1
|
Fatahian R, Erfani R. Surrogate modeling of electrospun PVA/PLA nanofibers using artificial neural network for biomedical applications. Sci Rep 2025; 15:12886. [PMID: 40234455 PMCID: PMC12000562 DOI: 10.1038/s41598-025-94608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Blending poly (lactic acid) (PLA) with poly (vinyl alcohol) (PVA) improves the strength and hydrophilicity of nanofibers, making them suitable for biomedical applications like wound dressings. This study explores how electrospinning parameters-applied voltage, flow rate, and needle-to-collector distance-affect PVA/PLA nanofiber properties, optimizing them using a Taguchi design of experiment (DoE) approach to enhance their mechanical and surface properties for clinical use. Given the high costs and time associated with conducting extensive experimental tests, an artificial neural network based surrogate model is developed to predict experimental outcomes more efficiently, facilitating faster identification of optimal design configurations. Analysis of Variance reveals flow rate as the most significant determinant of fiber diameter. The optimal electrospinning configuration yields nanofibers with an average diameter of 127.6 ± 19.8 nm. These fibers exhibit exceptional tensile strength, flexibility, and a water contact angle of 37°, demonstrating superior hydrophilicity conducive to cell adhesion and proliferation-key factors in promoting wound healing. Comparative analyses confirm that the optimized scaffold (18 cm needle-to-collector distance, 0.6 ml/h flow rate, and 18 kV applied voltage) significantly outperforms alternative configurations, such as 10 cm needle-to-collector distance, 1.2 ml/h flow rate, and 22 kV applied voltage, which display larger diameters, reduced hydrophilicity (contact angle of 72°), and diminished suitability for medical use. Validation experiments affirm the accuracy and reproducibility of the Taguchi optimization, substantiating the methodological rigor and reliability of the findings. This work contributes novel insights into the tunable design of electrospun nanofibers, providing a pathway to developing advanced wound dressings that facilitate tissue integration and accelerate healing. The optimized PVA/PLA nanofibers have the potential to revolutionize wound care by offering a cost-effective and clinically viable solution for enhancing patient recovery, reducing treatment durations, and improving global healthcare outcomes.
Collapse
Affiliation(s)
- Reyhaneh Fatahian
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Rasool Erfani
- Department of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Kyser AJ, Fotouh B, Harris V, Patel R, Maners C, Frieboes HB. Electrospun nanofibers: Focus on local therapeutic delivery targeting infectious disease. J Drug Deliv Sci Technol 2025; 104:106520. [PMID: 39802685 PMCID: PMC11720493 DOI: 10.1016/j.jddst.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Whether it be due to genetic variances, lack of patient adherence, or sub-optimal drug metabolism, the risk of antibiotic resistance from medications administered systemically continues to pose significant challenges to fighting infectious diseases. Ideally, infections would be treated locally for maximal efficacy while minimizing off-target effects. The electrospinning of biomaterials has recently facilitated the creation of electrospun nanofibers as an alternative delivery vehicle for local treatment. This review describes electrospun nanofiber applications to locally target various infectious diseases. Electrospinning is first reviewed as a method to fabricate nanofiber platforms with advantageous properties for developing drug delivery systems. The emergence of artificial intelligence to facilitate the development of nanofiber formulations and the evaluation of operating parameters to customize therapeutic behavior are described. A range of biomaterials utilized for electrospinning nanofibers is summarized in the context of properties suitable for drug delivery, particularly to treat infectious diseases. The current body of literature for electrospun nanofiber applications to tackle infectious diseases, including sexually transmitted infections, oral infections, and Staphylococcus Aureus infections is described. We anticipate that the advantages of electrospun nanofibers to facilitate targeted application while minimizing antibiotic resistance will substantially expand their clinical use in coming years.
Collapse
Affiliation(s)
- Anthony J. Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Victoria Harris
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Rudra Patel
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Caden Maners
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
- Center for Predictive Medicine, University of Louisville, Louisville, KY, 40202
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202
- UofL Health – Brown Cancer Center, University of Louisville, KY, 40202
| |
Collapse
|
3
|
Shen B, Qian B, Tu N. Utilizing AI algorithms to model and optimize the composite of nanocellulose and hydrogels via a new technique. Int J Biol Macromol 2025; 290:138903. [PMID: 39701236 DOI: 10.1016/j.ijbiomac.2024.138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Plants, various biological organisms, and certain marine organisms typically provide biopolymers, like cellulose. Some things that make them unique are that they are non-toxic, biodegradable, have high specific strength and specific modulus, are easy to change the surface of, are highly hydrophilic, and are biocompatible. Significantly, nanocellulose has emerged as a prominent development in the 21st century. The objective of this work was to create a model that can accurately predict and optimize the viscosity, storage modulus (G'), and loss modulus (G″) of sulfate nanocellulose (S-NC) hydrogen materials. These properties were analyzed in different experimental settings. To do this, the researchers used the RSM and multi-layer perceptron (MLP)-ANN techniques to accurately represent and optimize the viscosity, G', and G″ properties. Ultimately, the researchers conducted RSM optimization to identify the optimal patterns of viscosity, G', and G″ characteristics for a new method of producing nanocellulose materials. The results showed that the ANN and RSM methods were very good at predicting how nanocellulose hydrogels would behave while nanocellulose products were being made. Moreover, the ANN technique exhibited superior accuracy in forecasting processes' G' and G' behavior compared to the RSM method. Ultimately, the ideal viscosity state was attained by using a shear rate value of 95 S-1 and including 1.5 wt% of S-NC. The optimal mode for G' and G″ was achieved at a frequency of 14.532 Hz and an S-NC concentration of 1.468 wt%.
Collapse
Affiliation(s)
- Baohua Shen
- Hangzhou Dianzi University Information Engineering College, Hangzhou 311035, Zhejiang, P.R. China
| | - Bibo Qian
- Hangzhou Dianzi University Information Engineering College, Hangzhou 311035, Zhejiang, P.R. China.
| | - Ni Tu
- School of Automation, Guangxi University of Science and Technology, Liuzhou 545616, Guangxi, P.R. China
| |
Collapse
|
4
|
Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X 2024; 8:100265. [PMID: 39045009 PMCID: PMC11263755 DOI: 10.1016/j.ijpx.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer remains a major global health challenge, and despite available treatments, its prognosis remains poor. Recently, researchers have turned their attention to intelligent nanofibers for cancer drug delivery. These nanofibers exhibit remarkable capabilities in targeted and controlled drug release. Their inherent characteristics, such as a high surface area-to-volume ratio, make them attractive candidates for drug delivery applications. Smart nanofibers can release drugs in response to specific stimuli, including pH, temperature, magnetic fields, and light. This unique feature not only reduces side effects but also enhances the overall efficiency of drug delivery systems. Electrospinning, a widely used method, allows the precision fabrication of smart nanofibers. Its advantages include high efficiency, user-friendliness, and the ability to control various manufacturing parameters. In this review, we explore the latest developments in producing smart electrospun nanofibers for cancer treatment. Additionally, we discuss the materials used in manufacturing these nanofibers and the critical parameters involved in the electrospinning process.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebraeel Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Tehrani AD, Tahriri F, Najafabadi AK, Arefizadeh K. Preparation of new green poly (amino amide) based on cellulose nanoparticles for adsorption of Congo red and its adaptive neuro-fuzzy modeling. Int J Biol Macromol 2024; 281:136287. [PMID: 39368586 DOI: 10.1016/j.ijbiomac.2024.136287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
In this study, a novel green poly(amino amide) nanoparticle based on cellulose nanoparticles (Cell-PAMN) was developed for the efficient adsorption of Congo Red dye. Cellulose nanocrystals obtained from acid hydrolysis of cotton linter were functionalized via Oxa-Michael addition of acrylamide on their surface hydroxyl groups, followed by transamidation with ethylenediamine. The resulting nanoparticles were characterized using FT-IR spectroscopy, SEM, and X-ray diffraction techniques. The as-prepared Cell-PAMN exhibited considerably higher adsorption capacity compared to unmodified cellulose nanoparticles due to the presence of amino and amide functional groups. The adsorption kinetics and the effects of parameters such as contact time and initial dye concentration on the adsorption capacity were investigated. An adaptive Neuro-Fuzzy model was used to study the efficiency of dye removal, accurately predicted the adsorption behavior of Cell-PAMN. The kinetic study results showed that the adsorption process followed a pseudo-second-order kinetic model, with a maximum adsorption capacity of around 40 mg/g. The results demonstrated the potential of the synthesized material for the removal of Congo Red from aqueous solutions, highlighting its applicability in wastewater treatment. This research contributes to the development of sustainable and eco-friendly materials for environmental remediation applications.
Collapse
Affiliation(s)
| | - Farzaneh Tahriri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
6
|
Robles KN, Zahra FT, Mu R, Giorgio T. Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering. Polymers (Basel) 2024; 16:2853. [PMID: 39458681 PMCID: PMC11511575 DOI: 10.3390/polym16202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Tissue engineering has great potential for the restoration of damaged tissue due to injury or disease. During tissue development, scaffolds provide structural support for cell growth. To grow healthy tissue, the principal components of such scaffolds must be biocompatible and nontoxic. Poly(ε-caprolactone) (PCL) is a biopolymer that has been used as a key component of composite scaffolds for tissue engineering applications due to its mechanical strength and biodegradability. However, PCL alone can have low cell adherence and wettability. Blends of biomaterials can be incorporated to achieve synergistic scaffold properties for tissue engineering. Electrospun PCL-based scaffolds consist of single or blended-composition nanofibers and nanofibers with multi-layered internal architectures (i.e., core-shell nanofibers or multi-layered nanofibers). Nanofiber diameter, composition, and mechanical properties, biocompatibility, and drug-loading capacity are among the tunable properties of electrospun PCL-based scaffolds. Scaffold properties including wettability, mechanical strength, and biocompatibility have been further enhanced with scaffold layering, surface modification, and coating techniques. In this article, we review nanofibrous electrospun PCL-based scaffold fabrication and the applications of PCL-based scaffolds in tissue engineering as reported in the recent literature.
Collapse
Affiliation(s)
- Karla N. Robles
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
| | - Fatima tuz Zahra
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
| | - Richard Mu
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
| | - Todd Giorgio
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Mendes JF, de Lima Fontes M, Barbosa TV, Paschoalin RT, Mattoso LHC. Membranes composed of poly(lactic acid)/poly(ethylene glycol) and Ora-pro-nóbis (Pereskia aculeata Miller) extract for dressing applications. Int J Biol Macromol 2024; 268:131365. [PMID: 38583829 DOI: 10.1016/j.ijbiomac.2024.131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Wounds are considered one of the most critical medical conditions that must be managed appropriately due to the psychological and physical stress they cause for patients, as well as creating a substantial financial burden on patients and global healthcare systems. Nowadays, there is a growing interest in developing nanofiber mats loaded with varying plant extracts to meet the urgent need for advanced wound ressings. This study investigated the development and characterization of poly(lactic acid) (PLA)/ poly(ethylene glycol) (PEG) nanofiber membranes incorporated with Ora-pro-nóbis (OPN; 12.5, 25, and 50 % w/w) by the solution-blow-spinning (SBS) technique. The PLA/PEG and PLA/PEG/OPN nanofiber membranes were characterized by scanning electron microscopy (SEM), thermal properties (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), contact angle measurements and water vapor permeability (WVTR). In addition, the mats were analyzed for swelling properties in vitro cell viability, and fibroblast adhesion (L-929) tests. SEM images showed that smooth and continuous PLA/PEG and PLA/PEG/OPN nanofibers were obtained with a diameter distribution ranging from 171 to 1533 nm. The PLA/PEG and PLA/PEG/OPN nanofiber membranes showed moderate hydrophobicity (~109-120°), possibly preventing secondary injuries during dressing removal. Besides that, PLA/PEG/OPN nanofibers exhibited adequate WVTR, meeting wound healing requirements. Notably, the presence of OPN gave the PLA/PEG membranes better mechanical properties, increasing their tensile strength (TS) from 3.4 MPa (PLA/PEG) to 5.3 MPa (PLA/PEG/OPN), as well as excellent antioxidant properties (Antioxidant activity with approximately 45 % oxidation inhibition). Therefore, the nanofiber mats based on PLA/PEG, especially those incorporated with OPN, are promising options for use as antioxidant dressings to aid skin healing.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil.
| | - Marina de Lima Fontes
- Graduate of Pharmaceutical Sciences, Paulista State University, Araraquara 14800-901, São Paulo, Brazil
| | - Talita Villa Barbosa
- São Carlos School of Engineering, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Rafaella T Paschoalin
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil
| | | |
Collapse
|
9
|
Chahsetareh H, Yazdian F, Pezeshki-Modaress M, Aleemardani M, Hassanzadeh S, Najafi R, Simorgh S, Taghdiri Nooshabadi V, Bagher Z, Davachi SM. Alginate hydrogel-PCL/gelatin nanofibers composite scaffold containing mesenchymal stem cells-derived exosomes sustain release for regeneration of tympanic membrane perforation. Int J Biol Macromol 2024; 262:130141. [PMID: 38365150 DOI: 10.1016/j.ijbiomac.2024.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Exosomes are among the most effective therapeutic tools for tissue engineering. This study demonstrates that a 3D composite scaffold containing exosomes can promote regeneration in rat tympanic membrane perforation (TMP). The scaffolds were characterized using scanning electron microscopy (SEM), degradation, PBS adsorption, swelling, porosity, and mechanical properties. To confirm the isolation of exosomes from human adipose-derived mesenchymal stem cells (hAMSCs), western blot, SEM, and dynamic light scattering (DLS) were performed. The Western blot test confirmed the presence of exosomal surface markers CD9, CD81, and CD63. The SEM test revealed that the isolated exosomes had a spherical shape, while the DLS test indicated an average diameter of 82.5 nm for these spherical particles. MTT assays were conducted to optimize the concentration of hAMSCs-exosomes in the hydrogel layer of the composite. Exosomes were extracted on days 3 and 7 from an alginate hydrogel containing 100 and 200 μg/mL of exosomes, with 100 μg/mL identified as the optimal value. The optimized composite scaffold demonstrated improved growth and migration of fibroblast cells. Animal studies showed complete tympanic membrane regeneration (TM) after five days. These results illustrate that a scaffold containing hAMSC-exosomes can serve as an appropriate tissue-engineered scaffold for enhancing TM regeneration.
Collapse
Affiliation(s)
- Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran.
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Sajad Hassanzadeh
- Eye Research Center, Five Senses Health Research Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Najafi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|