsules (MACNCs-g-NIPAM) are characterized by the microscope, SEM, FTIR, XRD, TG-DTG, and DSC techniques. Imidacloprid (IMI) is loaded on MACNCs-g-NIPAM to form smart release systems (IMI@MACNCs-g-NIPAM) with high encapsulation efficiency (~88.49%) and loading capability (~55.02%). The IMI@MACNCs-g-NIPAM present a significant thermo-responsiveness by comparing the release ratios at 35°C and 25°C (76.22% vs 50.78%). It also exhibits advantages in spreadability, retention and flush resistance on the leaf surface compared with the commercial IMI water-dispersible granules (CG). IMI@MACNCs-g-NIPAM also manifest a significant advantage over CG (11.12 mg/L vs 38.90 mg/L for LC50) regarding activity tests of targeted organisms. In addition, IMI@MACNCs-g-NIPAM has shown excellent biocompatibility and low toxicity. All the benefits mentioned above prove the excellent potential of IMI@MACNCs-g-NIPAM as a smart pesticide formulation.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China.
| | - Chao Wu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Hong-Jun Xu
- College of Horticulture, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Jia-Wei Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Yong-Jiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Hui-Fen Su
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| |
Collapse
|
17
|
Li H, Wu X, Wu W. Natural protein-polysaccharide-phenol complex particles from rice bran as novel food-grade Pickering emulsion stabilizers. Int J Biol Macromol 2024; 277:134314. [PMID: 39094879 DOI: 10.1016/j.ijbiomac.2024.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 μm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
18
|
Ran F, Mu K, Liu G, Liu Y, Pang Y, Feng G, Zhou L, Peng L. Preparation, Characterization, and Wound Healing Promotion of Hydrogels Containing Glucosyloxybenzyl 2-Isobutylmalates Extract from Bletilla striata (Thunb.) Reichb.f. Int J Mol Sci 2024; 25:10563. [PMID: 39408888 PMCID: PMC11476415 DOI: 10.3390/ijms251910563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Plant-derived medicinal materials have significant potential and promising applications in wound healing and skin regeneration. This study aims to develop a plant-based extract hydrogel from Bletilla striata (Thunb.Reichb.f.), specifically a glucosyloxybenzyl 2-isobutylmalates extract (B), and characterize its potential effects on wound healing. We synthesized the hydrogel using carbomer (C), glycerol (G), and triethanolamine (T) as the matrix, incorporating B into the hydrogel base, and evaluated its physical and chemical properties. In vitro tests assessed the biocompatibility of the glucosyloxybenzyl 2-isobutylmalates-carbomer-glycerol-triethanolamine (B-CGT) hydrogel and its effects on cell proliferation, migration, and adhesion. Animal model experiments evaluated its potential to promote wound healing. The results showed that the prepared B-CGT hydrogel possessed a good three-dimensional network structure and stability, demonstrating significant free radical scavenging capacity in antioxidant tests. In cell experiments, the B-CGT hydrogel exhibited no potential cytotoxicity and showed good hemocompatibility and promotion of cell proliferation. Animal experiments indicated that wounds treated with the B-CGT hydrogel healed significantly faster, with improved formation of new epithelial tissue and collagen. This study suggests that the developed B-CGT hydrogel is a promising candidate for wound dressings, with excellent physicochemical properties and controlled drug release capabilities, effectively promoting the wound healing process.
Collapse
Affiliation(s)
| | | | - Gang Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (F.R.); (K.M.); (Y.P.); (G.F.); (L.Z.); (L.P.)
| | - Yuchen Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (F.R.); (K.M.); (Y.P.); (G.F.); (L.Z.); (L.P.)
| | | | | | | | | |
Collapse
|
19
|
Zhang Y, Yu D, Zhao R, Hu F, Li Z, Dong B, Lu P, Song Z, Wang H, Zhang F, Chen W, Liu W, Li H. Enhanced stability and biocompatibility of HIPEs stabilized by cyclodextrin-metal organic frameworks with inclusion of resveratrol and soy protein isolate for β-carotene delivery. Int J Biol Macromol 2024; 274:133431. [PMID: 38936573 DOI: 10.1016/j.ijbiomac.2024.133431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
High internal phase Pickering emulsions (HIPEs) constitute a significant research domain within colloid interface chemistry, addressing the demand for robust emulsion systems across various applications. An innovative nanoparticle, synthesized from a cyclodextrin metal-organic framework encapsulated with a composite of resveratrol and soy isolate protein (RCS), was employed to fortify a high internal phase emulsion. The emulsion's three-dimensional printing capabilities, alongside the encapsulated delivery efficacy for β-carotene, were thoroughly examined. Cyclodextrin metal-organic frameworks (CD-MOFs), facilitated by cellulose nanofibrils, were synthesized to yield particles at the nanoscale, maintaining a remarkable 97.67 % cellular viability at an elevated concentration of 1000 μg/ml. The RCS nanoparticles demonstrated thermal stability and antioxidant capacities surpassing those of CD-MOF. The integration of soybean isolate protein augmented both the hydrophobicity (from 21.95 ± 0.64° to 59.15 ± 0.78°) and the interfacial tension (from 14.36 ± 0.46 mN/m to 5.34 ± 0.81 mN/m) of the CD-MOF encapsulated with resveratrol, thereby enhancing the RCS nanoparticles' adsorption at the oil-water interface with greater stability. The durability of the RCS-stabilized high internal phase emulsions was contingent upon the RCS concentration. Emulsions stabilized with 5 wt%-RCS exhibited optimal physical and chemical robustness, demonstrating superior performance in emulsion 3D printing and β-carotene encapsulation delivery. This investigation furnishes a novel perspective on the amalgamation of food customization and precision nutrition.
Collapse
Affiliation(s)
- Yannan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Zhuo Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
20
|
Phothong N, Pattarakankul T, Morikane S, Palaga T, Aht-Ong D, Honda K, Napathorn SC. Stability and release mechanism of double emulsification (W1/O/W2) for biodegradable pH-responsive polyhydroxybutyrate/cellulose acetate phthalate microbeads loaded with the water-soluble bioactive compound niacinamide. Int J Biol Macromol 2024; 271:132680. [PMID: 38806087 DOI: 10.1016/j.ijbiomac.2024.132680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Microbeads of biodegradable polyhydroxybutyrate (PHB) offer environmental benefits and economic competitiveness. The aim of this study was to encapsulate a water-soluble bioactive compound, niacinamide (NIA), in a pH-responsive natural matrix composed of PHB and cellulose acetate phthalate (CAP) by double emulsification (W1/O/W2) to improve the encapsulation efficiency (%EE) and loading capacity (%LC). PHB was produced in-house by Escherichia coli JM109 pUC19-23119phaCABA-04 without the inducing agent isopropyl β-D-1-thiogalactopyranoside (IPTG). The influences of PHB and polyvinyl alcohol (PVA) concentrations, stirring rate, PHB/CAP ratio and initial NIA concentration on the properties of NIA-loaded pH-responsive microbeads were studied. The NIA-loaded pH-responsive PHB/CAP microbeads exhibited a spherical core-shell structure. The average size of the NIA-loaded pH-responsive microbeads was 1243.3 ± 11.5 μm. The EE and LC were 33.3 ± 0.5 % and 28.5 ± 0.4 %, respectively. The release profiles of NIA showed pH-responsive properties, as 94.2 ± 3.5 % of NIA was released at pH 5.5, whereas 99.3 ± 2.4 % of NIA was released at pH 7.0. The NIA-loaded pH-responsive PHB/CAP microbeads were stable for >90 days at 4 °C under darkness, with NIA remaining at 73.65 ± 1.86 %. A cytotoxicity assay in PSVK1 cells confirmed that the NIA-loaded pH-responsive PHB/CAP microbeads were nontoxic at concentrations lower than 31.3 μg/mL, in accordance with ISO 10993-5.
Collapse
Affiliation(s)
- Natthaphat Phothong
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Shiho Morikane
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Duangdao Aht-Ong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Suchada Chanprateep Napathorn
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Khorsandi D, Jenson S, Zarepour A, Khosravi A, Rabiee N, Iravani S, Zarrabi A. Catalytic and biomedical applications of nanocelluloses: A review of recent developments. Int J Biol Macromol 2024; 268:131829. [PMID: 38677670 DOI: 10.1016/j.ijbiomac.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Serena Jenson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
22
|
Burgos-Díaz C, Leal-Calderon F, Mosi-Roa Y, Chacón-Fuentes M, Garrido-Miranda K, Opazo-Navarrete M, Quiroz A, Bustamante M. Enhancing the Retention and Oxidative Stability of Volatile Flavors: A Novel Approach Utilizing O/W Pickering Emulsions Based on Agri-Food Byproducts and Spray-Drying. Foods 2024; 13:1326. [PMID: 38731696 PMCID: PMC11083764 DOI: 10.3390/foods13091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate and protect D-limonene during spray-drying and storage. Emulsions formulated with lupin hull, lupin-byproduct (a water-insoluble protein-fiber byproduct derived from the production of lupin protein isolate), and camelina press-cake were subjected to spray-drying at 160 °C. The results revealed that these emulsions exhibited good stability against creaming. The characteristics of the dry emulsions (powders) were influenced by the concentration of byproducts. Quantitative analysis revealed that Pickering emulsions enhanced the retention of D-limonene during spray-drying, with the highest retention achieved using 3% lupin hull and 1% camelina press-cake. Notably, lupin-stabilized emulsions yielded powders with enhanced oxidative stability compared to those stabilized with camelina press-cake. Our findings highlight the potential of food-grade Pickering emulsions to improve the stability of volatile flavors during both processing and storage.
Collapse
Affiliation(s)
- César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
| | | | - Yohanna Mosi-Roa
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
| | | | - Karla Garrido-Miranda
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Mariela Bustamante
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Chemical Engineering and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
23
|
Aguado RJ, Saguer E, Fiol N, Tarrés Q, Delgado-Aguilar M. Pickering emulsions of thyme oil in water using oxidized cellulose nanofibers: Towards bio-based active packaging. Int J Biol Macromol 2024; 263:130319. [PMID: 38387632 DOI: 10.1016/j.ijbiomac.2024.130319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
The antioxidant and antimicrobial properties of thyme essential oil (TEO) are useful for active food packaging, but its poor aqueous solubility restricts its applications. This work involves anionic cellulose nanofibers (CNFs) as the sole stabilizing agent for TEO-in-water emulsions, with oil concentrations ranging from 10 mL/L to 300 mL/L. A double mechanism was proposed: the adsorption of CNFs at oil/water interfaces restricted coalescence to a limited extent, while thickening (rheological stabilization) was required to avoid the buoyance of large droplets (>10 μm). Thickening effects comprised both higher viscosity (over 0.1 Pa·s at 10 s-1) and yield stress (approximately 0.9 Pa). Dilute emulsions had good film-forming capabilities, whereas concentrated emulsions were suitable for paper coating. Regarding antimicrobial activity, CNF-stabilized TEO-in-water emulsions successfully inhibited the growth of both Gram-negative (E. coli, S. typhimurium) and Gram-positive bacteria (L. monocytogenes). As for the antioxidant properties, approximately 50 mg of paper or 3-5 mg of film per mL of food simulant D1 were required to attain 50 % inhibition in radical scavenging tests. Nonetheless, despite the stability and the active properties of these bio-based hydrocolloids, providing this antioxidant and antimicrobial activity was incompatible with maintaining the organoleptic properties of the foodstuff unaltered.
Collapse
Affiliation(s)
- Roberto J Aguado
- LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| | - Elena Saguer
- Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Núria Fiol
- Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Quim Tarrés
- LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
24
|
Uşurelu CD, Frone AN, Oprică GM, Raduly MF, Ghiurea M, Neblea EI, Nicolae CA, Filip X, Teodorescu M, Panaitescu DM. Preparation and functionalization of cellulose nanofibers using a naturally occurring acid and their application in stabilizing linseed oil/water Pickering emulsions. Int J Biol Macromol 2024; 262:129884. [PMID: 38336328 DOI: 10.1016/j.ijbiomac.2024.129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Finding efficient and environmental-friendly methods to produce and chemically modify cellulose nanofibers (CNFs) remains a challenge. In this study, lactic acid (LA) treatment followed by microfluidization was employed for the isolation and functionalization of CNFs. Small amounts of HCl (0.01, 0.1, and 0.2 M) were used alongside LA to intensify cellulose hydrolysis. FTIR spectroscopy and solid-state 13C NMR confirmed the successful functionalization of CNFs with lactyl groups during isolation, while SEM, AFM, and rheological tests revealed that the addition of HCl governed the fibers' sizes and morphology. Notably, the treatment with LA and 0.2 M HCl resulted in a more efficient defibrillation, yielding smaller nanofibers sizes (62 nm) as compared to the treatment with LA or HCl alone (90 and 108 nm, respectively). The aqueous suspension of CNFs treated with LA and 0.2 M HCl showed the highest viscosity and storage modulus. LA-modified CNFs were tested as stabilizers for linseed oil/water (50/50 v/v) emulsions. Owing to the lactyl groups grafted on their surface and higher aspect ratio, CNFs produced with 0.1 and 0.2 M HCl led to emulsions with increased stability (a creaming index increase of only 3 % and 1 %, respectively, in 30 days) and smaller droplets sizes of 23.4 ± 1.2 and 35.5 ± 0.5 μm, respectively. The results showed that LA-modified CNFs are promising stabilizers for Pickering emulsions.
Collapse
Affiliation(s)
- Cătălina-Diana Uşurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Gabriela-Mădălina Oprică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Monica Florentina Raduly
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Marius Ghiurea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Iulia Neblea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Xenia Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Mircea Teodorescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|
25
|
Ebrahimi R, Fathi M, Ghoddusi HB. Pickering emulsions stabilized by cellulose nanocrystals extracted from hazelnut shells: Production and stability under different harsh conditions. Int J Biol Macromol 2024; 258:128982. [PMID: 38154718 DOI: 10.1016/j.ijbiomac.2023.128982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Cellulose nanocrystals (CNCs) are biodegradable particles that have emerged as promising stabilizers for Pickering emulsions. This study investigated the effectiveness of CNCs in forming the Pickering emulsion from hazelnut shells (HS), an agricultural waste. Following the alkaline and bleaching treatments applied to HS, CNCs were obtained from treated hazelnut shell with acid hydrolysis. The physicochemical characteristics of CNCs were investigated using dynamic light scattering, XRD, FTIR, SEM, and TEM. A high crystalline (69.6 %) CNCs with a spherical shape were obtained. Contact angle and interfacial tension tests were conducted and showed that CNCs had amphiphilic nature. Pickering emulsions were investigated for their size, zeta potential, and stability under varying CNC concentrations. The results showed that when CNCs concentration increased from 0.5 to 2.0 wt%, droplet diameter decreased approximately 1.8 times and zeta potential increased. Creaming was not observed during 28 days of storage in a concentration of 2.0 wt% CNCs. The CNC stabilized emulsions exhibited high stability within a range of pH, temperatures, and salt concentrations. This study demonstrated that CNCs extracted from HS as environmentally friendly and cost-effective materials, could serve as a new stabilizer for Pickering emulsions especially for high temperature and low pH sensitive products such as mayonnaise.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hamid B Ghoddusi
- Microbiology Research Unit (MRU), School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
26
|
Wang Y, Kratzer R, Murkovic M, Eibinger M, Machado Charry E, Li S, Zhang T, Zhang X, Zhang M, Chen H. Fabrication and characterization of a novel zein/pectin/pumpkin seed oil Pickering emulsion and the effects of myricetin on oxidation stability. Int J Biol Macromol 2023; 253:127386. [PMID: 37838112 DOI: 10.1016/j.ijbiomac.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, zein/pectin/pumpkin seed oil (PSO) Pickering emulsions (ZPPEs) were fabricated loading with myricetin (MYT), and the quality control methods of oxidation stability were innovatively investigated. The microstructure and particle properties of zein-pectin particles were determined. The zein to pectin ratio of 5:3 and oil phase fraction (φ = 50 %) turned out as the most optimal conditions for the stabilization of myricetin-loaded ZPPEs. The expected oil-in-water emulsion-type structure was confirmed by confocal laser scanning microscopy (CLSM). The internal 3D structure of Pickering emulsions (Lugol's solution improved the water-phase contrast) was imaged by micro-computed tomography (Micro-CT) for the first time. Results showed a sponge like structure of water phase in emulsion with 42 μm as mean droplet size. Light-induced oxidation was evaluated with the PetroOxy method and malondialdehyde (MDA) assays. Encapsuling ZPPEs with MYT could prevent the light induced oxidation, especially, loading of MYT at the core of the emulsion. The analysis of Electronic nose (E-nose) was used to analyze the odor before and after UV-induced oxidation, and showed a good discrimination. This study provided a new approach to prepare ZPPEs with high oxidation stability. Micro-CT, PetroOxy and E-nose could be new methods for characterization and quality assessment of Pickering emulsions.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | | | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
27
|
Wang L, Kang Y, Zhang W, Yang J, Li H, Niu M, Guo Y, Wang Z. Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion. Polymers (Basel) 2023; 15:4643. [PMID: 38139895 PMCID: PMC10747945 DOI: 10.3390/polym15244643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, novel lignin-based nanoparticles (LβNPs) with high acidic tolerance were successfully prepared via electrostatic interaction between β-alanine and lignin nanoparticles. The effects of the mass ratio of lignin nanoparticles to β-alanine and pH value on the morphology and particle sizes of LβNPs were investigated with the aim of obtaining the ideal nanoparticles. The optimized LβNPs were spherical in shape with an average particle size of 41.1 ± 14.5 nm and exhibited outstanding structure stability under high acidic conditions (pH < 4). Subsequently, Pickering emulsions stabilized by LβNPs were prepared using olive oil as the oil phase. Additionally, the effects of pH value, droplet size, morphology, and storage stability on Pickering emulsions were also analyzed. The emulsions displayed excellent stability, and were stable against strongly acidic conditions (pH < 4) after 30 days of storage. The study presented a promising approach to preparing lignin-based nanoparticles with high acidic tolerance (an ideal type of stabilizer to prepare emulsions), and exhibited extremely high potential application values in the fields of drug delivery, food additives, and oily wastewater treatment.
Collapse
Affiliation(s)
- Lina Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Yue Kang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Weilu Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Jiahao Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Haiming Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Meihong Niu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Shandong Huatai Paper Co., Ltd., Dongying 275335, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|