1
|
Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons. Mol Neurobiol 2020; 57:3568-3588. [PMID: 32542595 DOI: 10.1007/s12035-020-01966-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
The neuregulins (Nrgs 1-4) are a family of signaling molecules that play diverse roles in the nervous system. Nrg1 has been implicated in the formation of synapses and in synaptic plasticity. Previous studies have shown Nrg1 can affect neurite outgrowth in several neuronal populations, while the role of Nrg2 and Nrg3 in this process has remained understudied. The Nrgs can bind and activate the ErbB4 receptor tyrosine kinase which is preferentially expressed in GABAergic interneurons in the rodent hippocampus and cerebral cortex. In the present study, we evaluated the effects of Nrgs 1, 2, and 3 on neurite outgrowth of dissociated rat cortical ErbB4-positive (+)/GABA+ interneurons in vitro. All three Nrgs were able to promote neurite outgrowth during the first 2 days in vitro, with increases detected for both the axon (116-120%) and other neurites (100-120%). Increases in the average number of primary and secondary neurites were also observed. Treatment with the Nrgs for an additional 3 days promoted an increase in axonal length (86-96%), with only minimal effects on the remaining neurites (8-13%). ErbB4 expression persisted throughout the dendritic arbor and cell soma at all stages examined, while its expression in the axon was transient and declined with cell maturation. ErbB4 overexpression in GABAergic neurons promoted neurite outgrowth, an effect that was potentiated by Nrg treatment. These results show that Nrgs 1, 2, and 3 are each capable of influencing dendritic and axonal growth at early developmental stages in GABAergic neurons grown in vitro.
Collapse
|
2
|
Turko P, Groberman K, Browa F, Cobb S, Vida I. Differential Dependence of GABAergic and Glutamatergic Neurons on Glia for the Establishment of Synaptic Transmission. Cereb Cortex 2020; 29:1230-1243. [PMID: 29425353 DOI: 10.1093/cercor/bhy029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/17/2018] [Indexed: 11/14/2022] Open
Abstract
In the mammalian cortex, GABAergic and glutamatergic neurons represent 2 major neuronal classes, which establish inhibitory and excitatory synapses, respectively. Despite differences in their anatomy, physiology and developmental origin, both cell types require support from glial cells, particularly astrocytes, for their growth and survival. Recent experiments indicate that glutamatergic neurons also depend on astrocytes for synapse formation. However, it is not clear if the same holds true for GABAergic neurons. By studying highly pure GABAergic cell cultures, established through fluorescent activated cell sorting, we find that purified GABAergic neurons are smaller and have reduced survival, nevertheless they establish robust synaptic transmission in the absence of glia. Support from glial cells reverses morphological and survival deficits, but does little to alter synaptic transmission. In contrast, in cultures of purified glutamatergic neurons, morphological development, survival and synaptic transmission are collectively dependent on glial support. Thus, our results demonstrate a fundamental difference in the way GABAergic and glutamatergic neurons depend on glia for the establishment of synaptic transmission, a finding that has important implications for our understanding of how neuronal networks develop.
Collapse
Affiliation(s)
- Paul Turko
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Keenan Groberman
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ferdinand Browa
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Imre Vida
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Sancandi M, Uysal-Onganer P, Kraev I, Mercer A, Lange S. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21082743. [PMID: 32326590 PMCID: PMC7215947 DOI: 10.3390/ijms21082743] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of biomarkers for early diagnosis of Parkinson’s disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to “Alzheimer’s disease”, “PD”, “Huntington’s disease”, “prion diseases”, as well as for “oxidative phosphorylation”, “thermogenesis”, “metabolic pathways”, “Staphylococcus aureus infection”, gap junction, “platelet activation”, “apelin signalling”, “retrograde endocannabinoid signalling”, “systemic lupus erythematosus”, and “non-alcoholic fatty liver disease”. Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.
Collapse
Affiliation(s)
- Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (M.S.); (A.M.)
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (M.S.); (A.M.)
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000 (ext. 64832)
| |
Collapse
|
4
|
Nobili A, Krashia P, Cordella A, La Barbera L, Dell'Acqua MC, Caruso A, Pignataro A, Marino R, Sciarra F, Biamonte F, Scattoni ML, Ammassari-Teule M, Cecconi F, Berretta N, Keller F, Mercuri NB, D'Amelio M. Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders. Mol Neurobiol 2018; 55:7921-7940. [PMID: 29488136 PMCID: PMC6132777 DOI: 10.1007/s12035-018-0911-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023]
Abstract
Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra+/−) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1+/− females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Annalisa Nobili
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy. .,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.
| | - Alberto Cordella
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Livia La Barbera
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Maria Concetta Dell'Acqua
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità (ISS), 00161, Rome, Italy
| | - Annabella Pignataro
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Francesca Sciarra
- Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, "A. Gemelli" Faculty of Medicine, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità (ISS), 00161, Rome, Italy
| | - Martine Ammassari-Teule
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), 00143, Rome, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', 00133, Rome, Italy.,Cell Stress and Survival Group, Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark.,Department of Pediatric Hematology and Oncology, IRCSS Bambino Gesu Children's Hospital, 00165, Rome, Italy
| | - Nicola Berretta
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Flavio Keller
- Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.,Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy. .,Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy.
| |
Collapse
|
5
|
Höfflin F, Jack A, Riedel C, Mack-Bucher J, Roos J, Corcelli C, Schultz C, Wahle P, Engelhardt M. Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex. Front Cell Neurosci 2017; 11:332. [PMID: 29170630 PMCID: PMC5684645 DOI: 10.3389/fncel.2017.00332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
The microdomain that orchestrates action potential initiation in neurons is the axon initial segment (AIS). It has long been considered to be a rather homogeneous domain at the very proximal axon hillock with relatively stable length, particularly in cortical pyramidal cells. However, studies in other brain regions paint a different picture. In hippocampal CA1, up to 50% of axons emerge from basal dendrites. Further, in about 30% of thick-tufted layer V pyramidal neurons in rat somatosensory cortex, axons have a dendritic origin. Consequently, the AIS is separated from the soma. Recent in vitro and in vivo studies have shown that cellular excitability is a function of AIS length/position and somatodendritic morphology, undermining a potentially significant impact of AIS heterogeneity for neuronal function. We therefore investigated neocortical axon morphology and AIS composition, hypothesizing that the initial observation of seemingly homogeneous AIS is inadequate and needs to take into account neuronal cell types. Here, we biolistically transfected cortical neurons in organotypic cultures to visualize the entire neuron and classify cell types in combination with immunolabeling against AIS markers. Using confocal microscopy and morphometric analysis, we investigated axon origin, AIS position, length, diameter as well as distance to the soma. We find a substantial AIS heterogeneity in visual cortical neurons, classified into three groups: (I) axons with somatic origin with proximal AIS at the axon hillock; (II) axons with somatic origin with distal AIS, with a discernible gap between the AIS and the soma; and (III) axons with dendritic origin (axon-carrying dendrite cell, AcD cell) and an AIS either starting directly at the axon origin or more distal to that point. Pyramidal cells have significantly longer AIS than interneurons. Interneurons with vertical columnar axonal projections have significantly more distal AIS locations than all other cells with their prevailing phenotype as an AcD cell. In contrast, neurons with perisomatic terminations display most often an axon originating from the soma. Our data contribute to the emerging understanding that AIS morphology is highly variable, and potentially a function of the cell type.
Collapse
Affiliation(s)
- Felix Höfflin
- Institute of Neuroanatomy, Medical Faculty Mannheim, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Heidelberg, Germany
| | - Alexander Jack
- Developmental Neurobiology, Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Julia Mack-Bucher
- Live Cell Imaging Core Mannheim (LIMA), Medical Faculty Mannheim, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Heidelberg, Germany
| | - Johannes Roos
- Institute of Neuroanatomy, Medical Faculty Mannheim, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Heidelberg, Germany
| | - Corinna Corcelli
- Institute of Neuroanatomy, Medical Faculty Mannheim, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Heidelberg, Germany
| | - Christian Schultz
- Institute of Neuroanatomy, Medical Faculty Mannheim, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Heidelberg, Germany
| | - Petra Wahle
- Developmental Neurobiology, Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus. J Neurosci 2016; 35:15276-90. [PMID: 26586816 DOI: 10.1523/jneurosci.1834-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders. Transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, is a consistent pathophysiological feature of schizophrenia. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that in hippocampus is highly concentrated in inhibitory interneurons and regulates parvalbumin transcription. Here, we used PGC-1α(-/-) mice to investigate effects of interneuron transcriptional dysregulation on the dynamics of the I/E ratio at the synaptic and circuit level in hippocampus. We find that loss of PGC-1α increases the I/E ratio onto CA1 pyramidal cells in response to Schaffer collateral stimulation in slices from young adult mice. The underlying mechanism is enhanced basal inhibition, including increased inhibition from parvalbumin interneurons. This decreases the spread of activation in CA1 and dramatically limits pyramidal cell spiking, reducing hippocampal output. The I/E ratio and CA1 output are partially restored by paired-pulse stimulation at short intervals, indicating frequency-dependent effects. However, circuit dysfunction persists, indicated by alterations in kainate-induced gamma oscillations and impaired nest building. Together, these results show that transcriptional dysregulation in hippocampal interneurons causes frequency-dependent alterations in I/E ratio and circuit function, suggesting that PGC-1α deficiency in psychiatric and neurological disorders contributes to disease by causing functionally relevant alterations in I/E balance. SIGNIFICANCE STATEMENT Alteration in the inhibitory and excitatory synaptic transmission (I/E) balance is a fundamental principle underlying the circuit dysfunction observed in many neuropsychiatric and neurodevelopmental disorders. The I/E ratio is dynamic, continuously changing because of synaptic short-term plasticity. We show here that transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, causes frequency-dependent alterations in the I/E ratio and in circuit function in hippocampus. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α-deficient) mice have enhanced inhibition in CA1, the opposite of what is seen in cortex. This study fills an important gap in current understanding of how changes in inhibition in complex brain disorders affect I/E dynamics, leading to region-specific circuit dysfunction and behavioral impairment. This study also provides a conceptual framework for analyzing the effects of short-term plasticity on the I/E balance in disease models.
Collapse
|
7
|
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sci 2015; 5:456-93. [PMID: 26529026 PMCID: PMC4701023 DOI: 10.3390/brainsci5040456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
Collapse
|
8
|
Gandal MJ, Nesbitt AM, McCurdy RM, Alter MD. Measuring the maturity of the fast-spiking interneuron transcriptional program in autism, schizophrenia, and bipolar disorder. PLoS One 2012; 7:e41215. [PMID: 22936973 PMCID: PMC3427326 DOI: 10.1371/journal.pone.0041215] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/24/2012] [Indexed: 01/02/2023] Open
Abstract
Background Emerging evidence suggests that fast-spiking (FS) interneurons are disrupted in multiple neuropsychiatric disorders including autism, schizophrenia, and bipolar disorder. FS cells, which are the primary source of synaptic inhibition, are critical for temporally organizing brain activity, regulating brain maturation, and modulating critical developmental periods in multiple cortical systems. Reduced expression of parvalbumin, a marker of mature FS cells, has been reported in individuals with schizophrenia and bipolar disorder and in mouse models of schizophrenia and autism. Although these results suggest that FS cells may be immature in neuropsychiatric disease, this possibility had not previously been formally assessed. Methods This study used time-course global expression data from developing FS cells to create a maturation index that tracked with the developmental age of purified cortical FS cells. The FS cell maturation index was then applied to global gene expression data from human cortex to estimate the maturity of the FS cell developmental program in the context of various disease states. Specificity of the index for FS cells was supported by a highly significant correlation of maturation index measurements with parvalbumin expression levels that withstood correction for multiple covariates. Conclusions Results suggest the FS cell developmental gene expression program is immature in autism, schizophrenia, and bipolar disorder. More broadly, the current study indicates that cell-type specific maturation indices can be used to measure the maturity of developmental programs even in data from mixed cell types such as those found in brain homogenates.
Collapse
Affiliation(s)
| | | | | | - Mark D. Alter
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Allard S, Scardochio T, Cuello AC, Ribeiro-da-Silva A. Correlation of cognitive performance and morphological changes in neocortical pyramidal neurons in aging. Neurobiol Aging 2012; 33:1466-80. [PMID: 21163553 PMCID: PMC3116944 DOI: 10.1016/j.neurobiolaging.2010.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/12/2010] [Accepted: 10/16/2010] [Indexed: 12/24/2022]
Abstract
It is well established that the cerebral cortex undergoes extensive remodeling in aging. In this study, we used behaviorally characterized rats to correlate age-related morphological changes with cognitive impairment. For this, young and aged animals were tested in the Morris water maze to evaluate their cognitive performance. Following behavioral characterization, the animals were perfused and a combination of intracellular labeling and immunohistochemistry was applied. Using this approach, we characterized the dendritic morphology of cortical pyramidal neurons as well as the pattern of glutamatergic and GABAergic appositions on their cell bodies and dendrites. We focused on the association region of the parietal cortex (LtPA) and the medial prefrontal cortex (mPFC) for their involvement in the Morris water maze task. We found an age-related atrophy of distal basal dendrites that did not differ between aged cognitively unimpaired (AU) and aged cognitively impaired animals (AI). Dendritic spines and glutamatergic appositions generally decreased from young to AU and from AU to AI rats. On the other hand, GABAergic appositions only showed a trend towards a decrease in AU rats. Collectively, the data show that the ratio of excitatory/inhibitory inputs was only altered in AI animals. When cortical cholinergic varicosities were labeled on alternate sections, we found that AI animals also had a significant reduction of cortical cholinergic boutons compared with AU or young animals. In aged animals, the density of cortical cholinergic varicosities correlated with the excitatory/inhibitory ratio. Our data suggest that both cholinergic atrophy and an imbalance towards inhibition may contribute to the observed age-associated behavioral impairment.
Collapse
Affiliation(s)
- Simon Allard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Tina Scardochio
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - A. Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| |
Collapse
|
10
|
Striatum–hippocampus balance: From physiological behavior to interneuronal pathology. Prog Neurobiol 2011; 94:102-14. [DOI: 10.1016/j.pneurobio.2011.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
|
11
|
Basavarajappa BS, Nixon RA, Arancio O. Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 2009; 9:448-62. [PMID: 19356123 DOI: 10.2174/138955709787847921] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
12
|
Abstract
The manner in which hippocampus processes neural signals is thought to be central to the memory encoding process. A theoretically oriented literature has suggested that this is carried out via "attractors" or distinctive spatio-temporal patterns of activity. However, these ideas have not been thoroughly investigated using computational models featuring both realistic single-cell physiology and detailed cell-to-cell connectivity. Here we present a 452 cell simulation based on Traub et al.'s pyramidal cell [Traub RD, Jefferys JG, Miles R, Whittington MA, Toth K. A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol (Lond) 1994;481:79-95] and interneuron [Traub RD, Miles R, Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J Comput Neurosci 1995;2:291-8] models, incorporating patterns of synaptic connectivity based on an extensive review of the neuroanatomic literature. When stimulated with a one second physiologically realistic input, our simulated tissue shows the ability to hold activity on-line for several seconds; furthermore, its spiking activity, as measured by frequency and interspike interval (ISI) distributions, resembles that of in vivo hippocampus. An interesting emergent property of the system is its tendency to transition from stable state to stable state, a behavior consistent with recent experimental findings [Sasaki T, Matsuki N, Ikegaya Y. Metastability of active CA3 networks. J Neurosci 2007;27:517-28]. Inspection of spike trains and simulated blockade of K(AHP) channels suggest that this is mediated by spike frequency adaptation. This finding, in conjunction with studies showing that apamin, a K(AHP) channel blocker, enhances the memory consolidation process in laboratory animals, suggests the formation of stable attractor states is central to the process by which memories are encoded. Ways that this methodology could shed light on the etiology of mental illness, such as schizophrenia, are discussed.
Collapse
Affiliation(s)
- Peter J Siekmeier
- Harvard Medical School and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
13
|
Zhang H, Wang Y, Zhao Y, Yin Y, Xu Q, Xu Q. Immortalized human neural progenitor cells from the ventral telencephalon with the potential to differentiate into GABAergic neurons. J Neurosci Res 2008; 86:1217-26. [PMID: 18189314 DOI: 10.1002/jnr.21581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human neural progenitor cells (hNPCs) are believed to have important potential in clinical applications and basic neuroscience research. In the present study, we created a new immortalized human neural cell line, hSN12W-TERT, derived from human fetal ventral telencephalon, using IRES-based retroviral overexpression of human telomerase reverse transcriptase. We showed that after more than 40 passages, hSN12W-TERT cells possess high telomerase activity, maintain a normal diploid karyotype, and retain the characteristics of hNPCs. Under proliferative conditions, these cells remained undifferentiated, expressing the neural progenitor cell markers nestin, vimentin, and Sox2. The cells were able to differentiate into neurons, astrocytes, and oligodendrocytes after a significant decrease in the level of telomerase following withdrawal of growth factors. The neurons were postmitotic and achieved electrophysiologic competence. Furthermore, we showed that most neurons were GABAergic, especially on differentiation induced by bone morphogenetic protein-2 (BMP2). RT-PCR analysis also confirmed that hSN12W-TERT cells expressed mammalian achaete-scute homolog 1 (Mash1) and Dlx2, genes associated with the development of GABAergic cortical interneurons. BMP2 exposure may activate a positive-feedback loop of BMP signaling in hSN12W-TERT cells. Our data indicated that this hSN12W-TERT cell line could be a valuable experimental tool with which to study the regulatory roles of intrinsic and extrinsic factors in human neural stem cell biology and that it would be useful in basic research and in research seeking to discover novel drug targets for clinical candidates.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Cell Biology, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Harkany T, Keimpema E, Barabás K, Mulder J. Endocannabinoid functions controlling neuronal specification during brain development. Mol Cell Endocrinol 2008; 286:S84-90. [PMID: 18394789 DOI: 10.1016/j.mce.2008.02.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 01/30/2023]
Abstract
Endocannabinoids (eCBs) regulate a broad range of physiological functions in the postnatal brain and are implicated in the neuropathogenesis of psychiatric and metabolic diseases. Accumulating evidence indicates that eCB signaling also serves key functions during neurodevelopment; and is inherently involved in the control of neurogenesis, neural progenitor proliferation, lineage segregation, and the migration and phenotypic specification of immature neurons. Recent advances in developmental biology define fundamental eCB-driven cellular mechanisms that also contribute to our understanding of the molecular substrates of prenatal drug, in particular cannabis, actions. Here, we summarize known organizing principles of eCB-signaling systems in the developing telencephalon, and outline the sequence of decision points and underlying signaling pathways upon CB1 cannabinoid receptor activation that contribute to neuronal diversification in the developing brain. Finally, we discuss how these novel principles affect the formation of complex neuronal networks.
Collapse
Affiliation(s)
- Tibor Harkany
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Liu Q, Puche AC, Wang JB. Distribution and Expression of Protein Kinase C Interactive Protein (PKCI/HINT1) in Mouse Central Nervous System (CNS). Neurochem Res 2008; 33:1263-76. [DOI: 10.1007/s11064-007-9578-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 12/20/2007] [Indexed: 11/30/2022]
|
16
|
Harkany T, Guzmán M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 2007; 28:83-92. [PMID: 17222464 DOI: 10.1016/j.tips.2006.12.004] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/08/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
In the postnatal brain, endocannabinoids acting as retrograde messengers regulate the function of many synapses. By contrast, the understanding of endocannabinoid functions that regulate fundamental developmental processes such as cell proliferation, migration, differentiation and survival during patterning of the CNS is just beginning to unfold. Increasing the knowledge of basic developmental and signaling principles that are controlled by endocannabinoids will provide important insights into the molecular mechanisms that establish functional neuronal circuits in the brain. Moreover, determining the molecular basis of permanent modifications to cellular structure and intercellular communication imposed by cannabis smoking during pregnancy will provide novel therapeutic targets for alleviating pathogenic changes in affected offspring. Here, we summarize recent findings regarding the ontogeny of the endocannabinoid system in neurons that sculpt the temporal and spatial diversity of cellular functions during CNS development.
Collapse
Affiliation(s)
- Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Schliebs R. Molecular mechanisms of neurodegeneration and neuroprotection—experimental approaches and the diseased brain. Int J Dev Neurosci 2004; 22:441-2. [PMID: 15465273 DOI: 10.1016/j.ijdevneu.2004.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 10/26/2022] Open
|