1
|
Chen M, Sun Z, Ma A, Shi G, Xiong G, Qiao Y, Chen S, Wu W, Liu J, Tu Z, Wang L, Shi L. Enhancing surimi gel properties in silver carp with innovative ultra-micro crayfish shell powder. Food Chem 2025; 478:143605. [PMID: 40037222 DOI: 10.1016/j.foodchem.2025.143605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/13/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
This study investigated the preparation and application of ultra-micro crayfish shell powder to enhance the quality of surimi gels. A combination of ball milling and irradiation techniques produced an innovative powder (MID) with reduced particle size and enhanced zeta potential, dispersibility, Ca2+ release, and hydrogen bonding energy (p < 0.05), while maintaining its composition. Adding 0.50 % MID to surimi gels resulted in optimal improvements, enhancing gel strength and texture as well as elasticity. MID also increased the water holding capacity (WHC), decreased water mobility, and resulted in a dense and ordered microstructure. Fourier transform infrared spectroscopy indicated improvements were due to increased intermolecular non-covalent bonding interactions. Electronic nose analysis showed MID reduced aromatic compounds and organosulphides, preserving flavor and reducing the fishy taste. Electronic tongue analysis revealed an increase in fresh flavor response. The preparation method significantly enhanced the quality and sensory properties of surimi gels.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gangpeng Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jing Liu
- Hubei New Liuwu Foodstuff Group Co., Ltd., Qianjiang 433115, China
| | - Ziyi Tu
- Hubei Crayfish Industry Technology Research Institute Co., Ltd., Qianjiang 433115, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
2
|
Elumalai S, Somasundaram A, Ramasamy P. A comprehensive review on nanochitosan and its diverse applications in various industries. Int J Biol Macromol 2025; 305:141150. [PMID: 39961557 DOI: 10.1016/j.ijbiomac.2025.141150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Nanochitosan, a nanostructured form of chitosan produced from chitin, has become a widely used material with a wide range of applications in a variety of industries. This review summarizes the study on nanochitosan, including its synthesis techniques, distinct physicochemical characteristics, and uses in medicine, agriculture, cosmetics, and cleaning up the environment. The review also emphasizes the impact of synthesis methods such as nanoprecipitation, electrospinning, and chemical modifications on the material's properties and applications. In agriculture, nanochitosan can be used as a long-lasting biopolymer to support crop growth and health. Because it is mucoadhesive and compatible with living things, it can also enhance the effectiveness of medication. The potential of nanochitosan to enhance skin permeability and encapsulate active chemicals in cosmetics presents exciting opportunities for innovation. Furthermore, nanochitosan effectiveness as a biosorbent and antibacterial agent in wastewater treatment highlights its potential to tackle environmental issues. The present study offers valuable perspectives on the present status of nanochitosan research, highlights significant obstacles, and suggests future avenues for optimizing its industrial applications.
Collapse
Affiliation(s)
- Saranya Elumalai
- Department of Biotechnology, Vinayaka Missions Kirupananda Variyar Engineering College, Salem 636308, Tamil Nadu, India
| | - Ambiga Somasundaram
- Department of Biochemistry, School of Arts and Science, PonnaiyahRamajayam Institute of Science and Technology PRIST), Thanjavur, Tamil Nadu 613403, India
| | - Pasiyappazham Ramasamy
- Polymer Research Laboratory (PR Lab), Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India; Department of Prosthodontics and Implantology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Mersmann L, Souza VGL, Fernando AL. Green Processes for Chitin and Chitosan Production from Insects: Current State, Challenges, and Opportunities. Polymers (Basel) 2025; 17:1185. [PMID: 40362968 PMCID: PMC12073625 DOI: 10.3390/polym17091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Chitin and chitosan are valuable biopolymers with various applications, ranging from food to pharmaceuticals. Traditionally sourced from crustaceans, the rising demand for chitin/chitosan, paired with the development of the insect sector, has led to the exploration of insect biomass and its byproducts as a potential source. Conventional processes rely on hazardous chemicals, raising environmental concerns. This critical review evaluates emerging "greener" approaches, including biological methods, green solvents, and advanced processing techniques, for chitin/chitosan production from insect-derived materials such as exuviae and cocoons. Two systematic evaluations are included: (1) a cross-comparison of chitin and chitosan yields across insect life stages and byproducts (e.g., up to 35.7% chitin from black soldier fly (BSF) larval exoskeletons can be obtained) and (2) a stepwise sustainability assessment of over 30 extraction workflows reported across 16 studies. While many are labeled as green, only a few, such as bromelain, lactic acid fermentations, or NADES-based processes, demonstrated fully green extraction up to the chitin stage. No study achieved a fully green conversion to chitosan, and green workflows typically required materials with low fat content and minimal pretreatment. These findings will be useful to identify opportunities and underscore the need to refine greener methods, improve yields, reduce impurities, and enable industrial-scale production, while sustainability data need to be generated.
Collapse
Affiliation(s)
| | | | - Ana Luísa Fernando
- MEtRICs, CubicB, Departamento de Química, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (L.M.); (V.G.L.S.)
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025; 313:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Dokki 12622, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria 21531, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
5
|
Rai S, Pokhrel P, Udash P, Chemjong M, Bhattarai N, Thuanthong A, Nalinanon S, Nirmal N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit Rev Biotechnol 2025:1-19. [PMID: 40090738 DOI: 10.1080/07388551.2025.2473576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.
Collapse
Affiliation(s)
- Sampurna Rai
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Prashant Pokhrel
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Government of Nepal, Babar Mahal, Kathmandu, Nepal
| | - Pranaya Udash
- Faculty of Life Science, Campus Kulmbach, University of Bayreuth, Kulmbach, Germany
| | - Menjo Chemjong
- German Institute of Food Technologies-DIL e.V., Quakenbrück, Germany
| | - Namita Bhattarai
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Lertjindaporn M, Geng JT, Keratimanoch S, Lee GY, Ryo K, Osako K. Chitin and chitosan from North Pacific krill (Euphausia Pacifica): Comparative study of conventional and microwave-assisted extraction methods and the potential use in chitosan film production. Int J Biol Macromol 2025; 296:139692. [PMID: 39793789 DOI: 10.1016/j.ijbiomac.2025.139692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The characteristics and prospective applications of North Pacific krill chitin and chitosan are currently unexplored, and their conventional isolation method is time- and energy-consuming. In this study, chitin and chitosan were extracted from North Pacific krill using conventional and microwave-assisted methods, followed by comprehensive characterisation and evaluation of chitosan film potential. The extracted chitin was identified as an α-polymorph, and chitosan exhibited a remarkable degree of deacetylation (90 %) in both methods. Microwave-assisted extraction provided comparable chitin and chitosan yields without adversely affecting their properties, and the resulting products also exhibited enhanced crystallinity and thermal stability. Moreover, microwave-assisted-extracted chitosan (MCS) had a significantly lower molecular weight (Mw). Krill chitosan films demonstrated superior performance as food packaging materials compared to films prepared from commercial chitosan, due to their greater extensibility and transparency. Notably, the MCS film exhibited exceptional antioxidant activity and solubility. These findings suggest that North Pacific krill holds promise as a viable source of α-chitin and chitosan, and microwave-assisted extraction is effective in producing low Mw chitosan that has the potential to be used for preparing functional biodegradable film, with a fivefold reduction in treatment time.
Collapse
Affiliation(s)
- Manisin Lertjindaporn
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Jie-Ting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Sumate Keratimanoch
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Ga-Yang Lee
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Koki Ryo
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
7
|
Abd El-Ghany MN, Hamdi SA, Zahran AK, Abou-Taleb MA, Heikel AM, Abou El-Kheir MT, Farahat MG. Characterization of novel cold-active chitin deacetylase for green production of bioactive chitosan. AMB Express 2025; 15:5. [PMID: 39755920 DOI: 10.1186/s13568-024-01804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg. The optimum temperature and pH of SpsCDA were 15 °C and 8.0, respectively, and the enzyme activity was significantly enhanced in the presence of NaCl. The bioconversion of chitin to chitosan by SpsCDA was accomplished in 72 h, and the chitosan yield was 69.2%. The solubility of chitosan was estimated to be 73.4%, and the degree of deacetylation was 78.1%. The estimated molecular weight of the produced chitosan was 224.7 ± 8.4 kDa with a crystallinity index (CrI) value of 18.75. Moreover, FTIR and XRD spectra revealed the characteristic peaks for enzymatically produced chitosan compared with standard chitosan, indicating their structural similarity. The produced chitosan inhibited spore germination of F. oxysporum with a minimum inhibitory concentration (MIC) of 1.56 mg/mL. The potential antifungal effect of chitosan is attributed to the inhibition of spore germination accompanied by ultrastructural damage of membranes and leakage of cellular components, as evidenced by transmission electron microscopy (TEM), and accumulation of reactive oxygen species (ROS) that was confirmed by fluorescence microscopy. This study shed light on the cold-active chitin deacetylase from S. psychrophila and provides a candidate enzyme for the green preparation of chitosan.
Collapse
Affiliation(s)
- Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Salwa A Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed K Zahran
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mustafa A Abou-Taleb
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Abdallah M Heikel
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Muhammed T Abou El-Kheir
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed G Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza, 12588, Egypt.
| |
Collapse
|
8
|
Krishna VS, Subashini V, Hariharan A, Chidambaram D, Raaju A, Gopichandran N, Nanthanalaxmi MP, Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role of crosslinkers in advancing chitosan-based biocomposite scaffolds for bone tissue engineering: A comprehensive review. Int J Biol Macromol 2024; 283:137625. [PMID: 39547606 DOI: 10.1016/j.ijbiomac.2024.137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bone tissue engineering (BTE) aims to repair and regenerate damaged bone tissue by combining cells, scaffolds, and signaling molecules. Various macromolecules, including natural polymers like chitosan (CS), collagen, hyaluronic acid, and alginate, as well as synthetic polymers such as polyethylene glycol and polylactic acid, are used in scaffold fabrication. Among these, CS holds significant potential in BTE due to its biocompatibility, biodegradability, and other features. The inherent mechanical weaknesses of CS-based scaffolds require the implementation of crosslinking strategies to improve their stability and overall performance. Physical crosslinkers like ultra-violet irradiation and freeze-thaw cycles are biocompatible but offer limited mechanical strength. Chemical crosslinkers like glutaraldehyde significantly improve mechanical strength, but they may induce cytotoxicity. We briefly outline here the critical role of physical and chemical crosslinkers in improving the physicochemical properties, mechanical strength, biocompatibility, and biological functions of CS-based scaffolds, including effective bone regeneration. The influence of crosslinking on the CS-based scaffolds' bioactivity, including the controlled release of bioactive molecules, is also discussed. A thorough understanding of crosslinker chemistry and application in CS-based scaffolds is essential for advancing bone regeneration therapies.
Collapse
Affiliation(s)
- Venkatasubramanian Sai Krishna
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Velan Subashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Adithya Hariharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Deekshaa Chidambaram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Adityaa Raaju
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nikthesh Gopichandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Muthuvaira Prasath Nanthanalaxmi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Iñiguez-Moreno M, Santiesteban-Romero B, Melchor-Martínez EM, Parra-Saldívar R, González-González RB. Valorization of fishery industry waste: Chitosan extraction and its application in the industry. MethodsX 2024; 13:102892. [PMID: 39221014 PMCID: PMC11363563 DOI: 10.1016/j.mex.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Bąk J, Bulak P, Kaczor M, Kołodyńska D, Bieganowski A. Better Ce (III) Sorption Properties of Unprocessed Chitinous Waste from Hermetia illucens than Commercial Chitosans. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5255. [PMID: 39517531 PMCID: PMC11547605 DOI: 10.3390/ma17215255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Insect farming generates a new type of chitinous waste in the form of dead specimens that have died of natural causes and insect moults (puparia), particularly large amounts of which are generated during the rearing of holometabolous insects. Following the circular economy paradigm, we treated waste in the form of puparia and dead adults of H. illucens as a valuable material, i.e., as sources of chitin, and tested it as a sorbent for cerium, a lanthanide of great industrial importance. For comparison, non-treated, raw insect materials and commercial chitosans were also investigated. Chitin extracted from H. illucens showed an adsorption capacity at the same level as commercially available, marine-source chitin (approximately 6 mg Ce·g-1). However, more interestingly, raw materials exhibited much higher adsorption capacities-dead adults were similar to commercial chitosans (approximately 32 mg Ce·g-1), while puparia demonstrated twice the performance (approximately 60 mg Ce·g-1). This indicates that unprocessed waste can be used as environmentally friendly, cost-effective Ce biosorbents with comparable or even better sorption capacity than chitosans, whose production requires intense chemical processing.
Collapse
Affiliation(s)
- Justyna Bąk
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland; (J.B.); (D.K.)
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.K.); (A.B.)
| | - Monika Kaczor
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.K.); (A.B.)
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland; (J.B.); (D.K.)
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.K.); (A.B.)
| |
Collapse
|
11
|
Wu K, Yan Z, Wu Z, Li J, Zhong W, Ding L, Zhong T, Jiang T. Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan. J Funct Biomater 2024; 15:318. [PMID: 39590522 PMCID: PMC11595984 DOI: 10.3390/jfb15110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.
Collapse
Affiliation(s)
- Kunjian Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Ziyuan Yan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ziyang Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Jiaye Li
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Wendi Zhong
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Linyu Ding
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China;
| | - Tao Jiang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
12
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
14
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|