1
|
Götzinger F, Kunz M, Lauder L, Böhm M, Mahfoud F. New ways of mitigating aldosterone in cardiorenal disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:557-565. [PMID: 38986505 DOI: 10.1093/ehjcvp/pvae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Steroidal mineralocorticoid receptor antagonists (MRAs) bind to the mineralocorticoid receptor and antagonize the effects of aldosterone, which contributes to the development and progression of cardio- and renovascular diseases. Guidelines recommend steroidal MRAs in patients with heart failure with reduced or mildly reduced ejection fraction, as they reduce morbidity and mortality. In heart failure with preserved ejection fraction, MRAs have not convincingly shown to improve prognosis. Steroidal MRAs delay the progression of chronic kidney disease, reduce proteinuria and lower blood pressure in resistant hypertension but can induce hyperkalaemia. Due to their limited selectivity to the mineralocorticoid receptor, steroidal MRAs can cause significant adverse effects, i.e. libido loss, erectile dysfunction, gynaecomastia, and amenorrhoea, leading to low rates of persistance. Against this background, new avenues for developing non-steroidal, selective (ns)MRAs and aldosterone-synthase inhibitors have been taken. Finerenone has been shown to delay the progression of diabetic nephropathy and lower the incidence of heart failure hospitalizations in patients with chronic kidney disease and diabetes compared with placebo. Finerenone has therefore been recommended by the 2023 European Society of Cardiology Guidelines for the management of diabetes in patients with type 2 diabetes and chronic kidney disease. Further randomized controlled trials assessing the safety and effectiveness of finerenone in patients with heart failure are currently ongoing. Esaxerenone provides antihypertensive effects and has been approved for the treatment of hypertension in Japan. Baxdrostat and lorundostat, novel selective aldosterone-synthase inhibitors, are currently under investigation. In phase II trials, baxdrostat and lorundostat were safe and effective in lowering blood pressure in resistant hypertension. In this review, we summarize and critically discuss the evidence for new drugs mitigating aldosterone in heart failure, hypertension, and chronic kidney disease.
Collapse
Affiliation(s)
- Felix Götzinger
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Homburg University Hospital, Saarland University, Kirrberger Str. 100, Homburg 66424, Germany
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Am Petersgraben 4, Basel 4031, Switzerland
| | - Michael Kunz
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Homburg University Hospital, Saarland University, Kirrberger Str. 100, Homburg 66424, Germany
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Am Petersgraben 4, Basel 4031, Switzerland
| | - Lucas Lauder
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Homburg University Hospital, Saarland University, Kirrberger Str. 100, Homburg 66424, Germany
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Am Petersgraben 4, Basel 4031, Switzerland
| | - Michael Böhm
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Homburg University Hospital, Saarland University, Kirrberger Str. 100, Homburg 66424, Germany
| | - Felix Mahfoud
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Homburg University Hospital, Saarland University, Kirrberger Str. 100, Homburg 66424, Germany
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Am Petersgraben 4, Basel 4031, Switzerland
| |
Collapse
|
2
|
Wessel N, Kim JS, Joung BY, Ko YG, Dischl D, Gapelyuk A, Lee YH, Kim KW, Park JW, Landmesser U. Magnetocardiography at rest predicts cardiac death in patients with acute chest pain. Front Cardiovasc Med 2023; 10:1258890. [PMID: 38155993 PMCID: PMC10752986 DOI: 10.3389/fcvm.2023.1258890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Sudden cardiac arrest is a major cause of morbidity and mortality worldwide and remains a major public health problem for which better non-invasive prediction tools are needed. Primary preventive therapies, such as implantable cardioverter defibrillators, are not personalized and not predictive. Most of these devices do not deliver life-saving therapy during their lifetime. The individual relationship between fatal arrhythmias and cardiac function abnormalities in predicting cardiac death risk has rarely been explored. Methods We retrospectively analyzed the measurements at rest for 191 patients with acute chest pain (ACP) magnetocardiographically. Our recently introduced analyses are able to detect inhomogeneities of the depolarization and repolarization. Moreover, electrically silent phenomena-intracellular ionic currents as well as vortex currents-can be measured and quantified. All included ACP patients were recruited in 2009 at Yonsei University Hospital and were followed up until 2022. Results During half of the follow-up period (6.5 years), 11 patients died. Out of all the included nine clinical, eight magnetocardiographical, and nine newly introduced magnetoionographical parameters we tested in this study, three parameters revealed themselves to be outstanding at predicting death: heart rate-corrected QT (QTc) prolongation, depression of repolarization current IKr + IKs, and serum creatinine (all significant in Cox regression, p < 0.05). They clearly predicted cardiac death over the 6.5 years duration (sensitivity 90.9%, specificity 85.6%, negative predictive accuracy 99.4%). Cardiac death risk was more than ninefold higher in patients with low repolarization reserve and QTc prolongation in comparison with the remaining patients with ACP (p < 0.001). The non-parametric Kaplan-Meier statistics estimated significantly lower survival functions from their lifetime data (p < 0.001). Discussion To the best of our knowledge, these are the first data linking magnetocardiographical and magnetoionographical parameters and subsequent significant fatal events in people, suggesting structural and functional components to clinical life-threatening ventricular arrhythmogenesis. The findings support investigation of new prevention strategies and herald those new non-invasive techniques as complementary risk stratification tools.
Collapse
Affiliation(s)
- N. Wessel
- Department of Human Medicine, MSB Medical School Berlin GmbH, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany
| | - J. S. Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - B. Y. Joung
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y. G. Ko
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D. Dischl
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A. Gapelyuk
- Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Y. H. Lee
- Center for Biosignals, KRISS Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - K. W. Kim
- Center for Biosignals, KRISS Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - J. W. Park
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - U. Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Terock J, Hannemann A, Klinger-König J, Janowitz D, Grabe HJ, Murck H. The neurobiology of childhood trauma-aldosterone and blood pressure changes in a community sample. World J Biol Psychiatry 2022; 23:622-630. [PMID: 34906037 DOI: 10.1080/15622975.2021.2018724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Childhood trauma is an important risk factor for the onset and course of psychiatric disorders and particularly major depression. Recently, the renin-angiotensin-aldosterone system, one of the core stress hormone systems, has been demonstrated to be modified by childhood trauma. METHODS Childhood trauma was obtained using the Childhood Trauma Questionnaire (CTQ) in a community-dwelling sample (N = 2038). Plasma concentrations of renin and aldosterone were measured in subjects with childhood trauma (CT; N = 385) vs. subjects without this experience (NoCT; N = 1653). Multivariable linear regression models were calculated to assess the associations between CTQ, systolic and diastolic blood pressure, renin and aldosterone concentrations, and the ratio of aldosterone and systolic blood pressure (A/SBP). RESULTS CT subjects demonstrated higher plasma aldosterone (A) concentrations, a lower systolic and diastolic blood pressure, and a higher A/SBP. In addition, both aldosterone concentrations, as well as A/SBP, correlated with the severity of childhood trauma. These findings could not be attributed to differences in concomitant medication. CONCLUSIONS In conclusion, childhood trauma was associated with neurobiological markers, which may impact the risk for psychiatric disorders, primarily major depression. The altered A/SBP ratio points to a desensitisation of peripheral mineralocorticoid receptor function, which may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| | - Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Murck-Neuroscience LLC, Westfield, NJ, USA
| |
Collapse
|
4
|
A Review of the Molecular Mechanisms Underlying Cardiac Fibrosis and Atrial Fibrillation. J Clin Med 2021; 10:jcm10194430. [PMID: 34640448 PMCID: PMC8509789 DOI: 10.3390/jcm10194430] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
The cellular and molecular mechanism involved in the pathogenesis of atrial fibrosis are highly complex. We have reviewed the literature that covers the effectors, signal transduction and physiopathogenesis concerning extracellular matrix (ECM) dysregulation and atrial fibrosis in atrial fibrillation (AF). At the molecular level: angiotensin II, transforming growth factor-β1, inflammation, and oxidative stress are particularly important for ECM dysregulation and atrial fibrotic remodelling in AF. We conclude that the Ang-II-MAPK and TGF-β1-Smad signalling pathways play a major, central role in regulating atrial fibrotic remodelling in AF. The above signalling pathways induce the expression of genes encoding profibrotic molecules (MMP, CTGF, TGF-β1). An important mechanism is also the generation of reactive oxygen species. This pathway induced by the interaction of Ang II with the AT2R receptor and the activation of NADPH oxidase. Additionally, the interplay between cardiac MMPs and their endogenous tissue inhibitors of MMPs, is thought to be critical in atrial ECM metabolism and fibrosis. We also review recent evidence about the role of changes in the miRNAs expression in AF pathophysiology and their potential as therapeutic targets. Furthermore, keeping the balance between miRNA molecules exerting anti-/profibrotic effects is of key importance for the control of atrial fibrosis in AF.
Collapse
|
5
|
Cao X, Aimoto M, Nagasawa Y, Zhang HX, Zhang CS, Takahara A. Electrophysiological Response to Acehytisine Was Modulated by Aldosterone in Rats with Aorto-Venocaval Shunts. Biol Pharm Bull 2021; 44:1044-1049. [PMID: 34078775 DOI: 10.1248/bpb.b20-00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldosterone induces cardiac electrical and structural remodeling, which leads to the development of heart failure and/or atrial fibrillation (AF). However, it remains unknown whether aldosterone-induced remodeling may modulate the efficacy of anti-AF drugs. In this study, we aimed to jeopardize the structural and functional remodeling by aldosterone in rats with aorto-venocaval shunts (AVS rats) and evaluate the effect of acehytisine in this model. An AVS operation was performed on rats (n = 6, male) and it was accompanied by the intraperitoneal infusion of aldosterone (AVS + Ald) at 2.0 µg/h for 28 d. The cardiopathy was characterized by echocardiography, electrophysiologic and hemodynamic testing, and morphometric examination in comparison with sham-operated rats (n = 3), sham + Ald (n = 6), and AVS (n = 5). Aldosterone accelerated the progression from asymptomatic heart failure to overt heart failure and induced sustained AF resistant to electrical fibrillation in one out of six rats. In addition, it prolonged PR, QT interval and Wenckebach cycle length. Acehytisine failed to suppress AF in the AVS + Ald rats. In conclusion, aldosterone jeopardized electrical remodeling and blunted the electrophysiological response to acehytisine on AF.
Collapse
Affiliation(s)
- Xin Cao
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Han-Xiao Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
6
|
Interplay of pro-inflammatory cytokines, pro-inflammatory microparticles and oxidative stress and recurrent ventricular arrhythmias in elderly patients after coronary stent implantations. Cytokine 2020; 137:155345. [PMID: 33137563 DOI: 10.1016/j.cyto.2020.155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The roles of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress were unknown in elderly patients with recurrent ventricular arrhythmias (VA). We evaluated whether cross talk between oxidative stress, pro-inflammatory microparticles, and pro-inflammatory cytokines play the roles in elderly patients with recurrent VA after coronary stenting. This research sought to investigate the effects of oxidative stress, pro-inflammatory microparticles, and pro-inflammatory cytokines on recurrent VA in elderly patients after coronary stenting. METHODS In this study, we included 613 consecutive elderly patients with recurrent ventricular arrhythmias induced by coronary reocclusions after coronary stenting. We measured CD31+ endothelial microparticle (CD31+EMP), CD62E+ endothelial microparticle (CD62E+EMP), high-sensitivity C-reactive protein (hs-CRP), aldosterone (ALD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor receptor-1 (sTNFR-1) and soluble tumor necrosis factor receptor-2 (sTNFR-2) in elderly patients with recurrent VA and assessed impacts of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress on recurrent VA in elderly patients after coronary stenting. RESULTS The levels of CD31+EMP, CD62E+EMP, hs-CRP, ALD, MDA, TNF-α, sTNFR-1 and sTNFR-2 were increased in recurrent malignant ventricular arrhythmia, sustained ventricular tachycardia, multiple ventricular premature beat and left and right ventricular bundle branch block groups (P < 0.001) in elderly patients with coronary reocclusions after coronary stent implantation. Upregulation of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress markers induced recurrent VA in elderly patients after coronary stenting. CONCLUSIONS High levels of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress markers were associated with recurrent VA in elderly patients after coronary stenting. Our results suggested that the pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress may simultaneously induce and aggravate recurrent VA in elderly patients after coronary stenting.
Collapse
|
7
|
Towards the Development of AgoKirs: New Pharmacological Activators to Study K ir2.x Channel and Target Cardiac Disease. Int J Mol Sci 2020; 21:ijms21165746. [PMID: 32796537 PMCID: PMC7461056 DOI: 10.3390/ijms21165746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inward rectifier potassium ion channels (IK1-channels) of the Kir2.x family are responsible for maintaining a stable negative resting membrane potential in excitable cells, but also play a role in processes of non-excitable tissues, such as bone development. IK1-channel loss-of-function, either congenital or acquired, has been associated with cardiac disease. Currently, basic research and specific treatment are hindered by the absence of specific and efficient Kir2.x channel activators. However, twelve different compounds, including approved drugs, show off-target IK1 activation. Therefore, these compounds contain valuable information towards the development of agonists of Kir channels, AgoKirs. We reviewed the mechanism of IK1 channel activation of these compounds, which can be classified as direct or indirect activators. Subsequently, we examined the most viable starting points for rationalized drug development and possible safety concerns with emphasis on cardiac and skeletal muscle adverse effects of AgoKirs. Finally, the potential value of AgoKirs is discussed in view of the current clinical applications of potentiators and activators in cystic fibrosis therapy.
Collapse
|
8
|
Morimoto S, Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens Res 2020; 43:744-753. [PMID: 32424201 DOI: 10.1038/s41440-020-0468-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/31/2022]
Abstract
Resistant hypertension is associated with a poor prognosis due to organ damage caused by prolonged suboptimal blood pressure control. The concomitant use of mineralocorticoid receptor (MR) antagonists with other antihypertensives has been shown to improve blood pressure control in some patients with resistant hypertension, and such patients are considered to have MR-associated hypertension. MR-associated hypertension is classified into two subtypes: one with a high plasma aldosterone level, which includes primary aldosteronism (PA), and the other with a normal aldosterone level. In patients with unilateral PA, adrenalectomy may be the first-choice procedure, while in patients with bilateral PA, MR antagonists are selected. In addition, in patients with other types of MR-associated hypertension with high aldosterone levels, MR antagonists may be selected as a first-line therapy. In patients with normal aldosterone levels, ARBs or ACE inhibitors are used as a first-line therapy, and MR antagonists may be used as an add-on agent. Since MR antagonist therapy may have efficacy as a first-line or add-on agent in these patients, it is important to recognize this type of hypertension. Further studies are needed to elucidate the pathogenesis and management of MR-associated hypertension in more detail to improve the clinical outcomes of patients with MR-associated hypertension.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Eplerenone Versus Spironolactone in Resistant Hypertension: an Efficacy and/or Cost or Just a Men’s Issue? Curr Hypertens Rep 2019; 21:22. [DOI: 10.1007/s11906-019-0924-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Rodgers JL, Samal E, Mohapatra S, Panguluri SK. Hyperoxia-induced cardiotoxicity and ventricular remodeling in type-II diabetes mice. Heart Vessels 2017; 33:561-572. [PMID: 29209776 DOI: 10.1007/s00380-017-1100-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
Hyperoxia, or supplemental oxygen, is regularly used in the clinical setting for critically ill patients in ICU. However, several recent studies have demonstrated the negative impact of this treatment in patients in critical care, including increased rates of lung and cardiac injury, as well as increased mortality. The purpose of this study was to determine the predisposition for arrhythmias and electrical remodeling in a type 2 diabetic mouse model (db/db), as a result of hyperoxia treatment. For this, db/db and their heterozygous controls were treated with hyperoxia (> 90% oxygen) or normoxia (normal air) for 72-h. Immediately following hyperoxia or normoxia treatments, mice underwent surface ECG. Excised left ventricles were used to assess ion channel expression, including for Kv1.4, Kv1.5, Kv4.2, and KChIP2. Serum cardiac markers were also measured, including cardiac troponin I and lactate dehydrogenase. Our results showed that db/db mice have increased sensitivity to arrhythmia. Normoxia-treated db/db mice displayed features of arrhythmia, including QTc and JT prolongation, as well as QRS prolongation. A significant increase in QRS prolongation was also observed in hyperoxia-treated db/db mice, when compared to hyperoxia-treated heterozygous control mice. Db/db mice were also shown to exhibit ion channel dysregulation, as demonstrated by down-regulation in Kv1.5, Kv4.2, and KChIP2 under hyperoxia conditions. From these results, we conclude that: (1) diabetic mice showed distinct pathophysiology, when compared to heterozygous controls, both in normoxia and hyperoxia conditions. (2) Diabetic mice were more susceptible to arrhythmia at normal air conditions; this effect was exacerbated at hyperoxia conditions. (3) Unlike in heterozygous controls, diabetic mice did not demonstrate cardiac hypertrophy as a result of hyperoxia. (4) Ion channel remodeling was also observed in db/db mice under hyperoxia condition similar to its heterozygous controls.
Collapse
Affiliation(s)
- Jennifer Leigh Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC-30, Tampa, FL, 33612, USA
| | - Eva Samal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC-30, Tampa, FL, 33612, USA.
| |
Collapse
|
11
|
Yugar-Toledo JC, Modolo R, de Faria AP, Moreno H. Managing resistant hypertension: focus on mineralocorticoid-receptor antagonists. Vasc Health Risk Manag 2017; 13:403-411. [PMID: 29081661 PMCID: PMC5652936 DOI: 10.2147/vhrm.s138599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mineralocorticoid-receptor antagonists (MRAs) have proven to be effective in some types of hypertension, especially in resistant hypertension (RHTN). In this phenotype of hypertension, the renin-angiotensin-aldosterone pathway plays an important role, with MRAs being especially effective in reducing blood pressure. In this review, we show the relevance of aldosterone in RHTN, as well as some clinical characteristics of this condition and the main concepts involving its pathophysiology and cardiovascular damage. We analyzed the mechanisms of action and clinical effects of two current MRAs - spironolactone and eplerenone - both of which are useful in RHTN, with special attention to the former. RHTN represents a significant minority (10%-15%) of hypertension cases. However, primary-care physicians, cardiologists, nephrologists, neurologists, and geriatricians face this health problem on a daily basis. MRAs are likely one of the best pharmacological options in RHTN patients; however, they are still underused.
Collapse
Affiliation(s)
| | - Rodrigo Modolo
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Paula de Faria
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Heitor Moreno
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Ríos-Pérez EB, García-Castañeda M, Monsalvo-Villegas A, Avila G. Chronic atrial ionic remodeling by aldosterone: potentiation of L-type Ca 2+ channels and its arrhythmogenic significance. Pflugers Arch 2016; 468:1823-1835. [PMID: 27631154 DOI: 10.1007/s00424-016-1876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022]
Abstract
It is widely accepted that aldosterone induces atrial fibrillation (AF) by promoting structural changes, but its effects on the function of primary atrial myocytes remain unknown. We have investigated this point in adult rat atrial myocytes, chronically exposed to the hormone. This treatment produced larger amplitude of Ca2+ transients, longer action potential (AP) duration, and higher incidence of unsynchronized Ca2+ oscillations. Moreover, it also gave rise to increases in both cell membrane capacitance (Cm, 30 %) and activity of L-type Ca2+ channels (LTCCs, 100 %). Concerning K+ currents, a twofold increase was also observed, but only in a delayed rectifier component (IKsus). Interestingly, the maximal conductance (Gmax) of Na+ channels was also enhanced, but it occurred in the face of a negative shift in the voltage dependence of inactivation. Thus, at physiological potentials, a decreased fraction of available channels neutralized the effect on GNa-max. With regard to the effects on both Cm and LTCCs, they involved activation of mineralocorticoid receptors (MRs), were dose-dependent (EC50 ∼20-130 nM), and developed and recovered in days. Neither gating currents nor protein levels of LTCCs were altered. Instead, the effect on LTCCs was mimicked by cAMP, reverted by a PKA inhibitor, and attenuated by a nitric oxide donor (short-term exposures). Both EGTA and the antioxidant NAC prevented the increase in Cm, without significantly interfering with the upregulation of LTCCs. Overall, these results show that chronic exposures to aldosterone result in dire functional changes at the single myocyte level, which may explain the link between aldosteronism and AF.
Collapse
Affiliation(s)
- Erick B Ríos-Pérez
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, México City, DF 07000, México
| | | | | | - Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, México City, DF 07000, México.
| |
Collapse
|
13
|
Yang P, Huang T, Xu G. The novel mineralocorticoid receptor antagonist finerenone in diabetic kidney disease: Progress and challenges. Metabolism 2016; 65:1342-9. [PMID: 27506741 DOI: 10.1016/j.metabol.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Pingping Yang
- Medical Center of the Graduate School, Nanchang University, China; Department of Nephrology, the Second Affiliated Hospital of Nanchang University, China
| | - Tianlun Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, China
| | - Gaosi Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
14
|
Muñoz-Durango N, Fuentes CA, Castillo AE, González-Gómez LM, Vecchiola A, Fardella CE, Kalergis AM. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int J Mol Sci 2016; 17:E797. [PMID: 27347925 PMCID: PMC4964362 DOI: 10.3390/ijms17070797] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS) imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage.
Collapse
Affiliation(s)
- Natalia Muñoz-Durango
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile.
| | - Cristóbal A Fuentes
- Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile.
| | - Andrés E Castillo
- Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile.
| | - Luis Martín González-Gómez
- Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile.
| | - Andrea Vecchiola
- Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile.
| | - Carlos E Fardella
- Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile.
| | - Alexis M Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile.
- Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile.
| |
Collapse
|
15
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
16
|
Huo R, Sheng Y, Guo WT, Dong DL. The potential role of Kv4.3 K+ channel in heart hypertrophy. Channels (Austin) 2015; 8:203-9. [PMID: 24762397 DOI: 10.4161/chan.28972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient outward K+ current (I(to)) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K(+) channel is an important component of I(to). The function and expression of Kv4.3 K(+) channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. Int his review, we summarized the changes of cardiac Kv4.3 K(+) channel in heart diseases and discussed the potential role of Kv4.3 K(+) channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, down regulation of Kv4.3 K(+) channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca(2+)](I), activation of calcineurin and heart hypertrophy/heart failure.However, in canine and human, Kv4.3 K(+) channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K(+) channel/APD/[Ca(2+)](I) pathway, there exits another mechanism of Kv4.3 K(+) channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K(+) channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII , which induces heart hypertrophy/heart failure. Upregulation of Kv4.3K(+) channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K(+) channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K(+) channel might be potentially harmful or beneficial to hearts through CaMKII.
Collapse
|
17
|
Stewart Coats AJ, Shewan L. Eplerenone's role in the management of complex cardiovascular disorders. Int J Cardiol 2015; 200:1-2. [PMID: 26116081 DOI: 10.1016/j.ijcard.2015.05.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
The accompanying special issue reviews the role of eplerenone and spironolactone in the management of various cardiovascular and renal conditions.
Collapse
Affiliation(s)
| | - Louise Shewan
- University of Warwick, UK; Monash University, Australia; Sydney Medical School, University of Sydney, Australia
| |
Collapse
|
18
|
Lv Y, Bai S, Zhang H, Zhang H, Meng J, Li L, Xu Y. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes. Br J Pharmacol 2015; 172:5596-608. [PMID: 25857626 DOI: 10.1111/bph.13163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. EXPERIMENTAL APPROACH Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. KEY RESULTS The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. CONCLUSIONS AND IMPLICATIONS Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF.
Collapse
Affiliation(s)
- Yankun Lv
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China.,Heart Center, Hebei General Hospital, Shijiazhuang, China
| | - Song Bai
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Hua Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Jing Meng
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| | - Li Li
- Heart Center, Hebei General Hospital, Shijiazhuang, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Alexandre J, Milliez P, Rouet R, Manrique A, Allouche S, Piccirillo G, Schiariti M, Puddu PE. Aldosterone and testosterone: two steroid hormones structurally related but with opposite electrophysiological properties during myocardial ischemia-reperfusion. Fundam Clin Pharmacol 2015; 29:341-51. [DOI: 10.1111/fcp.12122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Joachim Alexandre
- Department of Pharmacology; CHU de Caen; Caen F-14000 France
- Université de Caen Basse-Normandie; EA 4650 Signalisation; électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique; Caen F-14000 France
- Medical School; Université de Caen Basse-Normandie; Caen F-14000 France
| | - Paul Milliez
- Université de Caen Basse-Normandie; EA 4650 Signalisation; électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique; Caen F-14000 France
- Medical School; Université de Caen Basse-Normandie; Caen F-14000 France
- Department of Cardiology; CHU de Caen; Caen F-14000 France
| | - René Rouet
- Université de Caen Basse-Normandie; EA 4650 Signalisation; électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique; Caen F-14000 France
- Medical School; Université de Caen Basse-Normandie; Caen F-14000 France
| | - Alain Manrique
- Université de Caen Basse-Normandie; EA 4650 Signalisation; électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique; Caen F-14000 France
- Medical School; Université de Caen Basse-Normandie; Caen F-14000 France
- Department of Nuclear Medicine; CHU de Caen; Caen F-14000 France
| | - Stéphane Allouche
- Université de Caen Basse-Normandie; EA 4650 Signalisation; électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique; Caen F-14000 France
- Medical School; Université de Caen Basse-Normandie; Caen F-14000 France
- Department of Biochemistry; CHU de Caen; Caen F-14000 France
| | | | - Michele Schiariti
- Department of Cardiovascular Sciences; Sapienza University; Rome Italy
| | | |
Collapse
|
20
|
Modulation of the QT interval duration in hypertension with antihypertensive treatment. Hypertens Res 2015; 38:447-54. [DOI: 10.1038/hr.2015.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 11/08/2022]
|
21
|
Güder G, Hammer F, Deutschbein T, Brenner S, Berliner D, Deubner N, Bidlingmaier M, Ertl G, Allolio B, Angermann CE, Fassnacht M, Störk S. Prognostic Value of Aldosterone and Cortisol in Patients Hospitalized for Acutely Decompensated Chronic Heart Failure With and Without Mineralocorticoid Receptor Antagonism. J Card Fail 2015; 21:208-16. [DOI: 10.1016/j.cardfail.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023]
|
22
|
Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension 2014; 65:257-63. [PMID: 25368026 DOI: 10.1161/hypertensionaha.114.04488] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Johann Bauersachs
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.).
| | - Frédéric Jaisser
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| | - Robert Toto
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| |
Collapse
|
23
|
Benter IF, Babiker F, Al-Rashdan I, Yousif M, Akhtar S. RU28318, an aldosterone antagonist, in combination with an ACE inhibitor and angiotensin receptor blocker attenuates cardiac dysfunction in diabetes. J Diabetes Res 2013; 2013:427693. [PMID: 24066305 PMCID: PMC3771425 DOI: 10.1155/2013/427693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIMS We evaluated the effects of RU28318 (RU), a selective mineralocorticoid receptor (MR) antagonist, Captopril (Capt), an angiotensin converting enzyme inhibitor, and Losartan (Los), an angiotensin receptor blocker, alone or in combination with ischemia/reperfusion- (I/R-) induced cardiac dysfunction in hearts obtained from normal and diabetic rats. METHODS Isolated hearts were perfused for 30 min and then subjected to 30 min of global ischemia (I) followed by a period of 30 min of reperfusion (R). Drugs were administered for 30 min either before or after ischemia. Drug regimens tested were RU, Capt, Los, RU + Capt, RU + Los, Capt + Los, and RU + Capt + Los (Triple). Recovery of cardiac hemodynamics was evaluated. RESULTS Recovery of cardiac function was up to 5-fold worse in hearts obtained from diabetic animals compared to controls. Treatment with RU was generally better in preventing or reversing ischemia-induced cardiac dysfunction in normal hearts compared to treatment with Capt or Los alone. In diabetic hearts, RU was generally similarly effective as Capt or Los treatment. CONCLUSIONS RU treatment locally might be considered as an effective therapy or preventative measure in cardiac I/R injury. Importantly, RU was the most effective at improving -dP/dt (a measure of diastolic function) when administered to diabetic hearts after ischemia.
Collapse
Affiliation(s)
- Ibrahim F. Benter
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- *Fawzi Babiker:
| | - Ibrahim Al-Rashdan
- Department of Medicine, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Mariam Yousif
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Saghir Akhtar
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| |
Collapse
|
24
|
Drechsler C, Ritz E, Tomaschitz A, Pilz S, Schönfeld S, Blouin K, Bidlingmaier M, Hammer F, Krane V, März W, Allolio B, Fassnacht M, Wanner C. Aldosterone and cortisol affect the risk of sudden cardiac death in haemodialysis patients. Eur Heart J 2012; 34:578-87. [PMID: 23211232 PMCID: PMC3578266 DOI: 10.1093/eurheartj/ehs361] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Sudden cardiac death is common and accounts largely for the excess mortality of patients on maintenance dialysis. It is unknown whether aldosterone and cortisol increase the incidence of sudden cardiac death in dialysis patients. METHODS AND RESULTS We analysed data from 1255 diabetic haemodialysis patients participating in the German Diabetes and Dialysis Study (4D Study). Categories of aldosterone and cortisol were determined at baseline and patients were followed for a median of 4 years. By Cox regression analyses, hazard ratios (HRs) were determined for the effect of aldosterone, cortisol, and their combination on sudden death and other adjudicated cardiovascular outcomes. The mean age of the patients was 66 ± 8 years (54% male). Median aldosterone was <15 pg/mL (detection limit) and cortisol 16.8 µg/dL. Patients with aldosterone levels >200 pg/mL had a significantly higher risk of sudden death (HR: 1.69; 95% CI: 1.06-2.69) compared with those with an aldosterone <15 pg/mL. The combined presence of high aldosterone (>200 pg/mL) and high cortisol (>21.1 µg/dL) levels increased the risk of sudden death in striking contrast to patients with low aldosterone (<15 pg/mL) and low cortisol (<13.2 µg/dL) levels (HR: 2.86, 95% CI: 1.32-6.21). Furthermore, all-cause mortality was significantly increased in the patients with high levels of both hormones (HR: 1.62, 95% CI: 1.01-2.62). CONCLUSIONS The joint presence of high aldosterone and high cortisol levels is strongly associated with sudden cardiac death as well as all-cause mortality in haemodialysed type 2 diabetic patients. Whether a blockade of the mineralocorticoid receptor decreases the risk of sudden death in these patients must be examined in future trials.
Collapse
Affiliation(s)
- Christiane Drechsler
- Division of Nephrology, Department of Internal Medicine 1, University Hospital Würzburg, University of Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Azibani F, Devaux Y, Coutance G, Schlossarek S, Polidano E, Fazal L, Merval R, Carrier L, Solal AC, Chatziantoniou C, Launay JM, Samuel JL, Delcayre C. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice. PLoS One 2012; 7:e38197. [PMID: 22666483 PMCID: PMC3364229 DOI: 10.1371/journal.pone.0038197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/01/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of "fetal" gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. METHODOLOGY/PRINCIPAL FINDINGS RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (-75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. CONCLUSIONS/SIGNIFICANCE Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of its transcriptional repressor Sox6. Thus, aldosterone inhibits the fetal program and increases cardiac hypertrophy in hypertensive mice.
Collapse
Affiliation(s)
- Feriel Azibani
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
| | - Yvan Devaux
- Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | | | - Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Loubina Fazal
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
| | - Regine Merval
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- UPMC, INSERM UMR-S974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Alain Cohen Solal
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
- Lariboisière Hospital AP-HP, Paris, France
| | | | - Jean-Marie Launay
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
- Lariboisière Hospital AP-HP, Paris, France
| | - Jane-Lise Samuel
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
- Lariboisière Hospital AP-HP, Paris, France
| | | |
Collapse
|
26
|
Effect of spironolactone on ventricular arrhythmias in patients with left ventricular systolic dysfunction and implantable cardioverter defibrillators. Indian Heart J 2012; 64:123-7. [PMID: 22572483 DOI: 10.1016/s0019-4832(12)60044-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
AIMS/OBJECTIVES Patients with implantable cardioverter defibrillators (ICD) often receive an adjunctive anti-arrhythmic therapy. We propose that an addition of spironolactone will reduce the number of clinically significant ventricular arrhythmias and ICD-related therapies. METHODS AND RESULTS In a multicentre retrospective study, 64 patients with ischaemic and non-ischaemic dilated cardiomyopathy whose left ventricular ejection fraction (LVEF) was <35% and with ICD were selected. Amongst these patients, 28 patients were on spironolactone and 36 were not taking spironolactone. The ICD interrogation data were analysed for a maximum of 12 months. Wilcoxon Rank Sum test was used to compare the study and control groups. The outcomes were: (1) the number of shocks/anti-tachycardia pacing (ATP) episodes and (2) the number of episodes of ventricular tachycardia (VT) requiring ATP, non-sustained VT (NSVT), and ventricular fibrillation (VF) over the study period. The spironolactone group had fewer monthly, VTs (P=0.027) (requiring ATP). The two groups did not differ in the number of NSVT or VF per month. CONCLUSION Addition of spironolactone as an adjunct to ICD therapy in patients with congestive heart failure (CHF) reduces VT requiring ATP, but does not affect NSVT or VF per month.
Collapse
|
27
|
Su F, Shi M, Yan Z, Ou D, Li J, Lu Z, Zheng Q. Simvastatin modulates remodeling of Kv4.3 expression in rat hypertrophied cardiomyocytes. Int J Biol Sci 2012; 8:236-48. [PMID: 22253567 PMCID: PMC3258563 DOI: 10.7150/ijbs.8.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022] Open
Abstract
Objectives: Hypertrophy has been shown to be associated with arrhythmias which can be caused by abnormal remodeling of the Kv4-family of transient potassium channels. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have recently been shown to exert pleiotropic protective effects in cardiovascular diseases, including anti-arrhythmias. It is hypothesized that remodeling of Kv4.3 occurs in rat hypertrophied cardiomyocytes and is regulated by simvastatin. Methods: Male Sprague-Dawley rats and neonatal rat ventricular myocytes (NRVMs) underwent abdominal aortic banding (AAB) for 7 weeks and angiotensin II (AngII) treatment, respectively, to induce cardiac hypertrophy. Kv4.3 expression by NRVMs and myocardium (subepicardial and subendocardial) in the left ventricle was measured. The transient outward potassium current (Ito) of NRVMs was recorded using a whole-cell patch-clamp method. Results: Expression of the Kv4.3 transcript and protein was significantly reduced in myocardium (subepicardial and subendocardial) in the left ventricle and in NRVMs. Simvastatin partially prevented the reduction of Kv4.3 expression in NRVMs and subepicardial myocardium but not in the subendocardial myocardium. Hypertrophied NRVMs exhibited a significant reduction in the Ito current and this effect was partially reversed by simvastatin. Conclusions: Simvastatin alleviated the reduction of Kv4.3 expression, Ito currents in hypertrophied NRVMs and alleviated the reduced Kv4.3 expression in subepicardial myocardium from the hypertrophied left ventricle. It can be speculated that among the pleiotropic effects of simvastatin, the anti-arrhythmia effect is partly mediated by its effect on Kv4.3.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | | | |
Collapse
|