1
|
Hu Y, Xie Z, Chen Z, Huang X, Ma C, Zhang R, Tian X, Chuxiang Z. Facile preparation of cucurbituril-modified magnetic chitosan microspheres for efficient removal of Cr(VI) and MB from wastewater: Adsorption experiments, statistical optimization, and mechanistic insights. Int J Biol Macromol 2025; 313:144207. [PMID: 40373920 DOI: 10.1016/j.ijbiomac.2025.144207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
In this study, a magnetic microsphere (CB/MCS) based on magnetic chitosan and cucurbituril (CB) was successfully prepared for efficient removal of methylene blue (MB 2968.6 mg/g) and hexavalent chromium (Cr(VI) 297.3 mg/g) from water. CB/MCS combined the fast magnetic separation performance of magnetic chitosan and the excellent adsorption capacity of CB to realize the efficient removal of MB and Cr(VI), and it is noteworthy that the adsorption capacity of Cr(VI) was significantly enhanced in the presence of MB. The synthesis conditions of CB/MCS were optimized by response surface methodology and Box-Behnken Design experimental design. The results of the adsorption experiments showed that the adsorption process of CB/MCS on MB and Cr(VI) conformed to the quasi-secondary kinetic model and Langmuir isotherm model, indicating that the adsorption process was mainly controlled by chemisorption and there was a strong interaction between the adsorbent and adsorbate. In addition, CB/MCS demonstrated excellent removal efficiencies in different aqueous environments, reaching 93.2 % and 91.4 % for Cr(VI) and MB, respectively, even in complex industrial wastewater. The results of the cycling experiments further confirmed the stability and reusability of CB/MCS. In summary, CB/MCS can be used as an excellent adsorbent for the removal of Cr(VI) and MB from wastewater.
Collapse
Affiliation(s)
- Yujie Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China.
| | - Zhongyang Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xingyin Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - ChaoCheng Ma
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Rui Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Xuanchi Tian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| | - Zhou Chuxiang
- Drilling Engineering Technology Research Institute of PetroChina Chuanqing Drilling & Exploration Engineering Co., China
| |
Collapse
|
2
|
Salama A, Hesemann P. Guanylated chitosan derivatives for the adsorption of anionic dyes: Performance and mechanism. Int J Biol Macromol 2025; 311:143852. [PMID: 40319971 DOI: 10.1016/j.ijbiomac.2025.143852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Chitosan is an emerging adsorbent in pollution management, but its solubility in acidic aqueous solutions and its weak affinity towards pollutants limit its adsorption performance. The development of novel cationic chitosan containing guanidinium groups, has facilitated the advancement of various applications. This work presents a comprehensive methodology for chitosan guanylation through the reaction of neat chitosan with carbodiimide reagents in ionic liquid media. The resulting two guanidinium chitosan derivatives, guanidinium chitosan containing dicyclohexyl and guanidinium chitosan containing dimethylaminopropyl hydrochloride were thoroughly characterized by FT-IR, XRD, thermogravimetry, solid-state NMR and scan electron microscopy, and then investigated as adsorbents for anionic dyes, i.e. methyl orange. The impact of pH, contact time, dye concentration and temperature on the adsorption of methyl orange dye were explored. Both materials showed high adsorption efficiency of 274 and 320 mg/g, respectively. Due to the lower acidity of the guanidinium groups, the gunaylated materials display efficient anion exchange properties even at basic pH. Furthermore, the guanylation leads to decreased solubility via the construction of intermolecular hydrogen bonds. The adsorption properties of cationic chitosan derivatives are outstanding, displaying a high degree of recyclability. The utilization of guanylated chitosan derivatives presents new opportunities in the field of water purification.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. 12622, Egypt; ICGM Univ Montpellier-CNRS-ENSCM, Montpellier, France.
| | - Peter Hesemann
- ICGM Univ Montpellier-CNRS-ENSCM, Montpellier, France; ChimEco UMR CNRS 5021 CNRS UM, Grabels, France.
| |
Collapse
|
3
|
Al-Qarhami F, Abdallah AB, Khalifa ME, Awad FS. Glutaraldehyde-crosslinked magnetic chitosan nanocomposite for efficient Cr(VI) removal: A sustainable approach to aquatic remediation. Int J Biol Macromol 2025; 310:143459. [PMID: 40280047 DOI: 10.1016/j.ijbiomac.2025.143459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Hexavalent chromium (Cr(VI)) is a highly toxic pollutant in aquatic environments, posing serious threats to ecosystems and human health. This study aims to develop an effective adsorbent for the removal of Cr(VI) from water. A novel magnetic chitosan-based nanocomposite (Fe₃O₄@MCS) was synthesized by in situ embedding of Fe₃O₄ nanoparticles into a chitosan matrix, crosslinked with glutaraldehyde, and further modified with ammonia via a Schiff base reaction. The material was thoroughly characterized using FTIR, XPS, XRD, SEM, TEM, EDX, and VSM. Adsorption experiments showed that Fe₃O₄@MCS achieved a maximum Cr(VI) uptake of 221.4 mg/g under optimal conditions (pH 4.0, 25 °C, 10 mg dosage, 120 min contact time), with 100 % removal efficiency at initial concentrations up to 50 ppm within just 15 min. The adsorption followed pseudo-second-order kinetics and fitted well with the Langmuir isotherm model (R2 = 0.999), indicating monolayer adsorption behavior. The removal mechanism involves electrostatic interactions between HCrO₄- and protonated amine/hydroxyl groups, followed by Cr(VI) reduction to Cr(III), as confirmed by FTIR and XPS analyses. Fe₃O₄@MCS also demonstrated excellent magnetic separability and reusability, maintaining over 90 % removal efficiency after five adsorption-desorption cycles. These findings highlight Fe₃O₄@MCS as a highly promising adsorbent for Cr(VI) remediation in water treatment applications.
Collapse
Affiliation(s)
- Faiz Al-Qarhami
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; Department of Chemistry, Faculty of Education and Applied Sciences - Khawlan, Sana'a University, Sana'a, Yemen
| | - A B Abdallah
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Magdi E Khalifa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Fathi S Awad
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Jawad AH, Maharani RA, Hapiz A, ALOthman ZA, Wilson LD. A comparison of freeze- and air-dried chitosan salicylaldehyde/calcium oxide biocomposites for optimized removal of acid red 88 dye. Int J Biol Macromol 2025; 292:139165. [PMID: 39732267 DOI: 10.1016/j.ijbiomac.2024.139165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Chitosan salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO) was synthesized by hydrothermal process and isolated via different drying processes, namely, air-drying (AD) and freeze-drying (FD). The physicochemical properties of freeze-dried CS-SL/CaO nanoparticle (CS-SL/CaO-FD) and air-dried CS-SL/CaO nanoparticle (CS-SL/CaO-AD) were compared. In particular, the adsorption properties reveal that the specific surface area of CS-SL/CaO-FD increased by ca. 6 times (BET SA = 7.28 m2/g) greater than CS-SL/CaO-FD (BET SA = 1.26 m2/g). Also, the adsorptive removal of acid red 88 dye (AR88) from aqueous media was optimized by employing the Box-Behnken design (BBD). The optimal adsorption conditions obtained from desirability functions test for the removal of AR88 dye employed a dosage of 0.09 g/100 mL of adsorbent dosage at a solution pH of 5.6 and 25 °C. The best AR88 dye removal was found for the adsorbents CS-SL/CaO-AD (38.2 %) and CS-SL/CaO-FD (86.1 %), which concur with differences in the adsorbent surface areas. Moreover, the adsorption kinetics and isotherm profiles for CS-SL/CaO-FD were described by the pseudo second order (PSO) and Temkin models, where the maximum adsorption capacity of AR88 by CS-SL/CaO-FD 175.4 was mg/g. These findings reveal the potential application of the CS-SL/CaO-FD towards removal of toxic cationic dye (AR88) from an aqueous environment.
Collapse
Affiliation(s)
- Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Rosika Armiyanti Maharani
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
5
|
Dalei G, Pattanaik C, Patra R, Jena D, Das BR, Das S. Chitosan xerogel embedded with green synthesized cerium oxide nanoparticle: An effective controlled release fertilizer for improved cabbage growth. Int J Biol Macromol 2024; 282:136704. [PMID: 39442846 DOI: 10.1016/j.ijbiomac.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the growing awareness on the adverse effects of conventional fertilizers; the use of sustainable and controlled release fertilizers has garnered much significance. In the present study, we report the synthesis of chitosan-benzaldehyde Schiff base xerogel incorporated with green synthesized cerium oxide nanoparticle using Psidium guajava leaves extract as a sustainable fertilizer. Spherical CeO2 NPs having an average particle size of 15.3 nm and zeta potential of - 39.9 mV was obtained. The urea-loaded nanocomposite xerogel (CsB@U/CeO2) was examined for cabbage growth. The water retention capacity extended for >2 weeks. A controlled release profile for urea was accomplished from CsB@U/CeO2 for a period extending for 30 days. The kinetics assay suggested that presence of CeO2 NPs asserted a greater role in urea-controlled release from the CsB@U/CeO2 nanocomposite hydrogel owing to polymer relaxation. The growth parameters of cabbages such as head height, diameter, fresh head weight, head circumference was enhanced in plants fertilized by CsB@U/CeO2 as compared to urea. Furthermore, the phenolic content, free radical scavenging activity, protein content, sugar and flavonoid content were also found higher in CsB@U/CeO2 fertilized plants. This study puts forth CsB@U/CeO2 xerogel can be potentially harnessed as an alternative to urea in sustainable agriculture.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Chiranjib Pattanaik
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Ritisma Patra
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India; Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India.
| |
Collapse
|
6
|
Sadeghy S, Pormazar SM, Ghaneian MT, Ehrampoush MH, Dalvand A. Modeling and optimization of direct dyes removal from aqueous solutions using activated carbon produced from sesame shell waste. Sci Rep 2024; 14:24867. [PMID: 39438688 PMCID: PMC11496657 DOI: 10.1038/s41598-024-76081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Today, there is a significant concern in the industry regarding the disposal of wastewater containing dyes into the environment, so the management and appropriate disposal of these wastes in the environment are considerable. The main aim of this study is to assess the efficiency of activated carbon (AC) prepared from sesame shells to remove direct dyes from aqueous solutions. According to the results, AC prepared from sesame shell had a high specific surface area (525 m2/g) and porous structure. The results demonstrated that the adsorbent had high potential to remove direct dyes as 84.5% of direct brown 103 (DB103), 93.08% of direct red 80 (DR80), 93.37% of direct blue 21 (DB21) and 98.39% of direct blue 199 (DB199) under the optimal conditions of adsorbent dose 4.8 g/L, contact time 19 min, pH 3 and initial dye concentration 12 mg/L. The experimental results showed that kinetic data were best described by the pseudo-second-order model (R2 = 0.989) while isotherm data were best fitted by the Freundlich model (R2 = 0.994). In the present study, not only was the produced waste used as a useful and economically valuable material, but it was also applied as an effective adsorbent to remove direct dyes from industrial effluents and reduce environmental pollution.
Collapse
Grants
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
Collapse
Affiliation(s)
- Setareh Sadeghy
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Mahtab Pormazar
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Wu R, Hapiz A, Musa SA, ALOthman ZA, Sillanpää M, Jawad AH. Hydrothermal fabrication of composite chitosan grafted salicylaldehyde/coal fly ash/algae for malachite green dye removal: A statistical optimization. Int J Biol Macromol 2024; 280:135897. [PMID: 39313051 DOI: 10.1016/j.ijbiomac.2024.135897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/11/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
In this study, chitosan grafted salicylaldehyde/coal fly ash/algae (Chi-SL/CFA/Alg) was synthesized by assistance of hydrothermal process to be an effective adsorbent to remove cationic dye (malachite green: MG) from water. The physicochemical properties of the Chi-SL/CFA/Alg biomaterial were examined using SEM-EDX, pHpzc, specific surface area (BET), and FTIR analyses. The optimization process of the adsorption operation parameters for MG removal by Chi-SL/CFA/Alg were optimized using a Box-Behnken design (BBD). The selected adsorption operation parameters Chi-SL/CFA/Alg dosage (A: 0.02-0.1 g/100 mL), solution pH (B: 4-8), and contact time (C: 20-360 min). Analysis of variance (ANOVA) test was applied to determine the significant interaction between the adsorption operation parameters and to validate BBD output. The adsorption kinetics and isotherms of MG dye by Chi-SL/CFA/Alg were well described by pseudo-second order (PSO) kinetic and Freundlich isotherm model respectively. Thus, the maximum adsorption capacity (qmax) of MG dye by Chi-SL/CFA/Alg was found to be 493.7 mg/g at basic pH environment (pH = 8) and working temperature 25 °C. The adsorption mechanism can be ascribed to various interactions, including hydrogen bonding, π-π interactions, electrostatic attraction, and n-π interactions. Thus, Chi-SL/CFA/Alg can be considered as preferable and potential adsorbent for removing cationic dye from aqueous environment.
Collapse
Affiliation(s)
- Ruihong Wu
- Deparment of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Salis A Musa
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093 Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| |
Collapse
|
8
|
El-Shafie AS, El-Azazy M. Crosslinked chitosan-montmorillonite composite and its magnetized counterpart for the removal of basic fuchsin from wastewater: Parametric optimization using Box-Behnken design. Int J Biol Macromol 2024; 263:130224. [PMID: 38387636 DOI: 10.1016/j.ijbiomac.2024.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Treating wastewater polluted with organic dyestuffs is still a challenge. In that vein, facile synthesis of a structurally simple composite of chitosan with montmorillonite (CS-MMT) using glutaraldehyde as a crosslinker and the magnetized analogue (MAG@CS-MMT) was proposed as versatile adsorbents for the cationic dye, basic Fuchsin (FUS). Statistical modeling of the adsorption process was mediated using Box-Behnken (BB) design and by varying the composite dose, pH, [FUS], and contact time. Characterization of both composites showed an enhancement of surface features upon magnetization, substantiating a better FUS removal of the MAG@CS-MMT (%R = 98.43 %) compared to CS-MMT (%R = 68.02 %). The surface area analysis demonstrates that MAG@CS-MMT possesses a higher surface area, measuring 41.54 m2/g, and the surface analysis of the magnetized nanocomposite, conducted using FT-IR and Raman spectroscopies, proved the presence of FeO peaks. In the same context, adsorption of FUS onto MAG@CS-MMT fitted-well to the Langmuir isotherm model and the maximum adsorption capacities (qm) were 53.11 mg/g for CS-MMT and 88.34 mg/g for MAG@CS-MMT. Kinetics investigation shows that experimental data fitted well to the pseudo-second order (PSO) model. Regeneration study reveals that MAG@CS-MMT can be recovered effectively for repeated use with a high adsorption efficiency for FUS.
Collapse
Affiliation(s)
- Ahmed S El-Shafie
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
9
|
Akbari A, Abbasi H, Shafiee M, Baniasadi H. Synergistic adsorption of methylene blue with carrageenan/hydrochar-derived activated carbon hydrogel composites: Insights and optimization strategies. Int J Biol Macromol 2024; 265:130750. [PMID: 38467224 DOI: 10.1016/j.ijbiomac.2024.130750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The study explores the use of hydrochar-derived activated carbon (AC) to improve the adsorption capacity and mechanical properties of carrageenan (CAR) hydrogel beads. Four distinct samples, with carrageenan to activated carbon ratios of 1:0 (CAR), 2:1 (CAC2), 4:1 (CAC4), and 10:1 (CAC10), were prepared. These polymeric beads underwent comprehensive evaluation for their methylene blue (MB) adsorption capacity, gel content (GC), and swelling ratio (SR). Increasing activated carbon content up to 50 % of carrageenan mass significantly enhanced GC and SR by 20.57 % and 429.24 %, respectively. Various analytical techniques were employed to characterize the composites, including FTIR, XRD, Raman Spectroscopy, BET, SEM, and EDS-Mapping. Batch adsorption tests investigated the effects of pH, contact time, dye concentration, and temperature on MB adsorption. Maximum adsorption capacities for CAR, CAC10, CAC4, and CAC2 were 475.48, 558.54, 635.93, and 552.35 mg/g, respectively, under optimal conditions. Kinetic models (Elovich and pseudo-second-order) and isotherm models (Temkin for CAR and Freundlich for CAC10, CAC4, and CAC2) fitted well with the experimental data. Thermodynamic analysis showed spontaneous, exothermic MB adsorption. Primary mechanisms include electrostatic attraction, hydrogen bonding, n-π, and π-π stacking. The study highlights enhanced adsorption capacity of carrageenan hydrogel via carrageenan/activated carbon composites, providing cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | - Habib Abbasi
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran; Department of Nutrition Sciences, Ewaz School of Health, Larestan University of Medical Sciences, Larestan, Iran.
| | - Mojtaba Shafiee
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
10
|
Safdarian A, Javanbakht V. Development of a novel bionanocomposite of UiO-66/xanthan gum/alginate crosslinked by calcium chloride for azo dye removal: Insight into adsorption kinetics, isotherms, and thermodynamics. Int J Biol Macromol 2024; 261:129729. [PMID: 38278391 DOI: 10.1016/j.ijbiomac.2024.129729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
In the present work, UiO-66/xanthan gum/alginate bionanocomposite adsorbent was fabricated using the in-situ crosslinking-gelation method, characterized by different techniques, and finally used for the removal of methylene blue dye from aqueous solution. Adsorption studies were performed using batch experiments and the influencing operational parameters such as contact time, initial pH solution, temperature, initial dye concentration, adsorbent dose, pHPZC, swelling, regeneration, and reuse of the adsorbent were investigated. The various kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion) and isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) were used to analysis of the experiment results. The results were best fitted to the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacity of dye on the adsorbent was obtained at 9.96 mg/g at pH = 11. The value of pHPZC for the adsorbent was obtained at about 8. According to thermodynamic parameters, the dye adsorption was found as spontaneous and endothermic due to the negative value of the ΔG° and ΔH°. After 4 times of reusability cycles, the adsorption efficiency remained above 86 %, which represented a certain regeneration ability. As a result, this research indicates that UiO-66/xanthan gum/alginate bionanocomposite can be utilized as a promising bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Afsaneh Safdarian
- ACECR Institute of Higher Education (Isfahan Branch), 84175-443 Isfahan, Iran
| | - Vahid Javanbakht
- ACECR Institute of Higher Education (Isfahan Branch), 84175-443 Isfahan, Iran; EORC Esfahan Oil Refining Company, 83351-13115 Isfahan, Iran.
| |
Collapse
|
11
|
Kjidaa B, Mchich Z, Aziz K, Saffaj N, Saffaj T, Mamouni R. Flexible Synthesis of Bio-Hydroxyapatite/Chitosan Hydrogel Beads for Highly Efficient Orange G Dye Removal: Batch and Recirculating Fixed-Bed Column Study. ACS OMEGA 2024; 9:8543-8556. [PMID: 38405537 PMCID: PMC10883016 DOI: 10.1021/acsomega.3c10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The use of fish waste as a source material for the development of functional beads has significant potential applications in the fields of materials science and environmental sustainability. In this study, a biomaterial bead of chitosan was cross-linked with bio-hydroxyapatite (Bio-Hap/Cs) through the encapsulation process to create a stable and durable material. The beads are characterized using scanning electron microscopy combined with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The adsorption efficiency of Bio-Hap/Cs hydrogel beads was evaluated by using Orange G (OG) dye in both batch and recirculating column systems, and the effect of various parameters on the adsorption capacity was investigated. In the batch study, it was found that OG removal increased with an increasing pH and adsorbent dose. However, in the recirculating column system, a higher bed height and lower flow rate led to increased removal of the OG dye. The kinetic study indicated that the pseudo-second-order model provided a good description of OG adsorption onto Bio-Hap/Cs beads in both batch and recirculating processes, with a high coefficient correlation. The maximum adsorbed amounts are found to be 19.944 mg g-1 and 9.472 mg g-1 in batch and recirculating processes, respectively. Therefore, Bio-Hap/Cs hydrogel beads have demonstrated an effective and reusable material for OG dye remediation from aqueous solutions using recirculating adsorption processes.
Collapse
Affiliation(s)
- Bouthayna Kjidaa
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zaineb Mchich
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Khalid Aziz
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nabil Saffaj
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Taoufiq Saffaj
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques of
Fez, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Rachid Mamouni
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
12
|
Abbasi A, Ahmad I, Abd El-Gawad HH, Alshahrani WA, Alqarni ND, El-Bahy ZM, Ikram S. Appraisal of the adsorption potential of novel modified gellan gum nanocomposite for the confiscation of methylene blue and malachite green. Int J Biol Macromol 2024; 259:129221. [PMID: 38191115 DOI: 10.1016/j.ijbiomac.2024.129221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
In the present investigation a novel, environmentally affable and economical, modified gellan gum nanocomposite (MAA-g-GG/Ppy/MMT) was fabricated via free-radical polymerization for the liquid-phase mitigation of Methylene blue (MB) and Malachite green (MG) dyes. The innovation of this work is substantiated by the intentional combination of diverse materials, the strategic incorporation of polypyrrole for enhanced adsorption, and the thoughtful addition of MMT as a nanofiller to address mechanical strength and improve adsorption capacity. The physico-chemical facets of MAA-g-GG/Ppy/MMT and its interaction with the dye molecules were elucidated using FT-IR, SEM-EDX, BET, TEM, and XRD techniques. The optimum conditions for the sorption of MB and MG were deemed to be dosage (1.2 g/L for both dyes), contact time (50 min for both dyes), initial MG/MB concentration (MB = 40 mg/L & MG = 30 mg/L), and pH (MB = 10 & MG = 7). The Freundlich isotherm was identified as the most suitable model, as evidenced by the highest R2 value (∼0.999), indicating multilayer adsorption. The pseudo second-order model appraised the kinetic data. Thermodynamic findings revealed the adsorption process to be spontaneous, viable and exothermic which was ascertained by negative ∆H⸰ values (-22.8 kJ/mol for MB and -18.3 kJ/mol for MG). The substantial Langmuir adsorption capacity (Qm: MG =185.185; MB = 344.827) can be ascribed to the reason for strong interactions between MAA-g-GG/Ppy/MMT and dyes. The high reliability of MAA-g-GG/Ppy/MMT was determined by the regeneration studies that worked up to four cycles for both dyes. The real water (distilled water, tap water, and river water) samples spiked with MG/MB demonstrated a substantial uptake of dyes (>85 %) and the marginal influence of ionic strength on the adsorptive potential of MAA-g-GG/Ppy/MMT validated its efficacy for the decontamination of real effluents. The forces of attraction between the dyes and MAA-g-GG/Ppy/MMT included van der Waals, electrostatic forces of attraction, and π-π interaction. This green, economical, and viable MAA-g-GG/Ppy/MMT will prove to be an efficient adsorbent for the decontamination process of sequestration of dyes to achieve a sustainable environment.
Collapse
Affiliation(s)
- Arshiya Abbasi
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Iftkhar Ahmad
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Hala H Abd El-Gawad
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir 61421, Saudi Arabia
| | - Wafa A Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Nawal D Alqarni
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Saiqa Ikram
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
13
|
Gomase V, Doondani P, Saravanan D, Shekhawat A, Jugade R. Efficient multi-ion adsorption using chitosan-malonic acid film: Enhancement using response surface methodology. ENVIRONMENTAL RESEARCH 2024; 242:117762. [PMID: 38029812 DOI: 10.1016/j.envres.2023.117762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The objective of this research is to conduct a comprehensive characterization of chitosan while also improving its attributes by crosslinking with malonic acid, with a focus on its efficacy in removing hexavalent chromium, arsenite and fluoride ions. Crosslinking chitosan in 1:0.5 mass ratio forming a film led to substantial enhancement in confiscation of these target pollutants. The characterization of the adsorbent involved several techniques, including FT-IR, TGA-DSC, SEM-EDX, XRD, and BET surface area analysis. In batch adsorption experiments, Chitosan-malonic acid (CMA) was employed to remove CrVI, AsIII and F- from aqueous solutions. These experiments were conducted while varying conditions such as pH, dosage, concentration, temperature, and time. Through the implementation of response surface methodology (RSM), parameters were optimized, resulting in over 95% removal of CrVI, AsIII and F- ions. The isotherm and kinetics data demonstrated a good fit with the Langmuir isotherm model and pseudo second-order kinetics, respectively. According to the Langmuir isotherm, the maximum adsorption capacities on CMA for CrVI, AsIII and F- were determined to be 687.05 mg g-1, 26.72 mg g-1 and 51.38 mg g-1 respectively under optimum pH of 4.0, 7.0 and 5.0 respectively under ambient temperature of 303 K. Thermodynamic analysis indicated that the adsorption process was spontaneous and driven by enthalpy. The regenerability of the adsorbent was validated through five adsorption-desorption cycles, signifying its reusability. An assessment of the adsorbent's sustainability indicated an eco-friendly synthesis, as reflected by the low E-factor value of 0.0028.
Collapse
Affiliation(s)
- Vaishnavi Gomase
- Department of Chemistry, R.T.M. Nagpur University, Nagpur, 440033, India
| | - Priyanka Doondani
- Department of Chemistry, R.T.M. Nagpur University, Nagpur, 440033, India
| | - D Saravanan
- Department of Chemistry, National College, Tiruchirappalli, Tamilnadu, 620001, India
| | - Anita Shekhawat
- Department of Chemistry, R.T.M. Nagpur University, Nagpur, 440033, India
| | - Ravin Jugade
- Department of Chemistry, R.T.M. Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
14
|
Barjasteh M, Akrami M, Dehnavi SM. Fabrication of Bacterial Cellulose/Chitosan-MIL-100(Fe) Composite for Adsorptive Removal of Dacarbazine. Int J Biol Macromol 2024; 257:128683. [PMID: 38092103 DOI: 10.1016/j.ijbiomac.2023.128683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
In this research, a polymeric composite based on a chitosan/bacterial cellulose (CS/BC) matrix filled with MIL-100(Fe) particles was prepared to solve the recyclability of issue MIL-100(Fe) particles and utilized as an efficient adsorbent for removing dacarbazine (DTIC) from wastewater. The adsorption capacity of the composite (CS/BC-MIL) was higher than both MIL-100(Fe) and the CS/BC polymeric matrix. The adsorption performance of the fabricated composite was evaluated through kinetics and isotherm studies. While isotherm studies revealed that the adsorption of DTIC onto the adsorbent can be well described by the Freundlich model, kinetics studies indicated that a combination of factors, rather than a single rate-limiting factor, are responsible for the adsorption rate. Thermodynamics investigation showed that the adsorption of DTIC to CS/BC-MIL composite is exothermic and occurs spontaneously. Additionally, due to the negative entropy change, it was established that the adsorption is governed by the enthalpy change. Exploring the solution chemistry revealed that the optimum pH for the adsorption process was about 4. Moreover, the CS/BC-MIL can selectively adsorb DTIC in the presence of other pharmaceuticals like doxorubicin (DOX). Furthermore, regeneration investigations disclosed that the composite holds its structural features and has an acceptable adsorption capacity after several cycles of adsorption/desorption.
Collapse
Affiliation(s)
- Mahdi Barjasteh
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | - Mehrdad Akrami
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran.
| |
Collapse
|
15
|
Oliveira RVM, Maia HB, Costa JAS, Romão LPC. Chitosan-based magnetic bioadsorbent beads from eucalyptus sawdust waste for the Direct Violet-51 dye remediation: Eco-friendly strategy and statistical optimization. Int J Biol Macromol 2024; 254:127764. [PMID: 38287574 DOI: 10.1016/j.ijbiomac.2023.127764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
In the present study, a new application was proposed for the eucalyptus sawdust waste, which is an environmental passive. Three adsorbent materials composed of chitosan (CS), sawdust (CSW), and magnetic beads (CSWF) were developed and used for the Direct Violet-51 remediation. The adsorption testes were optimized based on the variation of the adsorption parameters: (i) pH (2-12), (ii) contact time (5-60 min), (iii) initial dye concentration (10-60 mg L-1), (iv) adsorbent mass (10-100 mg) in 10 mL. The optimized conditions of the adsorption essays showed that the three synthesized adsorbents completely removed the dye from the aqueous medium, but under different experimental conditions. As the main findings in this study, we can highlight the excellent performance of CSW adsorbent material, which promoted maximum removal efficiency of Direct Violet-51 at neutral pH, which is of great importance for the industrial processes. On the other hand, CS and CSWF adsorbent materials exhibited a maximum adsorption efficiency at pH 2. Furthermore, the adsorbent materials were applied in the dye remediation in environmental water samples from the tap water, Marcela dam, and Poxim River, they did not suffer any major matrix interference, whose removal efficiency values varied between 99.8 and 100, 70.7-100, and 98.8-99.5 % for the CS, CSW, and CSWF, respectively. Finally, besides being materials produced from the waste, they can be reused more times, fitting into the concept of circular economy.
Collapse
Affiliation(s)
| | - Hermógenes Bezerra Maia
- Department of Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
| | - José Arnaldo Santana Costa
- Department of Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, 14800-900 Araraquara, São Paulo, Brazil
| | - Luciane Pimenta Cruz Romão
- Department of Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, 14800-900 Araraquara, São Paulo, Brazil
| |
Collapse
|
16
|
Tariq MS, Imran M, Ud Din S, Murtaza B, Naeem MA, Amjad M, Shah NS, Khalid MS, Abdel-Maksoud MA, Alfuraydi AA, AbdElgawad H. Magnetic nanocomposite of maize offal biomass for effective sequestration of Congo red and methyl orange dyes from contaminated water: modeling, kinetics and reusability. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:975-992. [PMID: 37968930 DOI: 10.1080/15226514.2023.2280047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.
Collapse
Affiliation(s)
- Muhammad Salman Tariq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Salah Ud Din
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Mashkoor F, Shoeb M, Jeong C. Alginate Modified Magnetic Polypyrrole Nanocomposite for the Adsorptive Removal of Heavy Metal. Polymers (Basel) 2023; 15:4285. [PMID: 37959965 PMCID: PMC10650565 DOI: 10.3390/polym15214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The presence of heavy metals with high acute toxicity in wastewater poses a substantial risk to both the environment and human health. To address this issue, we developed a nanocomposite of alginate-encapsulated polypyrrole (PPy) decorated with α-Fe2O3 nanoparticles (Alg@Mag/PPy NCs), fabricated for the removal of mercury(II) from synthetic wastewater. In the adsorption experiments, various parameters were examined to identify the ideal conditions. These parameters included temperature (ranging from 298 to 323 K), initial pH levels (ranging from two to nine), interaction time, amount of adsorbent (from 8 to 80 mg/40 mL), and initial concentrations (from 10 to 200 mg/L). The results of these studies demonstrated that the removal efficiency of mercury(II) was obtained to be 95.58% at the optimum pH of 7 and a temperature of 303 K. The analysis of adsorption kinetics demonstrated that the removal of mercury(II) adhered closely to the pseudo-second-order model. Additionally, it displayed a three-stage intraparticle diffusion model throughout the entire adsorption process. The Langmuir model most accurately represented equilibrium data. The Alg@Mag/PPy NCs exhibited an estimated maximum adsorption capacity of 213.72 mg/g at 303 K, surpassing the capacities of most of the other polymer-based adsorbents previously reported. The thermodynamic analysis indicates that the removal of mercury(II) from the Alg@Mag/PPy NCs was endothermic and spontaneous in nature. In summary, this study suggests that Alg@Mag/PPy NCs could serve as a promising choice for confiscating toxic heavy metal ions from wastewater through adsorption.
Collapse
Affiliation(s)
| | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (F.M.); (M.S.)
| |
Collapse
|
18
|
Yang H, Lin J, Wen Z, Li Z, Zeng J, Wang L, Tao Y, Gao D, Wang D. ZnS/CuFe 2O 4/MXene ternary heterostructure photocatalyst for efficient adsorption and photocatalytic degradation of azo dyes under visible light: Synergistic effect, mechanism, and application. CHEMOSPHERE 2023; 339:139797. [PMID: 37572707 DOI: 10.1016/j.chemosphere.2023.139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
ZnS/CuFe2O4/MXene (ZSCFOM) composite with ternary heterostructures was prepared by solvothermal methods for the first time to effectively adsorb and photodegrade the azo dyes. ZSCFOM mainly adsorbed azo dyes through the hydrogen bonding and electrostatic interactions, with saturated adsorption capacities of 377 mg g-1 for direct brown M and 390 mg g-1 for direct black RN. ZSCFOM exhibited both characteristics of Schott heterostructure and p-n heterostructure, but it is not a simple superposition of the two heterostructures, but rather achieves better photocatalytic property. ZSCFOM performed a higher separation efficiency of electrons and holes than pure CuFe2O4 and pure ZnS. Under visible light, ZSCFOM was more effective in removing the azo dyes than MXene, CuFe2O4, ZnS, CuFe2O4/MXene, ZnS/MXene, and ZnS/CuFe2O4. The migration pathways of photogenerated carriers in ZSCFOM were inferred as that the electrons were concentrated in MXene and conduction band of ZnS, and holes were gathered in valence band of CuFe2O4. MXene served as a cocatalyst to accelerate the separation of electrons and holes. ZSCFOM mainly degraded DBM and DBRN by catalyzing the generation of holes, superoxide radicals, and hydroxyl radicals. The 100% of 0.05 g L-1 azo dyes were removed by ZSCFOM within 30 min from the environmental water systems.
Collapse
Affiliation(s)
- Haojie Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhou Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jia Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yongqing Tao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|