1
|
Copier JS, Verkerk AO, Lodder EM. HCN4 in the atrioventricular node. Heart Rhythm 2025:S1547-5271(25)00200-0. [PMID: 39988103 DOI: 10.1016/j.hrthm.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) drives the funny current in cardiac pacemaker regions. Its involvement in sinoatrial node pacemaker generation is well known, but its function in the atrioventricular (AV) node (AVN) has not intensively been studied. HCN4 is expressed in the AVN, and its expression within the AVN seems similar across mammalian species with HCN4 presence in the inferior nodal extensions, compact node, and AV bundle. The main direct regulators of HCN4 are cAMP and protein kinase A. In addition, indirect regulators may affect HCN4 via trafficking and localization. However, these effects are underexplored in the AVN. AVN-specific effects in knockout and knockin mice include reduced funny current density and increased AV block. HCN4 expression in the AVN could be affected by aging, exercise, heart failure, and diabetes. This could underlie changes in PR interval, atria-His interval, Wenckebach cycle length, and AVN effective refractory period. Clinical reports link the HCN4 variant G1097W to AV block. Other clinical data come from studies assessing ivabradine, an HCN4 inhibitor. In animals, ivabradine resulted in prolonged PR and atrial-his intervals. To date, uncertainty regarding the role of HCN4 in the AVN remains. However, AVN-focused studies suggest HCN4's importance for AVN function. This review summarizes recent findings and highlights the involvement of HCN4 in normal and pathological AVN function.
Collapse
Affiliation(s)
- Jaël S Copier
- Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Medical Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
3
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
4
|
Gibbs CE, Marchianó S, Zhang K, Yang X, Murry CE, Boyle PM. Graft-host coupling changes can lead to engraftment arrhythmia: a computational study. J Physiol 2023; 601:2733-2749. [PMID: 37014103 PMCID: PMC10901678 DOI: 10.1113/jp284244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
After myocardial infarction (MI), a significant portion of heart muscle is replaced with scar tissue, progressively leading to heart failure. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) offer a promising option for improving cardiac function after MI. However, hPSC-CM transplantation can lead to engraftment arrhythmia (EA). EA is a transient phenomenon arising shortly after transplantation then spontaneously resolving after a few weeks. The underlying mechanism of EA is unknown. We hypothesize that EA may be explained partially by time-varying, spatially heterogeneous, graft-host electrical coupling. Here, we created computational slice models derived from histological images that reflect different configuration of grafts in the infarcted ventricle. We ran simulations with varying degrees of connection imposed upon the graft-host perimeter to assess how heterogeneous electrical coupling affected EA with non-conductive scar, slow-conducting scar and scar replaced by host myocardium. We also quantified the effect of variation in intrinsic graft conductivity. Susceptibility to EA initially increased and subsequently decreased with increasing graft-host coupling, suggesting the waxing and waning of EA is regulated by progressive increases in graft-host coupling. Different spatial distributions of graft, host and scar yielded markedly different susceptibility curves. Computationally replacing non-conductive scar with host myocardium or slow-conducting scar, and increasing intrinsic graft conductivity both demonstrated potential means to blunt EA vulnerability. These data show how graft location, especially relative to scar, along with its dynamic electrical coupling to host, can influence EA burden; moreover, they offer a rational base for further studies aimed to define the optimal delivery of hPSC-CM injection. KEY POINTS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) hold great cardiac regenerative potential but can also cause engraftment arrhythmias (EA). Spatiotemporal evolution in the pattern of electrical coupling between injected hPSC-CMs and surrounding host myocardium may explain the dynamics of EA observed in large animal models. We conducted simulations in histology-derived 2D slice computational models to assess the effects of heterogeneous graft-host electrical coupling on EA propensity, with or without scar tissue. Our findings suggest spatiotemporally heterogeneous graft-host coupling can create an electrophysiological milieu that favours graft-initiated host excitation, a surrogate metric of EA susceptibility. Removing scar from our models reduced but did not abolish the propensity for this phenomenon. Conversely, reduced intra-graft electrical connectedness increased the incidence of graft-initiated host excitation. The computational framework created for this study can be used to generate new hypotheses, targeted delivery of hPSC-CMs.
Collapse
Affiliation(s)
- Chelsea E Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Silvia Marchianó
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Kelly Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Verkerk AO, Wilders R. Human Sinoatrial Node Pacemaker Activity: Role of the Slow Component of the Delayed Rectifier K + Current, I Ks. Int J Mol Sci 2023; 24:7264. [PMID: 37108427 PMCID: PMC10138838 DOI: 10.3390/ijms24087264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The pacemaker activity of the sinoatrial node (SAN) has been studied extensively in animal species but is virtually unexplored in humans. Here we assess the role of the slowly activating component of the delayed rectifier K+ current (IKs) in human SAN pacemaker activity and its dependence on heart rate and β-adrenergic stimulation. HEK-293 cells were transiently transfected with wild-type KCNQ1 and KCNE1 cDNA, encoding the α- and β-subunits of the IKs channel, respectively. KCNQ1/KCNE1 currents were recorded both during a traditional voltage clamp and during an action potential (AP) clamp with human SAN-like APs. Forskolin (10 µmol/L) was used to increase the intracellular cAMP level, thus mimicking β-adrenergic stimulation. The experimentally observed effects were evaluated in the Fabbri-Severi computer model of an isolated human SAN cell. Transfected HEK-293 cells displayed large IKs-like outward currents in response to depolarizing voltage clamp steps. Forskolin significantly increased the current density and significantly shifted the half-maximal activation voltage towards more negative potentials. Furthermore, forskolin significantly accelerated activation without affecting the rate of deactivation. During an AP clamp, the KCNQ1/KCNE1 current was substantial during the AP phase, but relatively small during diastolic depolarization. In the presence of forskolin, the KCNQ1/KCNE1 current during both the AP phase and diastolic depolarization increased, resulting in a clearly active KCNQ1/KCNE1 current during diastolic depolarization, particularly at shorter cycle lengths. Computer simulations demonstrated that IKs reduces the intrinsic beating rate through its slowing effect on diastolic depolarization at all levels of autonomic tone and that gain-of-function mutations in KCNQ1 may exert a marked bradycardic effect during vagal tone. In conclusion, IKs is active during human SAN pacemaker activity and has a strong dependence on heart rate and cAMP level, with a prominent role at all levels of autonomic tone.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
6
|
Marchiano S, Nakamura K, Reinecke H, Neidig L, Lai M, Kadota S, Perbellini F, Yang X, Klaiman JM, Blakely LP, Karbassi E, Fields PA, Fenix AM, Beussman KM, Jayabalu A, Kalucki FA, Potter JC, Futakuchi-Tsuchida A, Weber GJ, Dupras S, Tsuchida H, Pabon L, Wang L, Knollmann BC, Kattman S, Thies RS, Sniadecki N, MacLellan WR, Bertero A, Murry CE. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 2023; 30:396-414.e9. [PMID: 37028405 PMCID: PMC10283080 DOI: 10.1016/j.stem.2023.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.
Collapse
Affiliation(s)
- Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lauren Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Shin Kadota
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | | | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Leslie P Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul A Fields
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA
| | - Anu Jayabalu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Faith A Kalucki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Jennifer C Potter
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Akiko Futakuchi-Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Gerhard J Weber
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Hiroshi Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven Kattman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - R Scott Thies
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Nathan Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Robb MacLellan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Hu W, Clark RB, Giles WR, Kondo C, Zhang H. Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, I f, in Adult Mouse Heart Primary Pacemaker Myocytes. Int J Mol Sci 2022; 23:4299. [PMID: 35457119 PMCID: PMC9024942 DOI: 10.3390/ijms23084299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the voltage clock) are involved; and that the resulting net current interacts with direct and indirect effects of changes in intracellular Ca2+ (the calcium clock). However, significant uncertainties, and important knowledge gaps, remain concerning the functional roles in SAN spontaneous pacing of many of the individual ion channel- or exchanger-mediated transmembrane current changes. We report results from patch clamp studies and mathematical modeling of the hyperpolarization-activated current, If, in the generation/modulation of the diastolic depolarization, or pacemaker potential, produced by individual myocytes that were enzymatically isolated from the adult mouse sinoatrial node (SAN). Amphotericin-mediated patch microelectrode recordings at 35 °C were made under control conditions and in the presence of 5 or 10 nM isoproterenol (ISO). These sets of results were complemented and integrated with mathematical modeling of the current changes that take place in the range of membrane potentials (-70 to -50 mV), which corresponds to the 'pacemaker depolarization' in the adult mouse SAN. Our results reveal a very small, but functionally important, approximately steady-state or time-independent current generated by residual activation of If channels that are expressed in these pacemaker myocytes. Recordings of the pacemaker depolarization and action potential, combined with measurements of changes in If, and the well-known increases in the L-type Ca2+ current, ICaL, demonstrated that ICaL activation, is essential for myogenic pacing. Moreover, after being enhanced (approximately 3-fold) by 5 or 10 nM ISO, ICaL contributes significantly to the positive chronotropic effect. Our mathematical model has been developed in an attempt to better understand the underlying mechanisms for the pacemaker depolarization and action potential in adult mouse SAN myocytes. After being updated with our new experimental data describing If, our simulations reveal a novel functional component of If in adult mouse SAN. Computational work carried out with this model also confirms that in the presence of ISO the residual activation of If and opening of ICaL channels combine to generate a net current change during the slow diastolic depolarization phase that is essential for the observed accelerated pacemaking rate of these SAN myocytes.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Robert B. Clark
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.); (C.K.)
| | - Wayne R. Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.); (C.K.)
| | - Colleen Kondo
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.); (C.K.)
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China
| |
Collapse
|
8
|
Bai X, Wang K, Boyett MR, Hancox JC, Zhang H. The Functional Role of Hyperpolarization Activated Current ( I f) on Cardiac Pacemaking in Human vs. in the Rabbit Sinoatrial Node: A Simulation and Theoretical Study. Front Physiol 2021; 12:582037. [PMID: 34489716 PMCID: PMC8417414 DOI: 10.3389/fphys.2021.582037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
The cardiac hyperpolarization-activated "funny" current (I f), which contributes to sinoatrial node (SAN) pacemaking, has a more negative half-maximal activation voltage and smaller fully-activated macroscopic conductance in human than in rabbit SAN cells. The consequences of these differences for the relative roles of I f in the two species, and for their responses to the specific bradycardic agent ivabradine at clinical doses have not been systematically explored. This study aims to address these issues, through incorporating rabbit and human I f formulations developed by Fabbri et al. into the Severi et al. model of rabbit SAN cells. A theory was developed to correlate the effect of I f reduction with the total inward depolarising current (I total) during diastolic depolarization. Replacing the rabbit I f formulation with the human one increased the pacemaking cycle length (CL) from 355 to 1,139 ms. With up to 20% I f reduction (a level close to the inhibition of I f by ivabradine at clinical concentrations), a modest increase (~5%) in the pacemaking CL was observed with the rabbit I f formulation; however, the effect was doubled (~12.4%) for the human I f formulation, even though the latter has smaller I f density. When the action of acetylcholine (ACh, 0.1 nM) was considered, a 20% I f reduction markedly increased the pacemaking CL by 37.5% (~27.3% reduction in the pacing rate), which is similar to the ivabradine effect at clinical concentrations. Theoretical analysis showed that the resultant increase of the pacemaking CL is inversely proportional to the magnitude of I total during diastolic depolarization phase: a smaller I f in the model resulted in a smaller I total amplitude, resulting in a slower pacemaking rate; and the same reduction in I f resulted in a more significant change of CL in the cell model with a smaller I total. This explained the mechanism by which a low dose of ivabradine slows pacemaking rate more in humans than in the rabbit. Similar results were seen in the Fabbri et al. model of human SAN cells, suggesting our observations are model-independent. Collectively, the results of study explain why low dose ivabradine at clinically relevant concentrations acts as an effective bradycardic agent in modulating human SAN pacemaking.
Collapse
Affiliation(s)
- Xiangyun Bai
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mark R. Boyett
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Peng Cheng Laboratory, Shenzhen, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Peters CH, Liu PW, Morotti S, Gantz SC, Grandi E, Bean BP, Proenza C. Bidirectional flow of the funny current (I f) during the pacemaking cycle in murine sinoatrial node myocytes. Proc Natl Acad Sci U S A 2021; 118:e2104668118. [PMID: 34260402 PMCID: PMC8285948 DOI: 10.1073/pnas.2104668118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of -30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that β-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Stephanie C Gantz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
10
|
Hoekstra M, van Ginneken ACG, Wilders R, Verkerk AO. HCN4 current during human sinoatrial node-like action potentials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:105-118. [PMID: 34153331 DOI: 10.1016/j.pbiomolbio.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the many studies carried out over the past 40 years, the contribution of the HCN4 encoded hyperpolarization-activated 'funny' current (If) to pacemaker activity in the mammalian sinoatrial node (SAN), and the human SAN in particular, is still controversial and not fully established. OBJECTIVE To study the contribution of If to diastolic depolarization of human SAN cells and its dependence on heart rate, cAMP levels, and atrial load. METHODS HCN4 channels were expressed in human cardiac myocyte progenitor cells (CMPCs) and HCN4 currents assessed using perforated patch-clamp in traditional voltage clamp mode and during action potential clamp with human SAN-like action potential waveforms with 500-1500 ms cycle length, in absence or presence of forskolin to mimic β-adrenergic stimulation and a -15 mV command potential offset to mimic atrial load. RESULTS Forskolin significantly increased the fully-activated HCN4 current density at -140 mV by 14% and shifted the steady-state activation curve by +7.4 mV without affecting its slope. In addition, forskolin significantly accelerated current activation but slowed deactivation. The HCN4 current did not completely deactivate before the subsequent diastolic depolarization during action potential clamp. The amplitude of HCN4 current increased with increasing cycle length, was significantly larger in the presence of forskolin at all cycle lengths, and was significantly increased upon the negative offset to the command potential. CONCLUSIONS If is active during a human SAN action potential waveform and its amplitude is modulated by heart rate, β-adrenergic stimulation, and diastolic voltage range, such that If is under delicate control.
Collapse
Affiliation(s)
- Maaike Hoekstra
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoni C G van Ginneken
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Sehgal S, Patel ND, Malik A, Roop PS, Trew ML. Resonant model-A new paradigm for modeling an action potential of biological cells. PLoS One 2019; 14:e0216999. [PMID: 31116780 PMCID: PMC6530846 DOI: 10.1371/journal.pone.0216999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 11/19/2022] Open
Abstract
Organ level simulation of bioelectric behavior in the body benefits from flexible and efficient models of cellular membrane potential. These computational organ and cell models can be used to study the impact of pharmaceutical drugs, test hypotheses, assess risk and for closed-loop validation of medical devices. To move closer to the real-time requirements of this modeling a new flexible Fourier based general membrane potential model, called as a Resonant model, is developed that is computationally inexpensive. The new model accurately reproduces non-linear potential morphologies for a variety of cell types. Specifically, the method is used to model human and rabbit sinoatrial node, human ventricular myocyte and squid giant axon electrophysiology. The Resonant models are validated with experimental data and with other published models. Dynamic changes in biological conditions are modeled with changing model coefficients and this approach enables ionic channel alterations to be captured. The Resonant model is used to simulate entrainment between competing sinoatrial node cells. These models can be easily implemented in low-cost digital hardware and an alternative, resource-efficient implementations of sine and cosine functions are presented and it is shown that a Fourier term is produced with two additions and a binary shift.
Collapse
Affiliation(s)
- Sucheta Sehgal
- Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Nitish D. Patel
- Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Avinash Malik
- Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Partha S. Roop
- Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Mark L. Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
12
|
van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 2019; 146:dev.173161. [PMID: 30936179 DOI: 10.1242/dev.173161] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 02/03/2023]
Abstract
The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3 +/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3 +/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.
Collapse
Affiliation(s)
- Vincent W W van Eif
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Sonia Stefanovic
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Karel van Duijvenboden
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Bakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Stéphane Zaffran
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Arie O Verkerk
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
13
|
Abstract
In addition to its role as an environmental stressor, scientists have recently demonstrated the potential for heat to be a therapy for improving or mitigating declines in arterial health. Many studies at both ends of the scientific controls spectrum (tightly controlled, experimental vs. practical) have demonstrated the beneficial effects of heating on microvascular function (e.g., reactive hyperemia, cutaneous vascular conductance); endothelial function (e.g., flow-mediated dilation); and arterial stiffness (e.g., pulse-wave velocity, compliance, β-stiffness index). It is important to note that findings of beneficial effects are not unanimous, likely owing to the varied methodology in both heating protocols and assessments of outcome measures. Mechanisms of action for the effects of both acute and chronic heating are also understudied. Heat science is a very promising area of human physiology research, as it has the potential to contribute to approaches addressing the global cardiovascular disease burden, particularly in aging and at risk populations, and those for whom exercise is not feasible or recommended.
Collapse
Affiliation(s)
- Jem L Cheng
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | | |
Collapse
|
14
|
Wilders R, Verkerk AO. Long QT Syndrome and Sinus Bradycardia-A Mini Review. Front Cardiovasc Med 2018; 5:106. [PMID: 30123799 PMCID: PMC6085426 DOI: 10.3389/fcvm.2018.00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Congenital long-QT syndrome (LQTS) is an inherited cardiac disorder characterized by the prolongation of ventricular repolarization, susceptibility to Torsades de Pointes (TdP), and a risk for sudden death. Various types of congenital LQTS exist, all due to specific defects in ion channel-related genes. Interestingly, almost all of the ion channels affected by the various types of LQTS gene mutations are also expressed in the human sinoatrial node (SAN). It is therefore not surprising that LQTS is frequently associated with a change in basal heart rate (HR). However, current data on how the LQTS-associated ion channel defects result in impaired human SAN pacemaker activity are limited. In this mini-review, we provide an overview of known LQTS mutations with effects on HR and the underlying changes in expression and kinetics of ion channels. Sinus bradycardia has been reported in relation to a large number of LQTS mutations. However, the occurrence of both QT prolongation and sinus bradycardia on a family basis is almost completely limited to LQTS types 3 and 4 (LQT3 and Ankyrin-B syndrome, respectively). Furthermore, a clear causative role of this sinus bradycardia in cardiac events seems reserved to mutations underlying LQT3.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
15
|
|
16
|
Fabbri A, Fantini M, Wilders R, Severi S. Computational analysis of the human sinus node action potential: model development and effects of mutations. J Physiol 2017; 595:2365-2396. [PMID: 28185290 PMCID: PMC5374121 DOI: 10.1113/jp273259] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi-DiFrancesco model of rabbit SAN cells. Our model is based on electrophysiological data from isolated human SAN pacemaker cells and closely matches the action potentials and calcium transient that were recorded experimentally. Simulated ion channelopathies explain the clinically observed changes in heart rate in corresponding mutation carriers, providing an independent qualitative validation of the model. The model shows that the modulatory role of the 'funny current' (If ) in the pacing rate of human SAN pacemaker cells is highly similar to that of rabbit SAN cells, despite its considerably lower amplitude. The model may prove useful in the design of experiments and the development of heart-rate modulating drugs. ABSTRACT The sinoatrial node (SAN) is the normal pacemaker of the mammalian heart. Over several decades, a large amount of data on the ionic mechanisms underlying the spontaneous electrical activity of SAN pacemaker cells has been obtained, mostly in experiments on single cells isolated from rabbit SAN. This wealth of data has allowed the development of mathematical models of the electrical activity of rabbit SAN pacemaker cells. The present study aimed to construct a comprehensive model of the electrical activity of a human SAN pacemaker cell using recently obtained electrophysiological data from human SAN pacemaker cells. We based our model on the recent Severi-DiFrancesco model of a rabbit SAN pacemaker cell. The action potential and calcium transient of the resulting model are close to the experimentally recorded values. The model has a much smaller 'funny current' (If ) than do rabbit cells, although its modulatory role is highly similar. Changes in pacing rate upon the implementation of mutations associated with sinus node dysfunction agree with the clinical observations. This agreement holds for both loss-of-function and gain-of-function mutations in the HCN4, SCN5A and KCNQ1 genes, underlying ion channelopathies in If , fast sodium current and slow delayed rectifier potassium current, respectively. We conclude that our human SAN cell model can be a useful tool in the design of experiments and the development of drugs that aim to modulate heart rate.
Collapse
Affiliation(s)
- Alan Fabbri
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”University of BolognaCesenaItaly
| | - Matteo Fantini
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”University of BolognaCesenaItaly
| | - Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Stefano Severi
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”University of BolognaCesenaItaly
| |
Collapse
|
17
|
Abstract
Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.
Collapse
Affiliation(s)
- Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas Marian University College of Osteopathic Medicine, Indianapolis, Indiana
| | | |
Collapse
|
18
|
Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, Passier R, Mummery CL. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 2015; 33:970-9. [PMID: 26192318 DOI: 10.1038/nbt.3271] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
The inability of multipotent cardiovascular progenitor cells (CPCs) to undergo multiple divisions in culture has precluded stable expansion of precursors of cardiomyocytes and vascular cells. This contrasts with neural progenitors, which can be expanded robustly and are a renewable source of their derivatives. Here we use human pluripotent stem cells bearing a cardiac lineage reporter to show that regulated MYC expression enables robust expansion of CPCs with insulin-like growth factor-1 (IGF-1) and a hedgehog pathway agonist. The CPCs can be patterned with morphogens, recreating features of heart field assignment, and controllably differentiated to relatively pure populations of pacemaker-like or ventricular-like cardiomyocytes. The cells are clonogenic and can be expanded for >40 population doublings while retaining the ability to differentiate into cardiomyocytes and vascular cells. Access to CPCs will allow precise recreation of elements of heart development in vitro and facilitate investigation of the molecular basis of cardiac fate determination. This technology is applicable for cardiac disease modeling, toxicology studies and tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Dorien Ward
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Verena Schwach
- Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Bellin
- Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Passier
- Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
19
|
Monfredi O, Boyett MR. Sick sinus syndrome and atrial fibrillation in older persons - A view from the sinoatrial nodal myocyte. J Mol Cell Cardiol 2015; 83:88-100. [PMID: 25668431 DOI: 10.1016/j.yjmcc.2015.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/02/2023]
Abstract
Sick sinus syndrome remains a highly relevant clinical entity, being responsible for the implantation of the majority of electronic pacemakers worldwide. It is an infinitely more complex disease than it was believed when first described in the mid part of the 20th century. It not only involves the innate leading pacemaker region of the heart, the sinoatrial node, but also the atrial myocardium, predisposing to atrial tachydysrhythmias. It remains controversial as to whether the dysfunction of the sinoatrial node directly causes the dysfunction of the atrial myocardium, or vice versa, or indeed whether these two aspects of the condition arise through some related underlying pathological mechanism, such as extracellular matrix remodeling, i.e., fibrosis. This review aims to shed new light on the myriad possible contributing factors in the development of sick sinus syndrome, with a particular focus on the sinoatrial nodal myocyte. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- O Monfredi
- Institute of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| | - M R Boyett
- Institute of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
20
|
Verkerk AO, Wilders R. Pacemaker activity of the human sinoatrial node: an update on the effects of mutations in HCN4 on the hyperpolarization-activated current. Int J Mol Sci 2015; 16:3071-94. [PMID: 25642760 PMCID: PMC4346881 DOI: 10.3390/ijms16023071] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
Since 2003, several loss-of-function mutations in the HCN4 gene, which encodes the HCN4 protein, have been associated with sinus node dysfunction. In human sinoatrial node (SAN), HCN4 is the most abundant of the four isoforms of the HCN family. Tetramers of HCN subunits constitute the ion channels that conduct the hyperpolarization-activated "funny" current (If), which plays an important modulating role in SAN pacemaker activity. Voltage-clamp experiments on HCN4 channels expressed in COS-7, CHO and HEK-293 cells, as well as in Xenopus oocytes have revealed changes in the expression and kinetics of mutant channels, but the extent to which especially the kinetic changes would affect If flowing during a human SAN action potential often remains unresolved. In our contribution to the Topical Collection on Human Single Nucleotide Polymorphisms and Disease Diagnostics, we provide an updated review of the mutation-induced changes in the expression and kinetics of HCN4 channels and provide an overview of their effects on If during the time course of a human SAN action potential, as assessed in simulated action potential clamp experiments. Future research may solve apparent inconsistencies between data from clinical studies and data from in vitro and in silico experiments.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Herrmann S, Schnorr S, Ludwig A. HCN channels--modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16:1429-47. [PMID: 25580535 PMCID: PMC4307311 DOI: 10.3390/ijms16011429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.
Collapse
Affiliation(s)
- Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Sabine Schnorr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
22
|
Verkerk AO, Wilders R. Pacemaker activity of the human sinoatrial node: effects of HCN4 mutations on the hyperpolarization-activated current. Europace 2014; 16:384-95. [PMID: 24569893 DOI: 10.1093/europace/eut348] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The hyperpolarization-activated 'funny' current, If, plays an important modulating role in the pacemaker activity of the human sinoatrial node (SAN). If is carried by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are tetramers built of four HCN subunits. In human SAN, HCN4 is the most abundant of the four isoforms of the HCN family. Since 2003, several loss-of-function mutations in the HCN4 gene, which encodes the HCN4 protein, or in the KCNE2 gene, which encodes the MiRP1 accessory β-subunit, have been associated with sinus node dysfunction. Voltage-clamp experiments on HCN4 channels expressed in COS-7 cells, Xenopus oocytes, or HEK-293 cells have revealed changes in the expression and kinetics of mutant channels, but the extent to which these changes would affect If flowing during a human SAN action potential is unresolved. Here, we review the changes in expression and kinetics of HCN4 mutant channels and provide an overview of their effects on If during the time course of a human SAN action potential, both under resting conditions and upon adrenergic stimulation. These effects are assessed in simulated action potential clamp experiments, with action potentials recorded from isolated human SAN pacemaker cells as command potential and kinetics of If based on voltage-clamp data from these cells. Results from in vitro and in silico experiments show several inconsistencies with clinical observations, pointing to challenges for future research.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR. HCN4 Mutations in Multiple Families With Bradycardia and Left Ventricular Noncompaction Cardiomyopathy. J Am Coll Cardiol 2014; 64:745-56. [DOI: 10.1016/j.jacc.2014.05.045] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
|
24
|
Abstract
Efforts to use gene therapy to create a biological pacemaker as an adjunct or replacement of electronic pacemakers have been ongoing for about 15 years. For the past decade, most of these efforts have focused on the hyperpolarization-activated cyclic nucleotide gated-(HCN) gene family of channels alone or in combination with other genes. The HCN gene family is the molecular correlate of the cardiac pacemaker current, If. It is a suitable basis for a biological pacemaker because it generates a depolarizing inward current primarily during diastole and is directly regulated by cyclic adenosine monophosphate (cAMP), thereby incorporating autonomic responsiveness. However, biological pacemakers based either on native HCN channels or on mutated HCN channels designed to optimize biophysical characteristics have failed to attain the desired basal and maximal physiological heart rates in large animals. More recent work has explored dual gene therapy approaches, combining an HCN variant with another gene to reduce outward current, increase an additional inward current, or enhance cAMP synthesis. Several of these dual gene therapy approaches have demonstrated appropriate basal and maximal heart rates with little or no reliance on a backup electronic pacemaker during the period of study. Future research, besides examining the efficacy of other gene combinations, will need to consider the additional issues of safety and persistence of the viral vectors often used to deliver these genes to a specific cardiac region.
Collapse
Affiliation(s)
- Gerard J. J. Boink
- Heart Center, Department of Clinical & Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Heart Institute, ICIN, Utrecht, the Netherlands
| | - Richard B. Robinson
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J Gastroenterol 2014; 49:1001-10. [PMID: 23780559 PMCID: PMC4048466 DOI: 10.1007/s00535-013-0849-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/05/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hyperpolarization-activated cyclic nucleotide (HCN) channels are pacemaker channels that regulate heart rate and neuronal rhythm in spontaneously active cardiac and neuronal cells. Interstitial cells of Cajal (ICCs) are also spontaneously active pacemaker cells in the gastrointestinal tract. Here, we investigated the existence of HCN channel and its role on pacemaker activity in colonic ICCs. METHODS We performed whole-cell patch clamp, RT-PCR, and Ca(2+)-imaging in cultured ICCs from mouse mid colon. RESULTS SQ-22536 and dideoxyadenosine (adenylate cyclase inhibitors) decreased the frequency of pacemaker potentials, whereas both rolipram (cAMP-specific phosphodiesterase inhibitor) and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. CsCl, ZD7288, zatebradine, clonidine (HCN channel blockers), and genistein (a tyrosine kinase inhibitor) suppressed the pacemaker activity. RT-PCR revealed expression of HCN1 and HCN3 channels in c-kit and Ano1 positive colonic ICCs. In recordings of spontaneous intracellular Ca(2+) [Ca(2+)]i oscillations, rolipram and 8-bromo-cAMP increased [Ca(2+)]i oscillations, whereas SQ-22536, CsCl, ZD7288, and genistein decreased [Ca(2+)]i oscillations. CONCLUSIONS HCN channels in colonic ICCs are tonically activated by basal cAMP production and participate in regulation of pacemaking activity.
Collapse
|
26
|
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ. Chloride channelopathies of ClC-2. Int J Mol Sci 2013; 15:218-49. [PMID: 24378849 PMCID: PMC3907807 DOI: 10.3390/ijms15010218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022] Open
Abstract
Chloride channels (ClCs) have gained worldwide interest because of their molecular diversity, widespread distribution in mammalian tissues and organs, and their link to various human diseases. Nine different ClCs have been molecularly identified and functionally characterized in mammals. ClC-2 is one of nine mammalian members of the ClC family. It possesses unique biophysical characteristics, pharmacological properties, and molecular features that distinguish it from other ClC family members. ClC-2 has wide organ/tissue distribution and is ubiquitously expressed. Published studies consistently point to a high degree of conservation of ClC-2 function and regulation across various species from nematodes to humans over vast evolutionary time spans. ClC-2 has been intensively and extensively studied over the past two decades, leading to the accumulation of a plethora of information to advance our understanding of its pathophysiological functions; however, many controversies still exist. It is necessary to analyze the research findings, and integrate different views to have a better understanding of ClC-2. This review focuses on ClC-2 only, providing an analytical overview of the available literature. Nearly every aspect of ClC-2 is discussed in the review: molecular features, biophysical characteristics, pharmacological properties, cellular function, regulation of expression and function, and channelopathies.
Collapse
Affiliation(s)
- Miao Miao Bi
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Sen Hong
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Yan Zhou
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Wei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Li Na Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Ya Juan Zheng
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| |
Collapse
|
27
|
Hyperpolarization-activated current, If, in mathematical models of rabbit sinoatrial node pacemaker cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:872454. [PMID: 23936852 PMCID: PMC3722861 DOI: 10.1155/2013/872454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/31/2013] [Indexed: 01/01/2023]
Abstract
A typical feature of sinoatrial (SA) node pacemaker cells is the presence of an ionic current that activates upon hyperpolarization. The role of this hyperpolarization-activated current, If, which is also known as the “funny current” or “pacemaker current,” in the spontaneous pacemaker activity of SA nodal cells remains a matter of intense debate. Whereas some conclude that If plays a fundamental role in the generation of pacemaker activity and its rate control, others conclude that the role of If is limited to a modest contribution to rate control. The ongoing debate is often accompanied with arguments from computer simulations, either to support one's personal view or to invalidate that of the antagonist. In the present paper, we review the various mathematical descriptions of If that have been used in computer simulations and compare their strikingly different characteristics with our experimental data. We identify caveats and propose a novel model for If based on our experimental data.
Collapse
|
28
|
Burt R, Graves BM, Gao M, Li C, Williams DL, Fregoso SP, Hoover DB, Li Y, Wright GL, Wondergem R. 9-Phenanthrol and flufenamic acid inhibit calcium oscillations in HL-1 mouse cardiomyocytes. Cell Calcium 2013; 54:193-201. [PMID: 23831210 DOI: 10.1016/j.ceca.2013.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/27/2013] [Accepted: 06/09/2013] [Indexed: 11/17/2022]
Abstract
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a "Ca2+ clock" controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca(2+)-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130-150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.
Collapse
Affiliation(s)
- Rees Burt
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
De Santis V, Vitale D, Santoro A, Magliocca A, Porto AG, Nencini C, Tritapepe L. Ivabradine: potential clinical applications in critically ill patients. Clin Res Cardiol 2013; 102:171-8. [PMID: 23064879 DOI: 10.1007/s00392-012-0516-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022]
Abstract
It has been extensively demonstrated that an elevated heart rate is a modifiable, independent risk factor for cardiovascular events. A high heart rate increases myocardial oxygen consumption and reduces diastolic perfusion time. It can also increase ventricular diastolic pressures and induce ventricular arrhythmias. Critical care patients are prone to develop a stress induced cardiac impairment and consequently an increase in sympathetic tone. This in turn increases heart rate. In this setting, however, heart rate lowering might be difficult because the effects of inotropic drugs could be hindered by heart rate reducing drugs like beta-blockers. Ivabradine is a new selective antagonist of funny channels. It lowers heart rate, reducing the diastolic depolarization slope. Moreover, ivabradine is not active on sympathetic pathways, thus avoiding any interference with inotropic amines. We reviewed the literature available regarding heart rate control in critical care patients, focusing our interest on the use of ivabradine to assess the potential benefits of the drug in this particular setting.
Collapse
Affiliation(s)
- Vincenzo De Santis
- Department of Anesthesiology and Intensive Care, Azienda USL di Ravenna, Viale Randi 5, 48121, Ravenna, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Calcium transient and sodium-calcium exchange current in human versus rabbit sinoatrial node pacemaker cells. ScientificWorldJournal 2013; 2013:507872. [PMID: 23606816 PMCID: PMC3621208 DOI: 10.1155/2013/507872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/07/2013] [Indexed: 01/01/2023] Open
Abstract
There is an ongoing debate on the mechanism underlying the pacemaker activity of sinoatrial node (SAN) cells, focusing on the relative importance of the “membrane clock” and the “Ca2+ clock” in the generation of the small net membrane current that depolarizes the cell towards the action potential threshold. Specifically, the debate centers around the question whether the membrane clock-driven hyperpolarization-activated current, If, which is also known as the “funny current” or “pacemaker current,” or the Ca2+ clock-driven sodium-calcium exchange current, INaCa, is the main contributor to diastolic depolarization. In our contribution to this journal's “Special Issue on Cardiac Electrophysiology,” we present a numerical reconstruction of If and
INaCa in isolated rabbit and human SAN pacemaker cells based on experimental data on action potentials, If, and intracellular calcium concentration ([Ca2+]i) that we have acquired from these cells. The human SAN pacemaker cells have a smaller If, a weaker [Ca2+]i transient, and a smaller INaCa than the rabbit cells. However, when compared to the diastolic net membrane current, INaCa is of similar size in human and rabbit SAN pacemaker cells, whereas If is smaller in human than in rabbit cells.
Collapse
|
31
|
Abstract
The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.
Collapse
Affiliation(s)
- Ehsan Khan
- Florence Nightingale School of Nursing and Midwifery, King's College London, London, UK.
| | | | | |
Collapse
|
32
|
Papaioannou VE, Verkerk AO, Amin AS, de Bakker JMT. Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr Cardiol Rev 2013; 9:82-96. [PMID: 22920474 PMCID: PMC3584310 DOI: 10.2174/157340313805076359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/21/2012] [Accepted: 07/29/2012] [Indexed: 01/23/2023] Open
Abstract
Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called 'funny' current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling.
Collapse
Affiliation(s)
- Vasilios E Papaioannou
- Democritus University of Thrace, Alexandroupolis University Hospital, Intensive Care Unit, Alexandroupolis Medical School, Dragana 68100, Greece.
| | | | | | | |
Collapse
|
33
|
Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S. Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart. Br J Pharmacol 2012; 166:2117-35. [PMID: 22356456 DOI: 10.1111/j.1476-5381.2012.01914.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (I(f) ), T-type and L-type Ca²⁺ currents (I(Ca,T) and I(Ca,L) , respectively), and slowly activating delayed rectifier K⁺ current (I(Ks) ), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12-0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased I(f) , I(Ca,T) , I(Ca,L) and I(Ks) by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on I(f) , I(Ca,T) and I(Ca,L) . These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Sinus node disease (SND) is a common clinical condition and is the most common indication for permanent pacemaker implantation. This review aims to revisit the complex sinus node anatomy, the evolving understanding of its pacemaking mechanisms, the atrial myopathy in SND and sinus node remodeling. RECENT FINDINGS Recent high-density noncontact mapping of the human sinus node showed multiple origins of sinus activation and exit sites with preferential pathways of conduction. Perhaps, a newly described discrete paranodal area containing a molecular mixture of nodal and atrial cells may account for this long recognized discrepancy between the anatomical and functional sinus node. The funny current (I(f)) driven 'membrane clock' is not solely responsible for sinus node automaticity, following recent recognition of the importance of the 'calcium clock'. Several molecular links to sinus node remodeling have recently been identified: loss of connexin-43 expression and down-regulation of I(ca,L) in aging; reduced I(f) and down-regulation of I(f) encoding HCN4 and HCN2 subunits in heart failure; and calcium clock malfunction with down-regulated HCN4, HCN2 and minK in atrial fibrillation. SUMMARY Ongoing research with improved technology and techniques continues to unravel new understandings and challenges to the century old discovery of the anatomical sinus node.
Collapse
|
35
|
Hofmann F, Fabritz L, Stieber J, Schmitt J, Kirchhof P, Ludwig A, Herrmann S. Ventricular HCN channels decrease the repolarization reserve in the hypertrophic heart. Cardiovasc Res 2012; 95:317-26. [PMID: 22652004 DOI: 10.1093/cvr/cvs184] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiac hypertrophy is accompanied by reprogramming of gene expression, where the altered expression of ion channels decreases electrical stability and increases the risk of life-threatening arrhythmias. However, the underlying mechanisms are not fully understood. Here, we analysed the role of the depolarizing current I(f) which has been hypothesized to contribute to arrhythmogenesis in the hypertrophied ventricle. METHODS AND RESULTS We used transverse aortic constriction in mice to induce ventricular hypertrophy. This resulted in an increased number of I(f) positive ventricular myocytes as well as a strongly enhanced and accelerated I(f) when compared with controls. Of the four HCN (hyperpolarization-activated cyclic nucleotide-gated channels) isoforms mediating I(f), HCN2 and HCN4 were the predominantly expressed subunits in healthy as well as hypertrophied hearts. Unexpectedly, only the HCN1 transcript was significantly upregulated in response to hypertrophy. However, the combined deletion of HCN2 and HCN4 disrupted ventricular I(f) completely. The lack of I(f) in hypertrophic double-knockouts resulted in a strong attenuation of pro-arrhythmogenic parameters characteristically observed in hypertrophic hearts. In particular, prolongation of the action potential was significantly decreased and lengthening of the QT interval was reduced. CONCLUSIONS We suggest that the strongly increased HCN channel activity in hypertrophied myocytes prolongs the repolarization of the ventricular action potential and thereby may increase the arrhythmogenic potential. Our results provide for the first time a direct link between an upregulation of ventricular I(f) and a diminished repolarization reserve in cardiac hypertrophy.
Collapse
Affiliation(s)
- Florian Hofmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
He P, Deng J, Zhong X, Zhou Z, Song B, Li L. Identification of a hyperpolarization-activated cyclic nucleotide-gated channel and its subtypes in the urinary bladder of the rat. Urology 2012; 79:1411.e7-13. [PMID: 22446339 DOI: 10.1016/j.urology.2012.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/23/2011] [Accepted: 01/23/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the distribution and effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and its isoforms in bladder, especially in bladder interstitial cells of Cajal (ICC). METHODS Four HCN isoforms were detected in bladder tissue from rats using reverse transcription-polymerase chain reaction and Western blotting. The HCN1 subtype was observed in bladder ICCs by double-labeled fluorescence. The effect of the HCN blocker, ZD7288, was investigated using the bladder smooth muscle strip test. RESULTS HCN1-4 isoforms were all identified in bladder ICCs using reverse transcription-polymerase chain reaction and Western blotting. Based on our semiquantitative analysis, HCN1 was found to be the most prominent isoform. The expression of HCN1 was confirmed in bladder ICCs by double-labeled fluorescence through colabeling of HCN1 and kit (CD117). ZD7288 significantly decreased the bladder excitation. CONCLUSION All 4 HCN channel isoforms exist in the bladder, and they affect the bladder excitation, presumably via bladder ICCs.
Collapse
Affiliation(s)
- Peng He
- Institute of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
37
|
Robinson RB. The long and short of calcium-dependent automaticity in the sinoatrial node. Am J Physiol Heart Circ Physiol 2011; 300:H31-2. [DOI: 10.1152/ajpheart.01083.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Richard B. Robinson
- Department of Pharmacology and Center for Molecular Therapeutics, Columbia University, New York, New York
| |
Collapse
|
38
|
Xu X, Vysotskaya ZV, Liu Q, Zhou L. Structural basis for the cAMP-dependent gating in the human HCN4 channel. J Biol Chem 2010; 285:37082-91. [PMID: 20829353 PMCID: PMC2978636 DOI: 10.1074/jbc.m110.152033] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/08/2010] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cAMP-regulated (HCN) channels play important physiological roles in both cardiovascular and central nervous systems. Among the four HCN isoforms, HCN2 and HCN4 show high expression levels in the human heart, with HCN4 being the major cardiac isoform. The previously published crystal structure of the mouse HCN2 (mHCN2) C-terminal fragment, including the C-linker and the cyclic-nucleotide binding domain (CNBD), has provided many insights into cAMP-dependent gating in HCN channels. However, structures of other mammalian HCN channel isoforms have been lacking. Here we used a combination of approaches including structural biology, biochemistry, and electrophysiology to study cAMP-dependent gating in HCN4 channel. First we solved the crystal structure of the C-terminal fragment of human HCN4 (hHCN4) channel at 2.4 Å. Overall we observed a high similarity between mHCN2 and hHCN4 crystal structures. Functional comparison between two isoforms revealed that compared with mHCN2, the hHCN4 protein exhibited marked different contributions to channel function, such as a ∼3-fold reduction in the response to cAMP. Guided by structural differences in the loop region between β4 and β5 strands, we identified residues that could partially account for the differences in response to cAMP between mHCN2 and hHCN4 proteins. Moreover, upon cAMP binding, the hHCN4 C-terminal protein exerts a much prolonged effect in channel deactivation that could have significant physiological contributions.
Collapse
Affiliation(s)
- Xinping Xu
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Zhanna V. Vysotskaya
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qinglian Liu
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Zhou
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
39
|
Optical mapping of the isolated coronary-perfused human sinus node. J Am Coll Cardiol 2010; 56:1386-94. [PMID: 20946995 DOI: 10.1016/j.jacc.2010.03.098] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/25/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVES We sought to confirm our hypothesis that the human sinoatrial node (SAN) is functionally insulated from the surrounding atrial myocardium except for several exit pathways that electrically bridge the nodal tissue and atrial myocardium. BACKGROUND The site of origin and pattern of excitation within the human SAN has not been directly mapped. METHODS The SAN was optically mapped in coronary-perfused preparations from nonfailing human hearts (n = 4, age 54 ± 15 years) using the dye Di-4-ANBDQBS and blebbistatin. The SAN 3-dimensional structure was reconstructed using histology. RESULTS Optical recordings from the SAN had diastolic depolarization and multiple upstroke components, which corresponded to the separate excitations of the SAN and atrial layers. Excitation originated in the middle of the SAN (66 ± 17 beats/min), and then spread slowly (1 to 18 cm/s) and anisotropically. After a 82 ± 17 ms conduction delay within the SAN, the atrial myocardium was excited via superior, middle, and/or inferior sinoatrial conduction pathways. Atrial excitation was initiated 9.4 ± 4.2 mm from the leading pacemaker site. The oval 14.3 ± 1.5 mm × 6.7 ± 1.6 mm × 1.0 ± 0.2 mm SAN structure was functionally insulated from the atrium by connective tissue, fat, and coronary arteries, except for these pathways. CONCLUSIONS These data demonstrated for the first time, to our knowledge, the location of the leading SAN pacemaker site, the pattern of excitation within the human SAN, and the conduction pathways into the right atrium. The existence of these pathways explains why, even during normal sinus rhythm, atrial breakthroughs could arise from a region parallel to the crista terminalis that is significantly larger (26.1 ± 7.9 mm) than the area of the anatomically defined SAN.
Collapse
|
40
|
Wondergem R, Graves BM, Ozment-Skelton TR, Li C, Williams DL. Lipopolysaccharides directly decrease Ca2+ oscillations and the hyperpolarization-activated nonselective cation current If in immortalized HL-1 cardiomyocytes. Am J Physiol Cell Physiol 2010; 299:C665-71. [PMID: 20573997 DOI: 10.1152/ajpcell.00129.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipopolysaccharide (LPS) has been implicated in sepsis-mediated heart failure and chronic cardiac myopathies. We determined that LPS directly and reversibly affects cardiac myocyte function by altering regulation of intracellular Ca2+ concentration ([Ca2+]i) in immortalized cardiomyocytes, HL-1 cells. [Ca2+]i oscillated (<0.4 Hz), displaying slow and transient components. LPS (1 microg/ml), derived either from Escherichia coli or from Salmonella enteritidis, reversibly abolished Ca2+ oscillations and decreased basal [Ca2+]i by 30-40 nM. HL-1 cells expressed Toll-like receptors, i.e., TLR-2 and TLR-4. Thus, we differentiated effects of LPS on [Ca2+]i and Ca2+ oscillations by addition of utlrapure LPS, a TLR-4 ligand. Ultrapure LPS had no effect on basal [Ca2+]i, but it reduced the rate of Ca2+ oscillations. Interestingly, Pam3CSK4, a TLR-2 ligand, affected neither Ca2+ parameter, and the effect of ultrapure LPS and Pam3CSK4 combined was similar to that of utlrapure LPS alone. Thus, unpurified LPS directly inhibits HL-1 calcium metabolism via TLR-4 and non-TLR-4-dependent mechanisms. Since others have shown that endotoxin impairs the hyperpolarization-activated, nonselective cationic pacemaker current (I(f)), which is expressed in HL-1 cells, we utilized whole cell voltage-clamp techniques to demonstrate that LPS (1 microg/ml) reduced I(f) in HL-1 cells. This inhibition was marginal at physiologic membrane potentials and significant at very negative potentials (P < 0.05 at -140, -150, and -160 mV). So, we also evaluated effects of LPS on tail currents of fully activated I(f). LPS reduced the slope conductance of the tail currents from 498 +/- 140 pS/pF to 223 +/- 65 pS/pF (P < 0.05) without affecting reversal potential of -11 mV. Ultrapure LPS had similar effect on I(f), whereas Pam3CSK4 had no effect on I(f). We conclude that LPS inhibits activation of I(f), enhances its deactivation, and impairs regulation of [Ca2+]i in HL-1 cardiomyocytes via TLR-4 and other mechanisms.
Collapse
Affiliation(s)
- Robert Wondergem
- Dept. of Physiology, James H. Quillen College of Medicine, East Tennessee State Univ., P. O. Box 70576, Johnson City, TN 37614-1708, USA.
| | | | | | | | | |
Collapse
|
41
|
Relative importance of funny current in human versus rabbit sinoatrial node. J Mol Cell Cardiol 2010; 48:799-801; author reply 802-3. [DOI: 10.1016/j.yjmcc.2009.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/16/2009] [Indexed: 01/01/2023]
|
42
|
Efimov IR, Fedorov VV, Joung B, Lin SF. Mapping cardiac pacemaker circuits: methodological puzzles of the sinoatrial node optical mapping. Circ Res 2010; 106:255-71. [PMID: 20133911 DOI: 10.1161/circresaha.109.209841] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Historically, milestones in science are usually associated with methodological breakthroughs. Likewise, the advent of electrocardiography, microelectrode recordings and more recently optical mapping have ushered in new periods of significance of advancement in elucidating basic mechanisms in cardiac electrophysiology. As with any novel technique, however, data interpretation is challenging and should be approached with caution, as it cannot be simply extrapolated from previously used methodologies and with experience and time eventually becomes validated. A good example of this is the use of optical mapping in the sinoatrial node (SAN): when microelectrode and optical recordings are obtained from the same site in myocardium, significantly different results may be noted with respect to signal morphology and as a result have to be interpreted by a different set of principles. Given the rapid spread of the use of optical mapping, careful evaluation must be made in terms of methodology with respect to interpretation of data gathered by optical sensors from fluorescent potential-sensitive dyes. Different interpretations of experimental data may lead to different mechanistic conclusions. This review attempts to address the origin and interpretation of the "double component" morphology in the optical action potentials obtained from the SAN region. One view is that these 2 components represent distinctive signals from the SAN and atrial cells and can be fully separated with signal processing. A second view is that the first component preceding the phase 0 activation represents the membrane currents and intracellular calcium transients induced diastolic depolarization from the SAN. Although the consensus from both groups is that ionic mechanisms, namely the joint action of the membrane and calcium automaticity, are important in the SAN function, it is unresolved whether the double-component originates from the recording methodology or represents the underlying physiology. This overview aims to advance a common understanding of the basic principles of optical mapping in complex 3D anatomic structures.
Collapse
Affiliation(s)
- Igor R Efimov
- Department of Biomedical Engineering, Washington University, One Brookings Dr, St Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
43
|
Verkerk AO, den Ruijter HM, Bourier J, Boukens BJ, Brouwer IA, Wilders R, Coronel R. Dietary fish oil reduces pacemaker current and heart rate in rabbit. Heart Rhythm 2009; 6:1485-92. [DOI: 10.1016/j.hrthm.2009.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022]
|