1
|
Francisco JC, Uemura L, Simeoni RB, da Cunha RC, Mogharbel BF, Simeoni PRB, Naves G, Napimoga MH, Noronha L, Carvalho KAT, Moreira LFP, Guarita-Souza LC. Acellular Human Amniotic Membrane Scaffold with 15d-PGJ 2 Nanoparticles in Postinfarct Rat Model. Tissue Eng Part A 2020; 26:1128-1137. [PMID: 32486914 DOI: 10.1089/ten.tea.2019.0340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The difficulty in the regeneration of cardiomyocytes after myocardial infarction is a major cause of heart failure. Together, the amniotic membrane and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can help in the recovery of cardiomyocyte, as they present many growth factors and anti-inflammatory effect, respectively. The objective of this study is to compare the efficacy of Human Decellularized Amniotic Membrane Scaffold (AHAS) loaded with 15d-PGJ2 in improving ventricular function in a rat model of postinfarct ventricular dysfunction. Myocardial infarction was induced in 24 rats by left coronary occlusion. After a week, the animals were subjected to echocardiography for evaluation of left ventricle ejection fraction (LVEF), left ventricle end diastolic volume (LVEDV), and left ventricle end systolic volume (LVESV). Animals with ejection fraction <40% were included in the study and were randomized into three groups: control (n = 8), AHAS (n = 8) and AHAS +15d-PGJ2 (n = 8). In the AHAS group only the membrane was implanted, whereas in the AHAS +15d-PGJ2 the membrane +15d-PGJ2 was implanted on myocardial infarction. Echocardiographic evaluation was performed after 1 month. For histological analysis, heart tissue was stained with Gomori trichome, Sirius Red, the antibody against CD31 and connexin 43 (Cx43). There were no significant differences in the baseline LVEF, LVEDV, and LVESV in all groups. After 1 month, ejection fraction decreased in the control group but increased in the AHAS group and in the AHAS +15d-PGJ2 group in comparison with the control group. The LVEDV and LVESV in the AHAS and AHAS +15d-PGJ2 groups decreased compared with the control group, featuring a ventricular antiremodeling effect. Histopathology of the infarcted area identified the reduction of infarct size and collagen type 1 in the AHAS and AHAS +15d-PGJ2 groups. New blood vessels and cardiomyocytes have been identified in an infarcted area by CD31 and Cx43. AHAS +15d-PGJ2 provided an increase in the ejection fraction and prevented ventricular dilation in this postinfarction ventricular dysfunction model. Impact Statement Our study demonstrated reduction of myocardial fibrosis, proliferation of cardiomyocytes and increase in ejection fraction in rats after experimental acellular amniotic membrane scaffold (AHAS) carrying nanoparticles of 15d-PGJ2 scaffold engraftment in infarcted myocardium. AHAS grafts facilitated colonization of fibrotic myocardium regions with new contractile cells, in addition to preventing reduction of left ventricle wall thickness. This contribution is theoretically and practically relevant as current literature describes experimental studies performed on cardiac ischemic models which present conflicting results concerning cell types used in a research model.
Collapse
Affiliation(s)
- Julio Cesar Francisco
- Laboratory of Cardiovascular Surgery and Pathophysiology of Circulation, Department of Cardiopneumology, Heart Institute (Incor), Sao Paulo University Medical School, São Paulo, Brazil.,Positivo University (UP), R. Professor Pedro Viriato Parigot de Souza, Curitiba, Brazil
| | - Laercio Uemura
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| | - Rossana Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil.,The Paraná Institute of Technology-TECPAR, Curitiba, Brazil
| | | | - Bassam Felipe Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba, Brazil. São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Paulo Ricardo Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| | - Guilherme Naves
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Lucia Noronha
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| | - Katherine Athayde Teixeira Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba, Brazil. São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratory of Cardiovascular Surgery and Pathophysiology of Circulation, Department of Cardiopneumology, Heart Institute (Incor), Sao Paulo University Medical School, São Paulo, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil
| |
Collapse
|
2
|
Machado-Júnior PAB, Blume GG, Francisco JC, Guarita-Souza LC. Cell-Based Therapies for Myocardial Regeneration in Heart Failure: 20 Years of Debate. Braz J Cardiovasc Surg 2020; 35:VIII-XI. [PMID: 32864947 PMCID: PMC7454612 DOI: 10.21470/1678-9741-2020-0362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Gustavo Gavazzoni Blume
- Post-Graduation program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | | | - Luiz César Guarita-Souza
- Post-Graduation program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
3
|
Mahara A, Kobayashi N, Hirano Y, Yamaoka T. Sonoporation-based labeling of mesenchymal stem cells with polymeric MRI contrast agents for live-cell tracking. Polym J 2019. [DOI: 10.1038/s41428-019-0177-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Bone Marrow-Derived Stem Cell Populations Are Differentially Regulated by Thyroid or/and Ovarian Hormone Loss. Int J Mol Sci 2017; 18:ijms18102139. [PMID: 29048335 PMCID: PMC5666821 DOI: 10.3390/ijms18102139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Bone marrow-derived stem cells (BMDSCs) play an essential role in organ repair and regeneration. The molecular mechanisms by which hormones control BMDSCs proliferation and differentiation are unclear. Our aim in this study was to investigate how a lack of ovarian or/and thyroid hormones affects stem cell number in bone marrow lineage. To examine the effect of thyroid or/and ovarian hormones on the proliferative activity of BMDSCs, we removed the thyroid or/and the ovaries of adult female rats. An absence of ovarian and thyroid hormones was confirmed by Pap staining and Thyroid Stimulating Hormone (TSH) measurement, respectively. To obtain the stem cells from the bone marrow, we punctured the iliac crest, and aspirated and isolated cells by using a density gradient. Specific markers were used by cytometry to identify the different BMDSCs types: endothelial progenitor cells (EPCs), precursor B cells/pro-B cells, and mesenchymal stem cells (MSCs). Interestingly, our results showed that hypothyroidism caused a significant increase in the percentage of EPCs, whereas a lack of ovarian hormones significantly increased the precursor B cells/pro-B cells. Moreover, the removal of both glands led to increased MSCs. In conclusion, both ovarian and thyroid hormones appear to have key and diverse roles in regulating the proliferation of cells populations of the bone marrow.
Collapse
|
5
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
6
|
Abdelwahid E, Siminiak T, Guarita-Souza LC, Teixeira de Carvalho KA, Gallo P, Shim W, Condorelli G. Stem cell therapy in heart diseases: a review of selected new perspectives, practical considerations and clinical applications. Curr Cardiol Rev 2013; 7:201-12. [PMID: 22758618 PMCID: PMC3263484 DOI: 10.2174/157340311798220502] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 12/13/2022] Open
Abstract
Degeneration of cardiac tissues is considered a major cause of mortality in the western world and is expected to be a greater problem in the forthcoming decades. Cardiac damage is associated with dysfunction and irreversible loss of cardiomyocytes. Stem cell therapy for ischemic heart failure is very promising approach in cardiovascular medicine. Initial trials have indicated the ability of cardiomyocytes to regenerate after myocardial injury. These preliminary trials aim to translate cardiac regeneration strategies into clinical practice. In spite of advances, current therapeutic strategies to ischemic heart failure remain very limited. Moreover, major obstacles still need to be solved before stem cell therapy can be fully applied. This review addresses the current state of research and experimental data regarding embryonic stem cells (ESCs), myoblast transplantation, histological and functional analysis of transplantation of co-cultured myoblasts and mesenchymal stem cells, as well as comparison between mononuclear and mesenchymal stem cells in a model of myocardium infarction. We also discuss how research with stem cell transplantation could translate to improvement of cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- CBRC, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Effect of oxygenation on stem-cell therapy for myocardial infarction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 701:175-81. [PMID: 21445785 DOI: 10.1007/978-1-4419-7756-4_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Stem-cell transplantation to treat acute myocardial infarction (MI) is gaining importance as a minimally invasive and potent therapy to replace akinetic scar tissue by viable myocardium. Our recent studies have shown that stem-cell transplantation marginally improves myocardial oxygenation in the infarct tissue leading to improvement in cardiac function. The aim of the present study was to determine the effect of hyperbaric oxygen (HBO) treatment on myocardial oxygenation and recovery of function in MI hearts. Fisher-344 rats were subjected to MI by permanently ligating the left-anterior-descending (LAD) coronary artery. The rats were then exposed to 100% O(2) at a pressure of 2 atmospheres for 90 minutes, and the exposure was repeated for 5 days a week for 2 weeks. Adult bone-marrow-derived rat mesenchymal stem cells (MSC, 5x10⁵ cells) were mixed with OxySpin (LiNc- BuO, oxygen sensor) and implanted in the infarct and peri-infarct regions of the heart. M-mode ultrasound echocardiography was performed at baseline and at 2 weeks post-transplantation. The myocardial pO(2) in the MSC+HBO group (16.2±2.2 mmHg) was significantly higher when compared to untreated MI (3.8±1.9 mmHg) or MSC (9.8±2.3 mmHg) groups. In addition, there was a significant improvement in cardiac function, increased vessel density, and VEGF expression in MSC+HBO group compared to MSC group (p < 0.05). In conclusion, the results suggested a beneficial effect of HBO administration on stem-cell therapy for MI.
Collapse
|
8
|
Guarita-Souza LC, Francisco JC, Simeoni R, Faria-Neto JR, de Carvalho KAT. Benefit of stem cells and skeletal myoblast cells in dilated cardiomyopathies. World J Cardiol 2011; 3:93-7. [PMID: 21503169 PMCID: PMC3078487 DOI: 10.4330/wjc.v3.i3.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
Although some authors suggest that there is mitotic division in the heart, most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contractile function, and if the area of infarction is extensive ventricular remodeling may occur, leading to the development of heart failure. Cell transplantation into the myocardium with the goal of recovery of cardiac function has been extensively studied in recent years. The effects of cell therapy are based directly on the cell type used and the type of cardiac pathology. For myocardial ischemia in the hibernating myocardium, bone marrow cells have functional benefits, however these results in transmural fibrosis are not evident. In these cases there is a benefit of implantation with skeletal myoblasts, for treating the underlying cause of disease, the loss of cell contractility.
Collapse
Affiliation(s)
- Luiz César Guarita-Souza
- Luiz César Guarita-Souza, Júlio César Francisco, Rossana Simeoni, Jose Rocha Faria-Neto, Department of Post Graduation Surgery, Pontifical Catholic University of Parana, 81200-525 Curitiba Pr, Brazil
| | | | | | | | | |
Collapse
|
9
|
Addition of mesenchymal stem cells to the scaffold of platelet-rich plasma is beneficial for the reduction of the consolidation period in mandibular distraction osteogenesis. J Oral Maxillofac Surg 2010; 68:1112-24. [PMID: 20223574 DOI: 10.1016/j.joms.2008.08.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/31/2008] [Accepted: 08/27/2008] [Indexed: 11/21/2022]
Abstract
PURPOSE Platelet-rich plasma (PRP) is a wonderful scaffold to induce osteogenesis. In this study, we investigated whether the combination of mesenchymal stem cells (MSC) with PRP has advantages over PRP for the reduction of consolidation period in mandibular distraction osteogenesis. MATERIALS AND METHODS After osteotomy, an external distraction device was fixed in both mandibles of 38 rabbits. After a 5-day latency period, a total of 6.3 mm was distracted for 6 days. PRP gel with or without MSC was injected into the distracted area on day 1 of the consolidation period. Healing tissues were analyzed histologically, radiologically, and mechanically on weeks 1, 2, 3, and 4 after consolidation. RESULTS In week 1, the MSC/PRP group was 34%, 20%, 21%, and 32% higher than the PRP group in the result of histomorphometry, radiodensity ratio of new bone/host bone and new bone/adjacent tooth, and microhardness test, respectively. Consolidation period was reduced by 6.6 and 5.1 days at 80% and 90% new bone/host bone ratio through regression analysis, respectively. CONCLUSION The addition of MSC in PRP scaffold significantly (P < .05) increased new bone formation, mineralization, and mechanical property compared to the PRP-only group. These results indicate that the combination therapy of MSC and PRP is more effective for reducing the consolidation period of distraction.
Collapse
|
10
|
Kao RL, Browder W, Li C. Cellular cardiomyoplasty: what have we learned? Asian Cardiovasc Thorac Ann 2009; 17:89-101. [PMID: 19515892 DOI: 10.1177/0218492309104144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Restoring blood flow, improving perfusion, reducing clinical symptoms, and augmenting ventricular function are the goals after acute myocardial infarction. Other than cardiac transplantation, no standard clinical procedure is available to restore damaged myocardium. Since we first reported cellular cardiomyoplasty in 1989, successful outcomes have been confirmed by experimental and clinical studies, but definitive long-term efficacy requires large-scale placebo-controlled double-blind randomized trials. On meta-analysis, stem cell-treated groups had significantly improved left ventricular ejection fraction, reduced infarct scar size, and decreased left ventricular end-systolic volume. Fewer myocardial infarctions, deaths, readmissions for heart failure, and repeat revascularizations were additional benefits. Encouraging clinical findings have been reported using satellite or bone marrow stem cells, but understanding of the benefit mechanisms demands additional studies. Adult mammalian ventricular myocardium lacks adequate regeneration capability, and cellular cardiomyoplasty offers a new way to overcome this; the poor retention and engraftment rate and high apoptotic rate of the implanted stem cells limit outcomes. The ideal type and number of cells, optimal timing of cell therapy, and ideal cell delivery method depend on determining the beneficial mechanisms. Cellular cardiomyoplasty has progressed rapidly in the last decade. A critical review may help us to better plan the future direction.
Collapse
Affiliation(s)
- Race L Kao
- Department of Surgery, James H Quillen College of Medicine, East Tennessee State University, Johnson City.
| | | | | |
Collapse
|
11
|
Wisenberg G, Lekx K, Zabel P, Kong H, Mann R, Zeman PR, Datta S, Culshaw CN, Merrifield P, Bureau Y, Wells G, Sykes J, Prato FS. Cell tracking and therapy evaluation of bone marrow monocytes and stromal cells using SPECT and CMR in a canine model of myocardial infarction. J Cardiovasc Magn Reson 2009; 11:11. [PMID: 19397809 PMCID: PMC2680401 DOI: 10.1186/1532-429x-11-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 04/27/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The clinical application of stem cell therapy for myocardial infarction will require the development of methods to monitor treatment and pre-clinical assessment in a large animal model, to determine its effectiveness and the optimum cell population, route of delivery, timing, and flow milieu. OBJECTIVES To establish a model for a) in vivo tracking to monitor cell engraftment after autologous transplantation and b) concurrent measurement of infarct evolution and remodeling. METHODS We evaluated 22 dogs (8 sham controls, 7 treated with autologous bone marrow monocytes, and 7 with stromal cells) using both imaging of 111Indium-tropolone labeled cells and late gadolinium enhancement CMR for up to12 weeks after a 3 hour coronary occlusion. Hearts were also examined using immunohistochemistry for capillary density and presence of PKH26 labeled cells. RESULTS In vivo Indium imaging demonstrated an effective biological clearance half-life from the injection site of ~5 days. CMR demonstrated a pattern of progressive infarct shrinkage over 12 weeks, ranging from 67-88% of baseline values with monocytes producing a significant treatment effect. Relative infarct shrinkage was similar through to 6 weeks in all groups, following which the treatment effect was manifest. There was a trend towards an increase in capillary density with cell treatment. CONCLUSION This multi-modality approach will allow determination of the success and persistence of engraftment, and a correlation of this with infarct size shrinkage, regional function, and left ventricular remodeling. There were overall no major treatment effects with this particular model of transplantation immediately post-infarct.
Collapse
Affiliation(s)
- Gerald Wisenberg
- Department of Medicine, University of Western Ontario, Ontario, Canada
| | - Katie Lekx
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| | - Pam Zabel
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| | - Huafu Kong
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| | - Rupinder Mann
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| | - Peter R Zeman
- Department of Medicine, University of Western Ontario, Ontario, Canada
| | - Sudip Datta
- Department of Medicine, University of Western Ontario, Ontario, Canada
| | - Caroline N Culshaw
- Department of Anatomy and Cell Biology, University of Western Ontario, Ontario, Canada
| | - Peter Merrifield
- Department of Anatomy and Cell Biology, University of Western Ontario, Ontario, Canada
| | - Yves Bureau
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| | - Glenn Wells
- Department of Medicine, University of Ottawa, Ontario, Canada
| | - Jane Sykes
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| | - Frank S Prato
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
| |
Collapse
|
12
|
Guarita-Souza LC, Teixeira de Carvalho KA, Francisco JC, Simeoni R, Faria-Neto JR. Cellular transplantation for the treatment of non-ischaemic dilated cardiomyopathies. Eur Heart J Suppl 2008. [DOI: 10.1093/eurheartj/sun045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
|
14
|
Jin GZ, Yin XJ, Yu XF, Cho SJ, Lee HS, Lee HJ, Kong IK. Enhanced tyrosine hydroxylase expression in PC12 cells co-cultured with feline mesenchymal stem cells. J Vet Sci 2008; 8:377-82. [PMID: 17993752 PMCID: PMC2868154 DOI: 10.4142/jvs.2007.8.4.377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) secrete a variety of neuroregulatory molecules, such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor, which upregulate tyrosine hydroxylase (TH) gene expression in PC12 cells. Enhancing TH gene expression is a critical step for treatment of Parkinson's disease (PD). The objective of this study was to assess the effects of co-culturing PC12 cells with MSCs from feline bone marrow on TH protein expression. We divided the study into three groups: an MSC group, a PC12 cell group, and the combined MSC + PC12 cell group (the co-culture group). All cells were cultured in DMEM-HG medium supplemented with 10% fetal bovine serum for three days. Thereafter, the cells were examined using western blot analysis and immunocytochemistry. In western blots, the co-culture group demonstrated a stronger signal at 60 kDa than the PC12 cell group (p<0.001). TH was not expressed in the MSC group, either in western blot or immunocytochemistry. Thus, the MSCs of feline bone marrow can up-regulate TH expression in PC12 cells. This implies a new role for MSCs in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Carvalho KAT, Simeoni RB, Guarita-Souza LC, Francisco JC, Abdelwahid E, Myiague NI, Chachques JC, Rivetti LA, Oliveira L, Malvezzi M, Olandoski M, Gremski W. Angiogenesis without functional outcome after mononuclear stem cell transplant in a doxorubicin-induced dilated myocardiopathy murine model. Int J Artif Organs 2008; 31:431-8. [PMID: 18609517 DOI: 10.1177/039139880803100509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cell transplantation is considered a novel approach in the treatment of myocardiopathy. The objective of this study was to evaluate the effects of autologous mononuclear stem cell therapy in doxorubicin-induced dilated myocardiopathy by conducting both functional and histopathologic analysis. METHODS Seventy male rats were doxorubicin injected intraperitoneally for 2 weeks. At 1 month, the animals that had demonstrated left ventricular ejection fractions less than 40% were randomly divided into a mononuclear stem cell group and controls. Mononuclear stem cells were isolated. All animals underwent echocardiographic study: baseline, pre-cell therapy, and at 1 month post-cell therapy, and analyzed by the nonparametric Mann-Whitney test. Transplants were performed by subepicardial injections. Standard staining was performed. RESULTS Twenty-three animals were randomly treated: mononuclear stem cell and control groups, with 11 rats completing the study. Cell viability was 85%. Mononuclear stem cells (n=5; 5x106 cells /300 microL medium) and control (n=6; 300 microL medium) were used. The resulting left ventricular ejection fraction in the cell therapy group was not significantly different compared with controls (p=0.54). New vessels were demonstrated in the subepicardial region. CONCLUSIONS Autologous mononuclear stem cell therapy was not functionally effective in doxorubicin-induced dilated myocardiopathy in the animal model under study with the experimental conditions, despite occurrence of angiogenic activity.
Collapse
Affiliation(s)
- K A T Carvalho
- Pos-Graduacao de Ciencias da Saude da Universidade Pontificia Universidade Catolica do Parana', Curitiba, Parana' - Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Psaltis PJ, Gronthos S, Worthley SG, Zannettino AC. Cellular Therapy for Cardiovascular Disease Part 1 - Preclinical Insights. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Peter J Psaltis
- Cardiovascular Research Centre, Royal Adelaide Hospital; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Stan Gronthos
- Division of Haematology, Institute of Medical and Veterinary Science; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Stephen G Worthley
- Cardiovascular Research Centre, Royal Adelaide Hospital; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Andrew C.W. Zannettino
- Division of Haematology, Institute of Medical and Veterinary Science; Department of Medicine, University of Adelaide, South Australia, 5000
| |
Collapse
|
17
|
Dinsmore JH, Dib N. Stem cells and cardiac repair: a critical analysis. J Cardiovasc Transl Res 2008; 1:41-54. [PMID: 20559957 DOI: 10.1007/s12265-007-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 01/11/2023]
Abstract
Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485-486, 2007; Chien, J Clin Investig 116:1838-1840, 2006; Giles, Nature 442:344-347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.
Collapse
Affiliation(s)
- Jonathan H Dinsmore
- Advanced Cell Technology and Mytogen, Inc., Bldg. 96, 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
18
|
Ebert SN, Taylor DG, Nguyen HL, Kodack DP, Beyers RJ, Xu Y, Yang Z, French BA. Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 2007; 25:2936-44. [PMID: 17690182 DOI: 10.1634/stemcells.2007-0216] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite rapid advances in the stem cell field, the ability to identify and track transplanted or migrating stem cells in vivo is limited. To overcome this limitation, we used magnetic resonance imaging (MRI) to detect and follow transplanted stem cells over a period of 28 days in mice using an established myocardial infarction model. Pluripotent mouse embryonic stem (mES) cells were expanded and induced to differentiate into beating cardiomyocytes in vitro. The cardiac-differentiated mES cells were then loaded with superparamagnetic fluorescent microspheres (1.63 microm in diameter) and transplanted into ischemic myocardium immediately following ligation and subsequent reperfusion of the left anterior descending coronary artery. To identify the transplanted stem cells in vivo, MRI was performed using a Varian Inova 4.7 Tesla scanner. Our results show that (a) the cardiac-differentiated mES were effectively loaded with superparamagnetic microspheres in vitro, (b) the microsphere-loaded mES cells continued to beat in culture prior to transplantation, (c) the transplanted mES cells were readily detected in the heart in vivo using noninvasive MRI techniques, (d) the transplanted stem cells were detected in ischemic myocardium for the entire 28-day duration of the study as confirmed by MRI and post-mortem histological analyses, and (e) concurrent functional MRI indicated typical loss of cardiac function, although significant amelioration of remodeling was noted after 28 days in hearts that received transplanted stem cells. These results demonstrate that it is feasible to simultaneously track transplanted stem cells and monitor cardiac function in vivo over an extended period using noninvasive MRI techniques.
Collapse
Affiliation(s)
- Steven N Ebert
- Burnett College of Biomedical Sciences, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Guarita-Souza LC, Carvalho KAT, Woitowicz V, Rebelatto C, Senegaglia A, Hansen P, Miyague N, Francisco JC, Olandoski M, Faria-Neto JR, Brofman P. Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation 2006; 114:I120-4. [PMID: 16820560 DOI: 10.1161/circulationaha.105.000646] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cellular transplantation is emerging as a promising strategy for the treatment of postinfarction ventricular dysfunction. Whether its beneficial effects can be extended to other cardiomyopathies remains an unexplored question. We evaluated the histological and functional effects of simultaneous autologous transplantation of co-cultured stem cells and skeletal myoblasts in an experimental model of dilated cardiomyopathy caused by Chagas disease, characterized by diffuse fibrosis and impairment of microcirculation. METHODS AND RESULTS Wistar rats weighing 200 grams were infected intraperitoneally with 15 x 10(4) trypomastigotes. After 8 months, 2-dimensional echocardiographic study was performed for baseline assessment of left ventricle (LV) ejection fraction (EF) (%), left ventricle end-diastolic volume (LVEDV) (mL), and left ventricle end-systolic volume (LVESV) (mL). Animals with LV dysfunction (EF <37%) were selected for the study. Autologous skeletal myoblasts were isolated from muscle biopsy and mesenchymal stem cells from bone marrow aspirates were co-cultured in vitro for 14 days, yielding a cell viability of >90%. Eleven animals received autologous transplant of 5.4 x 10(6)+/-8.0 x 10(6) cells (300 microL) into the LV wall. The control group (n=10) received culture medium (300 microL). Cell types were identified with vimentin and fast myosin. After 4 weeks, ventricular function was reassessed by echo. For histological analysis, heart tissue was stained with hematoxylin and eosin and immunostained for fast myosin. After 4 weeks, cell transplantation significantly improved EF and reduced LVEDV and LVESV. No change was observed in the control group. CONCLUSIONS The co-transplant of stem cells and skeletal myoblasts is functionally effective in the Chagas disease ventricular dysfunction.
Collapse
Affiliation(s)
- L C Guarita-Souza
- Experimental Laboratory of Cell Culture Institute of Biological and Health Sciences, Pontificia Universidade Catolica do Paraná (PUCPR), Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Premaratne GU, Tambara K, Fujita M, Lin X, Kanemitsu N, Tomita S, Sakaguchi G, Nakajima H, Ikeda T, Komeda M. Repeated Implantation is a More Effective Cell Delivery Method in Skeletal Myoblast Transplantation for Rat Myocardial Infarction. Circ J 2006; 70:1184-9. [PMID: 16936434 DOI: 10.1253/circj.70.1184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Several clinical trials are underway to determine whether autologous skeletal myoblast transplantation is an effective and safe therapeutic strategy for severe heart failure due to myocardial infarction (MI). It remains unclear whether repeated skeletal myoblast implantation is a feasible and effective cell delivery method for the infarcted myocardium. METHODS AND RESULTS Four weeks after a coronary ligation, male syngeneic Lewis rats were assigned to 3 treatment groups: 3 episodes of skeletal myoblasts (6x10(6)) transplantation (group I), a bolus transplantation of myoblasts (18x10(6)) (group II), or culture medium injection (group III). Eight weeks after the first treatment, echocardiography, cardiac catheterization and histological examination were performed to compare the therapeutic effects on left ventricular (LV) systolic and diastolic functions, and the engrafted myoblast volume. Repeated myoblast implantation significantly improved LV function and resulted in significantly larger engrafted volume and LV contractility compared with a bolus transplantation with the same number of myoblasts. CONCLUSIONS Repeated skeletal myoblast transplantation is a safe and effective therapeutic strategy for the infarcted myocardium.
Collapse
Affiliation(s)
- Goditha U Premaratne
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|