1
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Pan J, Nilsson J, Engström G, De Marinis Y. Elevated circulating follistatin associates with increased risk of mortality and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 2024; 34:418-425. [PMID: 38000997 DOI: 10.1016/j.numecd.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND AIMS Previous study showed that elevated circulating hepatokine follistatin (FST) associates with an increased risk of type 2 diabetes by inducing adipose tissue insulin resistance. Here we explore further the relationships between plasma FST levels with mortality and health outcomes. METHODS AND RESULTS The population-based Malmö Diet Cancer cardiovascular cohort (n = 4733, age 45-68 years) was used to study plasma FST in relation to incidence of health outcomes, by linkage with national patient registers. Cox regression analysis was used to assess the associations of plasma FST and outcomes, with adjustments for multiple potential confounding factors. During the mean follow-up time of 22.64 ± 5.84 years in 4,733 individuals, 526 had incident stroke, 432 had ischemic stroke, 530 had incident coronary events (CE), 339 had incident heart failure (HF), 320 had incident chronic kidney disease (CKD) and 1,843 individuals died. Hazard ratio (HR) per standard deviation increase in FST levels adjusted for multiple risk factors was 1.05 (95%CI: 1.00-1.11, p = 0.036) for mortality; 1.10 (95%CI: 1.00-1.20, p = 0.042) for stroke; 1.13 (95%CI: 1.03-1.25, p = 0.014) for ischemic stroke; 1.16 (95%CI: 1.03-1.30, p = 0.015) for HF; and 1.38 (95%CI: 1.12-1.70, p = 0.003) for a diagnosis of CKD. In MDC-CC individuals without prevalent or incident diabetes, the association between FST and stroke, CE and CKD remained significant; but not with mortality or HF. CONCLUSIONS Elevated circulating FST associates with an increased risk of mortality and HF, which partly may be mediated by diabetes. FST also associated with stroke, ischemic stroke, CE and CKD, independently of established risk factors including diabetes.
Collapse
Affiliation(s)
- Jingxue Pan
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Yang De Marinis
- Department of Clinical Sciences, Lund University, Malmö, Sweden; School of Control Science and Engineering, Shandong University, Jinan, Shandong, China; Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| |
Collapse
|
3
|
Knapp M, Supruniuk E, Górski J. Myostatin and the Heart. Biomolecules 2023; 13:1777. [PMID: 38136649 PMCID: PMC10741510 DOI: 10.3390/biom13121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Myostatin (growth differentiation factor 8) is a member of the transforming growth factor-β superfamily. It is secreted mostly by skeletal muscles, although small amounts of myostatin are produced by the myocardium and the adipose tissue as well. Myostatin binds to activin IIB membrane receptors to activate the downstream intracellular canonical Smad2/Smad3 pathway, and additionally acts on non-Smad (non-canonical) pathways. Studies on transgenic animals have shown that overexpression of myostatin reduces the heart mass, whereas removal of myostatin has an opposite effect. In this review, we summarize the potential diagnostic and prognostic value of this protein in heart-related conditions. First, in myostatin-null mice the left ventricular internal diameters along with the diastolic and systolic volumes are larger than the respective values in wild-type mice. Myostatin is potentially secreted as part of a negative feedback loop that reduces the effects of the release of growth-promoting factors and energy reprogramming in response to hypertrophic stimuli. On the other hand, both human and animal data indicate that myostatin is involved in the development of the cardiac cachexia and heart fibrosis in the course of chronic heart failure. The understanding of the role of myostatin in such conditions might initiate a development of targeted therapies based on myostatin signaling inhibition.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, 15-276 Białystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Jan Górski
- Department of Health Sciences, University of Łomża, 18-400 Łomża, Poland;
| |
Collapse
|
4
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Myostatin: a potential therapeutic target for metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1181913. [PMID: 37288303 PMCID: PMC10242177 DOI: 10.3389/fendo.2023.1181913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder, its main clinical manifestations are obesity, hyperglycemia, hypertension and hyperlipidemia. Although metabolic syndrome has been the focus of research in recent decades, it has been proposed that the occurrence and development of metabolic syndrome is related to pathophysiological processes such as insulin resistance, adipose tissue dysfunction and chronic inflammation, but there is still a lack of favorable clinical prevention and treatment measures for metabolic syndrome. Multiple studies have shown that myostatin (MSTN), a member of the TGF-β family, is involved in the development and development of obesity, hyperlipidemia, diabetes, and hypertension (clinical manifestations of metabolic syndrome), and thus may be a potential therapeutic target for metabolic syndrome. In this review, we describe the transcriptional regulation and receptor binding pathway of MSTN, then introduce the role of MSTN in regulating mitochondrial function and autophagy, review the research progress of MSTN in metabolic syndrome. Finally summarize some MSTN inhibitors under clinical trial and proposed the use of MSTN inhibitor as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
5
|
Rosa CM, Campos DHS, Reyes DRA, Damatto FC, Kurosaki LY, Pagan LU, Gomes MJ, Corrêa CR, Fernandes AAH, Okoshi MP, Okoshi K. Effects of the SGLT2 Inhibition on Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats, a Model of Type 1 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:982. [PMID: 35624845 PMCID: PMC9137562 DOI: 10.3390/antiox11050982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Clinical trials have shown that sodium glucose co-transporter 2 (SGLT2) inhibitors improve clinical outcomes in diabetes mellitus (DM) patients. As most studies were performed in Type 2 DM, the cardiovascular effects of SGLT2 inhibition still require clarification in Type 1 DM. We analyzed the effects of SGLT2 inhibitor dapagliflozin on cardiac remodeling in rats with streptozotocin-induced diabetes, an experimental model of Type 1 DM. Methods: Male Wistar rats were assigned into four groups: control (C, n = 14); control treated with dapagliflozin (C + DAPA, n = 14); diabetes (DM, n = 20); and diabetes treated with dapagliflozin (DM + DAPA, n = 20) for 8 weeks. Dapagliflozin dosage was 5 mg/kg/day. Statistical analyses: ANOVA and Tukey or Kruskal−Wallis and Dunn. Results: DM + DAPA presented decreased blood pressure and glycemia and increased body weight compared to DM (C 507 ± 52; C + DAPA 474 ± 50; DM 381 ± 52 *; DM + DAPA 430 ± 48 # g; * p < 0.05 vs. C; # p < 0.05 vs. C + DAPA and DM + DAPA). DM echocardiogram presented left ventricular and left atrium dilation with impaired systolic and diastolic function. Cardiac changes were attenuated by dapagliflozin. Myocardial hydroxyproline concentration and interstitial collagen fraction did not differ between groups. The expression of Type III collagen was lower in DM and DM + DAPA than their controls. Type I collagen expression and Type I-to-III collagen ratio were lower in DM + DAPA than C + DAPA. DM + DAPA had lower lipid hydroperoxide concentration (C 275 ± 42; C + DAPA 299 ± 50; DM 385 ± 54 *; DM + DAPA 304 ± 40 # nmol/g tissue; * p < 0.05 vs. C; # p < 0.05 vs. DM) and higher superoxide dismutase and glutathione peroxidase activity than DM. Advanced glycation end products did not differ between groups. Conclusion: Dapagliflozin is safe, increases body weight, decreases glycemia and oxidative stress, and attenuates cardiac remodeling in an experimental rat model of Type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - David Rafael Abreu Reyes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Lucas Yamada Kurosaki
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | | | - Camila Renata Corrêa
- Department of Pathology, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil;
| | - Ana Angelica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu 18618-970, SP, Brazil;
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| |
Collapse
|
6
|
Chen P, Wen Z, Shi W, Li Z, Chen X, Gao Y, Xu S, Gong Q, Deng J. Effects of Sodium Ferulate on Cardiac Hypertrophy Are via the CaSR-Mediated Signaling Pathway. Front Pharmacol 2021; 12:674570. [PMID: 34690749 PMCID: PMC8526863 DOI: 10.3389/fphar.2021.674570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
As a common complication of many cardiovascular diseases, cardiac hypertrophy is characterized by increased cardiac cell volume, reorganization of the cytoskeleton, and the reactivation of fetal genes such as cardiac natriuretic peptide and β-myosin heavy chain. Cardiac hypertrophy is a distinguishing feature of some cardiovascular diseases. Our previous study showed that sodium ferulate (SF) alleviates myocardial hypertrophy induced by coarctation of the abdominal aorta, and these protective effects may be related to the inhibition of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) signaling pathways. This study investigated the inhibitory effect and mechanism of SF on myocardial hypertrophy in spontaneously hypertensive rats (SHRs). The effects of SF on cardiac hypertrophy were evaluated using echocardiographic measurement, pathological analysis, and detection of atrial natriuretic peptide (ANP) and β-myosin heavy chain (β-MHC) expression. To investigate the mechanisms underlying the anti-hypertrophic effects of SF, the calcium-sensing receptor (CaSR), calcineurin (CaN), nuclear factor of activated T cells 3 (NFAT3), zinc finger transcription factor 4 (GATA4), protein kinase C beta (PKC-β), Raf-1, extracellular signal-regulated kinase 1/2 (ERK 1/2), and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by molecular biology techniques. Treatment with SF ameliorated myocardial hypertrophy in 26-week-old SHRs. In addition, it downregulated the levels of ANP, β-MHC, CaSR, CaN, NFAT3, phosphorylated GATA4 (p-GATA4), PKC-β, Raf-1, and p-ERK 1/2; and upregulated the levels of p-NFAT3 and MKP-1. These results suggest that the effects of SF on cardiac hypertrophy are related to regulation of the CaSR-mediated signaling pathway.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhaoqin Wen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Wanlan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhongli Li
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Yang Gao
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Pagan LU, Gomes MJ, Damatto RL, Lima ARR, Cezar MDM, Damatto FC, Reyes DRA, Campos DHS, Caldonazo TMM, Polegato BF, Fernandes DC, Laurindo FR, Fernandes AAH, Lloret A, Cicogna AC, Okoshi MP, Okoshi K. Aerobic Exercise During Advance Stage of Uncontrolled Arterial Hypertension. Front Physiol 2021; 12:675778. [PMID: 34149455 PMCID: PMC8209380 DOI: 10.3389/fphys.2021.675778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Aim To evaluate the influence of physical training on myocardial function, oxidative stress, energy metabolism, and MAPKs and NF-κB signaling pathways in spontaneously hypertensive rats (SHR), at advanced stage of arterial hypertension, which precedes heart failure development. Methods We studied four experimental groups: normotensive Wistar rats (W, n = 27), trained W (W-EX, n = 31), SHR (n = 27), and exercised SHR (SHR-EX, n = 32). At 13 months old, the exercise groups underwent treadmill exercise 5 days a week for 4 months. In vitro myocardial function was analyzed in left ventricular (LV) papillary muscle preparations. Antioxidant enzyme activity and energy metabolism were assessed by spectrophotometry. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was analyzed by lucigenin reduction and protein expression by Western blot. Statistical analyzes: ANOVA and Tukey or Kruskal–Wallis and Dunn tests. Results SHR-EX had a lower frequency of heart failure features than SHR. Myocardial function and antioxidant enzyme activity were better in SHR-EX than SHR. Lipid hydroperoxide concentration, and phosphorylated JNK and total IkB protein expression were higher in hypertensive than control groups. Malondialdehyde, NADPH oxidase activity, total JNK, phosphorylated p38, phosphorylated and total p65 NF-κB, and phosphorylated IkB did not differ between groups. Protein expression from total p38, and total and phosphorylated ERK were higher in SHR than W. Lactate dehydrogenase and phosphorylated ERK were lower and citrate synthase and β-hydroxyacyldehydrogenase were higher in SHR-EX than SHR. Conclusion Exercise improves physical capacity, myocardial function, and antioxidant enzyme activity; reduces the frequency of heart failure features and ERK phosphorylation; and normalizes energy metabolism in SHR.
Collapse
Affiliation(s)
- Luana U Pagan
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | | | - Aline R R Lima
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | | | - Felipe C Damatto
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - David R A Reyes
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Dijon H S Campos
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Tulio M M Caldonazo
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Bertha F Polegato
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Denise C Fernandes
- Department of Cardiopneumology, Medical School, University of Sao Paulo (USP), São Paulo, Brazil
| | - Francisco R Laurindo
- Department of Cardiopneumology, Medical School, University of Sao Paulo (USP), São Paulo, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Antonio C Cicogna
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| |
Collapse
|
8
|
Berezin AE, Berezin AA, Lichtenauer M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye 69035, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye 69096, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Plotnikov MB, Aliev OI, Shamanaev AY, Sidekhmenova AV, Anishchenko AM, Fomina TI, Rydchenko VS, Khlebnikov AI, Anfinogenova YJ, Schepetkin IA, Atochin DN. Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats. Hypertens Res 2020; 43:1068-1078. [PMID: 32382155 DOI: 10.1038/s41440-020-0446-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/09/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the myocardial and aortic remodeling, increased arterial tone, and arterial blood pressure elevation associated with hypertension. The aim of the present study was to investigate the antihypertensive effect of a new JNK inhibitor, 1H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), on spontaneously hypertensive rats (SHRs). Experiments were performed using normotensive Wistar-Kyoto (WKY) rats and SHRs. Experimental groups of SHRs received IQ-1S intragastrically for 6 weeks in daily doses of 5 and 50 mg/kg; experimental groups of WKY rats received 50 mg/kg IQ-1S according to the same regimen. The IQ-1S administration regimen induced decreases in systolic blood pressure, mean arterial blood pressure, total peripheral resistance, blood viscosity, hematocrit, myocardial cell cross-sectional area, and aortic wall thickness in SHRs vs untreated SHRs. There were no significant differences in systolic blood pressure values between the control and experimental groups of WKY rats during the treatment period. A concentration-dependent decrease in the tone of carotid arterial rings isolated from SHRs was observed after JNK inhibitor application in vitro. Application of the JNK inhibitor diminished endothelin-1 secretion by human umbilical vein endothelial cells in vitro. The main mechanisms of the antihypertensive effect of IQ-1S included the attenuation of blood viscosity due to decreased hematocrit, a vasodilatory effect on arterial smooth muscle cells, and a decrease in endothelin-1 production by endothelial cells.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia. .,National Research Tomsk State University, Tomsk, Russia.
| | - Oleg I Aliev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Aleksandr Y Shamanaev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Anastasia V Sidekhmenova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Anna M Anishchenko
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia.,Department of Pharmacology, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk, 634050, Russia
| | - Tatiana I Fomina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Victoria S Rydchenko
- Department of Biophysics, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk, 634050, Russia
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, 656049, Russia
| | - Yana J Anfinogenova
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Cardiology Research Institute, Tomsk National Research Medical Center, 111a Kievskaya St., Tomsk, 634012, Russia
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Meloux A, Rochette L, Maza M, Bichat F, Tribouillard L, Cottin Y, Zeller M, Vergely C. Growth Differentiation Factor-8 (GDF8)/Myostatin is a Predictor of Troponin I Peak and a Marker of Clinical Severity after Acute Myocardial Infarction. J Clin Med 2019; 9:E116. [PMID: 31906236 PMCID: PMC7019567 DOI: 10.3390/jcm9010116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Growth differentiation factor-8 (GDF8), also known as myostatin, is a member of the transforming growth factor-β superfamily that inhibits skeletal muscle growth. We aimed to investigate the association between GDF8 and peak troponin I levels after acute myocardial infarction (AMI). METHODS All consecutive patients admitted from June 2016 to February 2018 for type 1 AMI in the Coronary Care Unit of University Hospital of Dijon Bourgogne (France) were included in our prospective study. Blood samples were harvested on admission, and serum levels of GDF8 were measured using a commercially available enzyme-linked immunosorbent assay kit. RESULTS Among the 296 patients with type 1 AMI, median age was 68 years and 27% were women. GDF8 levels (median (IQR) = 2375 ng/L) were negatively correlated with age, sex and diabetes (p < 0.001 for all). GDF8 levels were higher in patients with in-hospital ventricular tachycardia or fibrillation (VT/VF) than those without in-hospital VT/VF. GDF8 was positively correlated with troponin I peak (r = 0.247; p < 0.001). In multivariate linear regression analysis, log GDF8 (OR: 21.59; 95% CI 34.08-119.05; p < 0.001) was an independent predictor of troponin I peak. CONCLUSIONS These results suggest that GDF8 levels could reflect the extent of myocardial damage during AMI, similar to peak troponin I, which is currently used to estimate infarct size. Further studies are needed to elucidate the underlying mechanisms linking the GDF8 cytokine with troponin I levels.
Collapse
Affiliation(s)
- Alexandre Meloux
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Luc Rochette
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
| | - Maud Maza
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Florence Bichat
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Laura Tribouillard
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Yves Cottin
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Marianne Zeller
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
| | - Catherine Vergely
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
| |
Collapse
|
11
|
Pagan LU, Damatto RL, Gomes MJ, Lima ARR, Cezar MDM, Damatto FC, Reyes DRA, Caldonazo TMM, Polegato BF, Okoshi MP, Okoshi K. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J Cell Mol Med 2019; 23:6504-6507. [PMID: 31317657 PMCID: PMC6714166 DOI: 10.1111/jcmm.14530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
We evaluated the influence of aerobic training on cardiac remodeling in untreated spontaneously hypertensive rats (SHR). Four experimental groups were used: sedentary (W‐SED, n=27) and trained (WEX, n=31) normotensive Wistar rats, and sedentary (SHR‐SED, n=27) and exercised (SHR‐EX, n=32) hypertensive rats. At 13 months old, trained groups underwent treadmill exercise five days a week for four months. Statistical analysis: ANOVA or Kruskal‐Wallis. Exercised groups had higher physical capacity. Hypertensive groups presented left ventricular (LV) concentric hypertrophy with impaired function. Left atrium diameter, LV posterior wall thickness and relative thickness, and isovolumetric relaxation time were lower in SHR‐EX than SHR‐SED. Interstitial collagen fraction and Type I‐Type III collagen ratio were higher in SHR‐SED than W‐SED. In SHR‐EX these parameters had intermediate values between W‐EX and SHRSED with no differences between either group. Myocardial matrix metalloproteinase‐2 activity, evaluated by zymography, was higher in SHR‐SED than W‐SED and SHR‐EX. TIMP‐2 was higher in hypertensive than normotensive groups. In conclusion, low intensity aerobic exercise reduces left atrium dimension and LV posterior wall thickness, and improves functional capacity, diastolic function, and metalloproteinase‐2 activity in adult SHR.
Collapse
Affiliation(s)
- Luana U Pagan
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | | | - Mariana J Gomes
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Aline R R Lima
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | | | - Felipe C Damatto
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - David R A Reyes
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Tulio M M Caldonazo
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Bertha F Polegato
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, Brazil
| |
Collapse
|
12
|
Damatto RL, Cezar MDM, Santos PPD. Control of Body Temperature during Physical Exercise. Arq Bras Cardiol 2019; 112:543-544. [PMID: 31188960 PMCID: PMC6555564 DOI: 10.5935/abc.20190081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ricardo Luiz Damatto
- Sociedade Cultural e Educacional de Itapeva - Educação Física, Itapeva, SP - Brazil.,Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina, Botucatu, SP - Brazil
| | - Marcelo Diarcadia Mariano Cezar
- Sociedade Cultural e Educacional de Itapeva - Educação Física, Itapeva, SP - Brazil.,Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina, Botucatu, SP - Brazil
| | - Priscila Portugal Dos Santos
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu - Faculdade de Medicina, Botucatu, SP - Brazil
| |
Collapse
|
13
|
Cezar MDM, Gomes MJ, Damatto RL. Prenatal Stress: Molecular Mechanisms and Cardiovascular Disease. Arq Bras Cardiol 2019; 112:76-77. [PMID: 30673018 PMCID: PMC6317637 DOI: 10.5935/abc.20180246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Mariana Janini Gomes
- Faculdade de Medicina de Botucatu - Universidade Estadual Paulista (UNESP), Botucatu, SP - Brasil
| | - Ricardo Luiz Damatto
- Faculdade de Medicina de Botucatu - Universidade Estadual Paulista (UNESP), Botucatu, SP - Brasil
| |
Collapse
|
14
|
Reyes DRA, Gomes MJ, Rosa CM, Pagan LU, Zanati SG, Damatto RL, Rodrigues EA, Carvalho RF, Fernandes AAH, Martinez PF, Lima ARR, Cezar MDM, Carvalho LEFM, Okoshi K, Okoshi MP. Exercise during transition from compensated left ventricular hypertrophy to heart failure in aortic stenosis rats. J Cell Mol Med 2018; 23:1235-1245. [PMID: 30456799 PMCID: PMC6349163 DOI: 10.1111/jcmm.14025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
We evaluated the influence of aerobic exercise on cardiac remodelling during the transition from compensated left ventricular (LV) hypertrophy to clinical heart failure in aortic stenosis (AS) rats. Eighteen weeks after AS induction, rats were assigned into sedentary (AS) and exercised (AS-Ex) groups. Results were compared to Sham rats. Exercise was performed on treadmill for 8 weeks. Exercise improved functional capacity. Echocardiogram showed no differences between AS-Ex and AS groups. After exercise, fractional shortening and ejection fraction were lower in AS-Ex than Sham. Myocyte diameter and interstitial collagen fraction were higher in AS and AS-Ex than Sham; however, myocyte diameter was higher in AS-Ex than AS. Myocardial oxidative stress, evaluated by lipid hydroperoxide concentration, was higher in AS than Sham and was normalized by exercise. Gene expression of the NADPH oxidase subunits NOX2 and NOX4, which participate in ROS generation, did not differ between groups. Activity of the antioxidant enzyme superoxide dismutase was lower in AS and AS-Ex than Sham and glutathione peroxidase was lower in AS-Ex than Sham. Total and reduced myocardial glutathione, which is involved in cellular defence against oxidative stress, was lower in AS than Sham and total glutathione was higher in AS-Ex than AS. The MAPK JNK was higher in AS-Ex than Sham and AS groups. Phosphorylated P38 was lower in AS-Ex than AS. Despite improving functional capacity, aerobic exercise does not change LV function in AS rats. Exercise restores myocardial glutathione, reduces oxidative stress, impairs JNK signalling and further induces myocyte hypertrophy.
Collapse
Affiliation(s)
- David R A Reyes
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila M Rosa
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Silmeia G Zanati
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Eder A Rodrigues
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Robson F Carvalho
- Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luiz E F M Carvalho
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
15
|
Oliveira-Junior SA, Martinez PF, Fan WYC, Nakatani BT, Pagan LU, Padovani CR, Cicogna AC, Okoshi MP, Okoshi K. Association between echocardiographic structural parameters and body weight in Wistar rats. Oncotarget 2018; 8:26100-26105. [PMID: 28212534 PMCID: PMC5432241 DOI: 10.18632/oncotarget.15320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association between echocardiographic structural parameters and body weight (BW) during rat development has been poorly addressed. We evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left atrial diameter (LA), and aortic diameter (AO) in function of BW during development.Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302-702 g) were retrospectively used to construct regression models and 95% confidence intervals relating to cardiac structural parameters and BW. Adjusted indexes were significant to all relationships; the regression model for predicting LVDD (R2 = 0.678; p < 0.001) and AO (R2 = 0.567; p < 0.001) had the highest prediction coefficients and LA function the lowest prediction coefficient (R2 = 0.274; p < 0.01). These relationships underwent validation by performing echocardiograms on additional rats (n = 43, BW: 300-600 g) and testing whether results were within confidence intervals of our regressions. Prediction models for AO and LA correctly allocated 38 (88.4%) and 39 rats (90.7%), respectively, within the 95% confidence intervals. Regression models for LVDD, LVSD, and PWT included 27 (62.7%), 30 (69.8%), and 19 (44.2%) animals, respectively, within the 95% confidence intervals. CONCLUSIONS Increase in cardiac structures is associated with BW gain during rat growth. LA and AO can be correctly predicted using regression models; prediction of PWT and LV diameters is not accurate.
Collapse
Affiliation(s)
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - William Y C Fan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Bruno T Nakatani
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Carlos R Padovani
- Botucatu Biosciences Institute, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Antonio C Cicogna
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
16
|
Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Pagan LU, Chaer ID, Fernandes DC, Laurindo FR, Cicogna AC, Okoshi MP, Okoshi K. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol 2018; 17:15. [PMID: 29343259 PMCID: PMC5771187 DOI: 10.1186/s12933-017-0657-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/26/2017] [Indexed: 01/02/2023] Open
Abstract
Background Increased reactive oxygen species (ROS) generation in diabetes mellitus (DM) is an important mechanism leading to diabetic cardiomyopathy. Apocynin, a drug isolated from the herb Picrorhiza kurroa, is considered an antioxidant agent by inhibiting NADPH oxidase activity and improving ROS scavenging. This study analyzed the influence of apocynin on cardiac remodeling in diabetic rats. Methods Six-month-old male Wistar rats were assigned into 4 groups: control (CTL, n = 15), control + apocynin (CTL + APO, n = 20), diabetes (DM, n = 20), and diabetes + apocynin (DM + APO, n = 20). DM was induced by streptozotocin. Seven days later, apocynin (16 mg/kg/day) or vehicle was initiated and maintained for 8 weeks. Left ventricular (LV) histological sections were used to analyze interstitial collagen fraction. NADPH oxidase activity was evaluated in LV samples. Comparisons between groups were performed by ANOVA for a 2 × 2 factorial design followed by the Bonferroni post hoc test. Results Body weight (BW) was lower and glycemia higher in diabetic animals. Echocardiogram showed increased left atrial diameter, LV diastolic diameter, and LV mass indexed by BW in both diabetic groups; apocynin did not affect these indices. LV systolic function was impaired in DM groups and unchanged by apocynin. Isovolumic relaxation time was increased in DM groups; transmitral E/A ratio was higher in DM + APO compared to DM. Myocardial functional evaluation through papillary muscle preparations showed impaired contractile and relaxation function in both DM groups at baseline conditions. After positive inotropic stimulation, developed tension (DT) was lower in DM than CTL. In DM + APO, DT had values between those in DM and CTL + APO and did not significantly differ from either group. Myocardial interstitial collagen fraction was higher in DM than CTL and did not differ between DM + APO and CTL + APO. Serum activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD), and catalase was lower in DM than CTL; apocynin restored catalase and SOD levels in DM + APO. Myocardial NADPH oxidase activity did not differ between groups. Conclusion Apocynin restores serum antioxidant enzyme activity despite unchanged myocardial NADPH oxidase activity in diabetic rats.
Collapse
Affiliation(s)
- R Gimenes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - C Gimenes
- Sagrado Coração University, Bauru, SP, Brazil
| | - C M Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - N P Xavier
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - D H S Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - A A H Fernandes
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M D M Cezar
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - G N Guirado
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - L U Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - I D Chaer
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - D C Fernandes
- Department of Cardiopneumology, Medical School, Sao Paulo University, USP, São Paulo, Brazil
| | - F R Laurindo
- Department of Cardiopneumology, Medical School, Sao Paulo University, USP, São Paulo, Brazil
| | - A C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, Sao Paulo State University, UNESP, Rubiao Junior, S/N, Botucatu, SP, CEP 18618-687, Brazil.
| |
Collapse
|
17
|
Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 2017; 8:20428-20440. [PMID: 28099900 PMCID: PMC5386774 DOI: 10.18632/oncotarget.14670] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Luana Urbano Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo Luiz Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Aline Regina Ruiz Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
18
|
Lima ARR, Pagan LU, Damatto RL, Cezar MDM, Bonomo C, Gomes MJ, Martinez PF, Guizoni DM, Campos DHS, Damatto FC, Okoshi K, Okoshi MP. Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget 2017; 8:83009-83021. [PMID: 29137319 PMCID: PMC5669945 DOI: 10.18632/oncotarget.20583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Skeletal muscle wasting is often observed in heart failure (HF). The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is impaired in HF. In this study, we evaluated the effects of GH on soleus muscle and cardiac remodeling in rats with aortic stenosis (AS)-induced HF. Methods AS was created by placing a stainless-steel clip on the ascending aorta. After clinically detecting HF, GH (2 mg/kg/day) was subcutaneously injected for 14 days (AS-GH group). Results were compared with those from Sham and non-treated AS groups. Transthoracic echocardiogram was performed before and after treatment. Protein expression was evaluated by Western blot and satellite cells activation by immunofluorescence. Statistical analyzes: ANOVA and Tukey or Kruskal-Wallis and Student-Newman-Keuls. Results Before treatment both AS groups presented a similar degree of cardiac injury. GH prevented body weight loss and attenuated systolic dysfunction. Soleus cross-sectional fiber areas were lower in both AS groups than Sham (Sham 3,556±447; AS 2,882±422; AS-GH 2,868±591 μm2; p=0.016). GH increased IGF-1 serum concentration (Sham 938±83; AS 866±116; AS-GH 1167±166 ng/mL; p<0.0001) and IGF-1 muscle protein expression and activated PI3K protein. Neural cell adhesion molecule (NCAM) immunofluorescence was increased in both AS groups. Catabolism-related intracellular pathways did not differ between groups. Conclusion Short-term growth hormone attenuates left ventricular systolic dysfunction in rats with aortic stenosis-induced HF. Despite preserving body weight, increasing serum and muscular IGF-1 levels, and stimulating PI3K muscle expression, GH does not modulate soleus muscle trophism, satellite cells activation or intracellular pathways associated with muscle catabolism.
Collapse
Affiliation(s)
- Aline R R Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Daniele M Guizoni
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Dijon H S Campos
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Felipe C Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
19
|
Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol 2016; 15:126. [PMID: 27585437 PMCID: PMC5009715 DOI: 10.1186/s12933-016-0442-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although increased oxidative stress is a major component of diabetic hypertensive cardiomyopathy, research into the effects of antioxidants on cardiac remodeling remains scarce. The actions of antioxidant apocynin include inhibiting reactive oxygen species (ROS) generation by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and ROS scavenging. We evaluated the effects of apocynin on cardiac remodeling in spontaneously hypertensive rats (SHR) with diabetes mellitus (DM). METHODS Male SHR were divided into four groups: control (SHR, n = 16); SHR treated with apocynin (SHR-APO; 16 mg/kg/day, added to drinking water; n = 16); diabetic SHR (SHR-DM, n = 13); and SHR-DM treated with apocynin (SHR-DM-APO, n = 14), for eight weeks. DM was induced by streptozotocin (40 mg/kg, single dose). Statistical analyzes: ANOVA and Tukey or Mann-Whitney. RESULTS Echocardiogram in diabetic groups showed higher left ventricular and left atrium diameters indexed for body weight, and higher isovolumetric relaxation time than normoglycemic rats; systolic function did not differ between groups. Isolated papillary muscle showed impaired contractile and relaxation function in diabetic groups. Developed tension was lower in SHR-APO than SHR. Myocardial hydroxyproline concentration was higher in SHR-DM than SHR, interstitial collagen fraction was higher in SHR-DM-APO than SHR-APO, and type III collagen protein expression was lower in SHR-DM and SHR-DM-APO than their controls. Type I collagen and lysyl oxidase expression did not differ between groups. Apocynin did not change collagen tissue. Myocardial lipid hydroperoxide concentration was higher in SHR-DM than SHR and SHR-DM-APO. Glutathione peroxidase activity was lower and catalase higher in SHR-DM than SHR. Apocynin attenuated antioxidant enzyme activity changes in SHR-DM-APO. Advanced glycation end-products and NADPH oxidase activity did not differ between groups. CONCLUSION Apocynin reduces oxidative stress independently of NADPH oxidase activity and does not change ventricular or myocardial function in spontaneously hypertensive rats with diabetes mellitus. The apocynin-induced myocardial functional impairment in SHR shows that apocynin actions need to be clarified during sustained chronic pressure overload.
Collapse
|
20
|
Guizoni DM, Oliveira-Junior SA, Noor SLR, Pagan LU, Martinez PF, Lima ARR, Gomes MJ, Damatto RL, Cezar MDM, Bonomo C, Zornoff LAM, Okoshi K, Okoshi MP. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol 2016; 221:406-12. [PMID: 27404715 DOI: 10.1016/j.ijcard.2016.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Physical exercise attenuates myocardial infarction (MI)-induced cardiac remodeling. However, it is unsettled whether late exercise modulates post-infarction cardiac remodeling differentially according to infarct size. We investigated the effects of exercise started at late stage heart failure on cardiac remodeling in rats with moderate and large sized MI. METHODS Three months after MI, rats were assigned into sedentary and exercise groups. Exercise rats underwent treadmill for three months. After assessing infarct size by histological analysis, rats were subdivided into four groups: moderate MI sedentary (Mod MI-Sed; n=7), Mod MI exercised (Mod MI-Ex; n=7), Large MI-Sed (n=11), and Large MI-Ex (n=10). RESULTS Before exercise, MI-induced cardiac changes were demonstrated by comparing results to a Sham group; alterations were more intense in rats with large than moderate MI size. Systolic function, evaluated by echocardiogram using the variation in LV fractional area change between after and before exercise, was improved in exercise than sedentary groups. Calsequestrin expression increased in exercised compared to sedentary groups. L-type calcium channel was higher in Mod MI-Ex than Mod MI-Sed. SERCA2a, phospholamban, and Na(+)/Ca(2+) exchanger expression did not differ between groups. CONCLUSION Late exercise improves systolic function and modulates intracellular calcium signaling proteins in rats with moderate and large MI.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | | | - Sefora L R Noor
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil; School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|