1
|
Calderón Guzmán D, Juárez Olguín H, Osnaya Brizuela N, Ortíz Herrera M, Trujillo Jimenez F, Valenzuela Peraza A, Labra Ruiz N, Santamaria Del Angel D, Barragán Mejía G. Oleic acid reduces oxidative stress in rat brain induced by some anticancer drugs. Chem Biol Interact 2024; 398:111086. [PMID: 38825054 DOI: 10.1016/j.cbi.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Oleic acid (OA) is a monounsaturated compound with many health-benefitting properties such as obesity prevention, increased insulin sensitivity, antihypertensive and immune-boosting properties, etc. The aim of this study was to analyze the effect of oleic acid (OA) and some anticancer drugs against oxidative damage induced by nitropropionic acid (NPA) in rat brain. Six groups of Wistar rats were treated as follows: Group 1, (control); group 2, OA; group 3, NPA + OA; group 4, cyclophosphamide (CPP) + OA; group 5, daunorubicin (DRB) + OA; and group 6, dexrazoxane (DXZ) + OA. All compounds were administered intraperitoneally route, every 24 h for 5 days. Their brains were extracted to measure lipoperoxidation (TBARS), H2O2, Ca+2, Mg+2 ATPase activity, glutathione (GSH) and dopamine. Glucose, hemoglobin and triglycerides were measured in blood. In cortex GSH increased in all groups, except in group 2, the group 4 showed the highest increase of this biomarker. TBARS decrease, and dopamine increase in all regions of groups 4, 5 and 6. H2O2 increased only in cerebellum/medulla oblongata of group 5 and 6. ATPase expression decreased in striatum of group 4. Glucose increased in group 6, and hemoglobin increased in groups 4 and 5. These results suggest that the increase of dopamine and the antioxidant effect of oleic acid administration during treatment with oncologic agents could result in less brain injury.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), CP 04530, Mexico City, Mexico
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, INP. and Dept of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, CP 04530, Mexico.
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), CP 04530, Mexico City, Mexico
| | | | - Francisca Trujillo Jimenez
- Laboratory of Pharmacology, INP. and Dept of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, CP 04530, Mexico
| | | | - Norma Labra Ruiz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), CP 04530, Mexico City, Mexico
| | | | | |
Collapse
|
2
|
Calderón Guzmán D, Osnaya Brizuela N, Ortíz Herrera M, Valenzuela Peraza A, Labra Ruíz N, Juárez Olguín H, Santamaria del Angel D, Barragán Mejía G. N-Acetylcysteine Attenuates Cisplatin Toxicity in the Cerebrum and Lung of Young Rats with Artificially Induced Protein Deficiency. Int J Mol Sci 2024; 25:6239. [PMID: 38892427 PMCID: PMC11172823 DOI: 10.3390/ijms25116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Neurotoxicity is a major obstacle in the effectiveness of Cisplatin in cancer chemotherapy. In this process, oxidative stress and inflammation are considered to be the main mechanisms involved in brain and lung toxicity. The aim of the present work was to study the influence of the amount of protein on some oxidative parameters in the brain and lungs of rats treated with Cisplatin (CP) and N-Acetylcysteine (NAC) as neuroprotectors. Four groups of Wistar rats, each containing six animals, were fed with a protein diet at 7% for 15 days. Thereafter, the groups were given either a unique dose of CP® 5 mg/kg or NAC® 5 mg/kg as follows: group 1 (control), NaCl 0.9% vehicle; group 2, CP; group 3, NAC; and group 4, NAC + CP. The animals were sacrificed immediately after the treatments. Blood samples were collected upon sacrifice and used to measure blood triglycerides and glucose. The brain and lungs of each animal were obtained and used to assay lipid peroxidation (TBARS), glutathione (GSH), serotonin metabolite (5-HIAA), catalase, and the activity of Ca+2, and Mg+2 ATPase using validated methods. TBARS, H2O2, and GSH were found to be significantly decreased in the cortex and cerebellum/medulla oblongata of the groups treated with CP and NAC. The total ATPase showed a significant increase in the lung and cerebellum/medulla oblongata, while 5-HIAA showed the same tendency in the cortex of the same group of animals. The increase in 5-HIAA and ATPase during NAC and CP administration resulted in brain protection. This effect could be even more powerful when membrane fluidity is increased, thus proving the efficacy of combined NAC and CP drug therapy, which appears to be a promising strategy for future chemotherapy in malnourished patients.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria INP, Mexico City 04530, Mexico; (M.O.H.); (G.B.M.)
| | - Armando Valenzuela Peraza
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Norma Labra Ruíz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, Instituto Nacional de Pediatría, Avenida Imán N° 1, 3rd piso Colonia Cuicuilco, Mexico City 04530, Mexico
| | - Daniel Santamaria del Angel
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Gerardo Barragán Mejía
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria INP, Mexico City 04530, Mexico; (M.O.H.); (G.B.M.)
| |
Collapse
|
3
|
Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, Peraza AV, Ruíz NL, Mejía GB. Intake of oligoelements with cytarabine or etoposide alters dopamine levels and oxidative damage in rat brain. Sci Rep 2024; 14:10835. [PMID: 38736022 PMCID: PMC11089036 DOI: 10.1038/s41598-024-61766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.
Collapse
Affiliation(s)
| | | | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, Instituto Nacional de Pediatria, Av. Iman No.1, 3er piso, Col. Cuicuilco, 04530, Mexico City, CP, Mexico.
- Department of Pharmacology, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| | | | - Norma Labra Ruíz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Gerardo Barragán Mejía
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria, Mexico City, Mexico
| |
Collapse
|
4
|
Manoj KM, Gideon DA, Bazhin NM, Tamagawa H, Nirusimhan V, Kavdia M, Jaeken L. Na,K-ATPase: A murzyme facilitating thermodynamic equilibriums at the membrane-interface. J Cell Physiol 2023; 238:109-136. [PMID: 36502470 DOI: 10.1002/jcp.30925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The redox metabolic paradigm of murburn concept advocates that diffusible reactive species (DRS, particularly oxygen-centric radicals) are mainstays of physiology, and not mere pathological manifestations. The murburn purview of cellular function also integrates the essential principles of bioenergetics, thermogenesis, homeostasis, electrophysiology, and coherence. In this context, any enzyme that generates/modulates/utilizes/sustains DRS functionality is called a murzyme. We have demonstrated that several water-soluble (peroxidases, lactate dehydrogenase, hemogoblin, etc.) and membrane-embedded (Complexes I-V in mitochondria, Photosystems I/II in chloroplasts, rhodopsin/transducin in rod cells, etc.) proteins serve as murzymes. The membrane protein of Na,K-ATPase (NKA, also known as sodium-potassium pump) is the focus of this article, owing to its centrality in neuro-cardio-musculo electrophysiology. Herein, via a series of critical queries starting from the geometric/spatio-temporal considerations of diffusion/mass transfer of solutes in cells to an update on structural/distributional features of NKA in diverse cellular systems, and from various mechanistic aspects of ion-transport (thermodynamics, osmoregulation, evolutionary dictates, etc.) to assays/explanations of inhibitory principles like cardiotonic steroids (CTS), we first highlight some unresolved problems in the field. Thereafter, we propose and apply a minimalist murburn model of trans-membrane ion-differentiation by NKA to address the physiological inhibitory effects of trans-dermal peptide, lithium ion, volatile anesthetics, confirmed interfacial DRS + proton modulators like nitrophenolics and unsaturated fatty acid, and the diverse classes of molecules like CTS, arginine, oximes, etc. These explanations find a pan-systemic connectivity with the inhibitions/uncouplings of other membrane proteins in cells.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Daniel A Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Nikolai M Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Vijay Nirusimhan
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Antwerp, Belgium
| |
Collapse
|
5
|
Chaudhary S, Parvez S. Neuroprotective Effects of Natural Antioxidants Against Branched-Chain Fatty Acid-Induced Oxidative Stress in Cerebral Cortex and Cerebellum Regions of the Rat Brain. ACS OMEGA 2022; 7:38269-38276. [PMID: 36340064 PMCID: PMC9631910 DOI: 10.1021/acsomega.2c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Valproic acid (VPA) is short branched-chain fatty acid (BCFA) derived from valeric acids which are naturally produced by Valeriana officinalis (flowering plant). Neurotoxicity caused by BCFA-like VPA may be mediated by oxidative stress, according to research involving the cerebral cortex and cerebellum. In the present study, we explored the possible protective effect of different antioxidants such as melatonin, quercetin, and piperine on VPA exposure by using a supernatant preparation of the cerebral cortex and cerebellum regions of the rat brain. The present study revealed that melatonin, quercetin, and piperine significantly prevented VPA-induced oxidative stress in the cerebral cortex and cerebellum regions. VPA was also observed to lower the level of reduced glutathione, and this effect was significantly mitigated by these antioxidants. Melatonin, quercetin, and piperine also ameliorated and altered the activities of AChE, Na+, K+ATPase, and MAO in the cerebral cortex and cerebellum. Results of this study also suggest that prior treatment of antioxidants like melatonin, quercetin, and piperine helps in combating the oxidative stress induced by VPA in the cerebral cortex and cerebellum region of the rat brain. Thus, sufficient dietary intake of these antioxidants by individuals at high risk of VPA exposure could prove beneficial in combating the adverse effect of VPA.
Collapse
Affiliation(s)
| | - Suhel Parvez
- . Phone: +91 11 26059688x5573. Fax: +91 11 26059663
| |
Collapse
|
6
|
de Moraes Meine B, Bona NP, Luduvico KP, de Souza Cardoso J, Spohr L, de Souza AÁ, Spanevello RM, Soares MSP, Stefanello FM. Ameliorative effect of tannic acid on hypermethioninemia-induced oxidative and nitrosative damage in rats: biochemical-based evidences in liver, kidney, brain, and serum. Amino Acids 2020; 52:1545-1558. [PMID: 33184691 DOI: 10.1007/s00726-020-02913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022]
Abstract
We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.
Collapse
Affiliation(s)
- Bernardo de Moraes Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Juliane de Souza Cardoso
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil
| | - Anita Ávila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| |
Collapse
|
7
|
Effect of Methionine Diet on Time-Related Metabolic and Histopathological Changes of Rat Hippocampus in the Model of Global Brain Ischemia. Biomolecules 2020; 10:biom10081128. [PMID: 32751764 PMCID: PMC7465067 DOI: 10.3390/biom10081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer's disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
Collapse
|
8
|
Franceschi TS, Soares MSP, Pedra NS, Bona NP, Spohr L, Teixeira FC, do Couto CAT, Spanevello RM, Deon M, Vargas CR, Braganhol E, Stefanello FM. Characterization of macrophage phenotype, redox, and purinergic response upon chronic treatment with methionine and methionine sulfoxide in mice. Amino Acids 2020; 52:629-638. [DOI: 10.1007/s00726-020-02841-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
|
9
|
Calderón Guzmán D, Osnaya Brizuela N, Ortiz Herrera M, Juárez Olguín H, Valenzuela Peraza A, Hernández García E, Barragán Mejía G. Folic acid increases levels of GHS in brain of rats with oxidative stress induced with 3-nitropropionic acid. Arch Physiol Biochem 2020; 126:1-6. [PMID: 30269600 DOI: 10.1080/13813455.2018.1484771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Aim: This study tested the hypothesis that folic acid (FA) modulates biogenic amines and protects the brain against oxidative stress induced by 3-nitropropionic acid (3NPA).Methods: Male Wistar rats received (groups of six) for 5 d: FA (50 mg/kg); 3NPA (10 mg/kg); or FA +3NPA. At last day, rats were sacrificed, and their brain was obtained to measure the levels of dopamine, 5-hydroxiindol acetic acid (5-HIAA). Reduced glutathione (GSH), total ATPase, H2O2 and lipid peroxidation were measured.Results: GSH increased significantly in cortex of rats treated with FA. ATPase increased significantly in cerebellum/medulla oblongata and decreased in cortex of animal treated with 3NPA. 5-HIAA increased in striatum of rats that received 3NPA alone or combined with FA.Conclusion: 3NPA generates free radicals such effect can be counteracted with FA administration since this folate increases antioxidant capacity and modulates biogenic amines.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Instituto Nacional de Pediatría (INP), Laboratorio de Neurociencias, Mexico City, México
| | - Norma Osnaya Brizuela
- Instituto Nacional de Pediatría (INP), Laboratorio de Neurociencias, Mexico City, México
| | | | - Hugo Juárez Olguín
- Laboratorio de Bacteriología Experimental, INP, Mexico City, México
- Laboratorio de Farmacología, INP. Facultad de Medicina UNAM, Mexico City, México
| | | | - Ernestina Hernández García
- Laboratorio de Bacteriología Experimental, INP, Mexico City, México
- Laboratorio de Farmacología, INP. Facultad de Medicina UNAM, Mexico City, México
| | - Gerardo Barragán Mejía
- Instituto Nacional de Pediatría (INP), Laboratorio de Neurociencias, Mexico City, México
| |
Collapse
|
10
|
Hypermethioninemia induces memory deficits and morphological changes in hippocampus of young rats: implications on pathogenesis. Amino Acids 2020; 52:371-385. [PMID: 31902007 DOI: 10.1007/s00726-019-02814-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.
Collapse
|
11
|
Figueiró PW, Moreira DDS, Dos Santos TM, Prezzi CA, Rohden F, Faccioni-Heuser MC, Manfredini V, Netto CA, Wyse ATS. The neuroprotective role of melatonin in a gestational hypermethioninemia model. Int J Dev Neurosci 2019; 78:198-209. [PMID: 31476364 DOI: 10.1016/j.ijdevneu.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na+,K+-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects. The aim of this study was to verify the possible neuroprotective effects of melatonin administration in hypermethioninemic pregnant rats on damage to biomolecules (Na+,K+-ATPase, sulfhydryl content and DNA damage index) and behavior (open field, novel object recognition and water maze tasks), as well as its effect on cells morphology by electron microscopy in offspring. Wistar female rats received methionine (2.68 μmol/g body weight) and/or melatonin (10 mg/kg body weight) by subcutaneous injections during entire pregnancy. Control rats received saline. Biochemical analyzes were performed at 21 and 30 days of life of offspring and behavioral analyzes were performed only at 30 days of age in male pups. Results showed that gestational hypermethioninemia diminished Na+,K+-ATPase activity and sulfhydryl content and increased DNA damage at 21 and 30 days of life. Melatonin was able to totally prevent Na+,K+-ATPase activity alteration at 21 days and partially prevent its alteration at 30 days of rats life. Melatonin was unable in to prevent sulfhydryl and DNA damage at two ages. It also improved DNA damage, but not at level of saline animals (controls). Regarding to behavioral tests, data showed that pups exposed to gestational hypermethioninemia decreased reference memory in water maze, spent more time to the center of the open field and did not differentiate the objects in the recognition test. Melatonin was able to prevent the deficit in novel object recognition task. Electron microscopy revealed ultrastructure alterations in neurons of hypermethioninemic at both ages of offspring, whose were prevented by melatonin. These findings suggest that melatonin may be a good neuroprotective to minimize the harmful effects of gestational hypermethioninemia on offspring.
Collapse
Affiliation(s)
- Paula W Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Daniella de S Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Caroline A Prezzi
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Francieli Rohden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Maria Cristina Faccioni-Heuser
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, ICBS, UFRGS, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Vanusa Manfredini
- Laboratório de Hematologia e Citologia Clínica, Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS, 97508-000, Brazil
| | - Carlos A Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
12
|
Guzmán DC, Brizuela NO, Herrera MO, Peraza AV, Juárez-Olguín H, Mejía GB. Insulin plus zinc induces a favorable biochemical response effects on oxidative damage and dopamine levels in rat brain. Int J Biol Macromol 2019; 132:230-235. [PMID: 30928372 DOI: 10.1016/j.ijbiomac.2019.03.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/27/2023]
Abstract
The aim was to determine the effect of zinc (Zn) and insulin on oxidative stress and levels of dopamine in brain of rats. Wistar rats were treated either with zinc alone or combined with insulin during 10 days. After the last dose blood glucose was measured. Their brains were extracted to measure H2O2, Ca+2, Mg+2 ATPase, glutathione (GSH), lipid peroxidation (Tbars) and Dopamine. Zn does not possess anti-glycemic effect like Insulin however, it is noticeable that the combination of Insulin plus Zn induces a major glucose reduction (p < 0.0001) than Insulin alone. In cerebellum/medulla oblongata, the groups treated with Insulin and Zn show a significantly increase in dopamine (p < 0.005). Insulin plus Zn reduced GSH level in cortex. Insulin plus Zn reduced level of H2O2 in Striatum and in cerebellum/medulla oblongata. Lipid peroxidation was significantly reduced by the administration of Insulin as in the combination of Insulin and Zn in all regions (p < 0.0001). In cerebellum medulla oblongata, ATPase activity showed an increase only in the group treated with Insulin + Zn. CONCLUSION: These results suggest that the use of insulin plus Zn produce favorable changes on oxidative stress and this as consequence on the levels of dopamine.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | | | - Hugo Juárez-Olguín
- Laboratory of Pharmacology, INP, Mexico City, Mexico; Department of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico.
| | | |
Collapse
|
13
|
Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, Peraza AV, García EH, Jiménez FT, Mejía GB. Cytarabine and Ferric Carboxymaltose (Fe+3) Increase Oxidative Damage and Alter Serotonergic Metabolism in Brain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:149-155. [PMID: 30484410 DOI: 10.2174/1871527318666181128144343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/07/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND & OBJECTIVE The purpose of this study was to measure the effect on brain biomarkers after treatment with anticancer compounds - cytarabine (CT) and ferric carboxymaltose (FC) (Fe+3) in Wistar rats. METHODS The Wistar rats were treated as follows: group 1 (control), NaCl 0.9%; group 2, CT (25 mg/k), group 3, FC(Fe+3) (50 mg/k) and group 4, CT + FC(Fe+3). The animals were sacrificed and their brains were obtained and used to measure lipoperoxidation (TBARS), H2O2, Na+, K+ ATPase, glutathione (GSH), serotonin metabolite (5-HIAA) and dopamine. The results indicated an enhancement of lipid peroxidation in the cortex and striatum of groups treated with FC(Fe+3) and CT, while GSH decreased in the cortex of group treated with CT + FC(Fe+3). Dopamine decreased in the cortex of the rats that received CT, while in the striatum, 5HIAA increased in all groups. RESULTS & CONCLUSION These results suggest that the treatment with CT and FC(Fe+3) boosted oxidative stress and led to an alteration in momoamine concentrations in the brain.
Collapse
Affiliation(s)
| | | | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, National Institute of Pediatrics, Mexico City, Mexico
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology. National Institute of Pediatrics, and Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Ernestina Hernández García
- Laboratory of Pharmacology. National Institute of Pediatrics, and Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Francisca Trujillo Jiménez
- Laboratory of Pharmacology. National Institute of Pediatrics, and Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
14
|
Peraza AV, Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, Silva ML, Tapia BJ, Mejía GB. Riboflavin and pyridoxine restore dopamine levels and reduce oxidative stress in brain of rats. BMC Neurosci 2018; 19:71. [PMID: 30413185 PMCID: PMC6230234 DOI: 10.1186/s12868-018-0474-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/06/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Neurological disorders suggest that the excitotoxicity involves a drastic increase in intracellular Ca2+ concentrations and the formation of reactive oxygen species. The presence of these free radicals may also affect the dopaminergic system. The aim of this work was to determine if riboflavin (B2) and pyridoxine (B6) provide protection to the brain against free radicals generated by 3-nitropropionic acid (3-NPA) by measuring the levels of dopamine (DA) and selected oxidative stress markers. METHODS Male Fisher rats were grouped (n = 6) and treated as follows: group 1, control (NaCl 0.9%); group 2, 3-NPA (20 mg/kg); group 3, B2 (10 mg/kg); group 4, B2 (10 mg/kg) + 3-NPA (20 mg/kg); group 5, B6 (10 mg/kg) and group 6, B6 + 3-NPA. All treatments were administered every 24 h for 5 days by intraperitoneal route. After sacrifice, the brain was obtained to measure DA, GSH, and lipid peroxidation, Ca2+, Mg2+, ATPase and H2O2. MAIN FINDINGS Levels of dopamine increased in cortex, striatum and cerebellum/medulla oblongata of animals that received 3-NPA alone. The lipid peroxidation increased in cortex, striatum, and cerebellum/medulla oblongata, of animals treated with B2 vitamin alone. ATPase dependent on Ca+2, Mg+2 and H2O2 increased in all regions of animals that received 3-NPA alone. CONCLUSION The results confirm the capacity of 3-NPA to generate oxidative stress. Besides, the study suggests that B2 or B6 vitamins restored the levels of DA and reduced oxidative stress in brain of rats. We believe that these results would help in the study of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - David Calderón Guzmán
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Norma Osnaya Brizuela
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | - Hugo Juárez Olguín
- Laboratorio de Farmacología, Instituto Nacional de Pediatría (INP), y Facultad de Medicina, Universidad Nacional Autónoma de México, Av Imán #1, 3er piso, Col Cuicuilco, CP 04530 Mexico City, Mexico
| | - Miroslava Lindoro Silva
- Laboratorio de Farmacología, Instituto Nacional de Pediatría (INP), y Facultad de Medicina, Universidad Nacional Autónoma de México, Av Imán #1, 3er piso, Col Cuicuilco, CP 04530 Mexico City, Mexico
| | - Belén Juárez Tapia
- Laboratorio de Farmacología, Instituto Nacional de Pediatría (INP), y Facultad de Medicina, Universidad Nacional Autónoma de México, Av Imán #1, 3er piso, Col Cuicuilco, CP 04530 Mexico City, Mexico
| | - Gerardo Barragán Mejía
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| |
Collapse
|
15
|
Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, Peraza AV, Mejía GB. β-Cyclodextrin and oleic acid increase levels of dopamine and potentiates oxidative damage in young and adult rat brain. Lipids Health Dis 2018; 17:172. [PMID: 30045742 PMCID: PMC6060500 DOI: 10.1186/s12944-018-0816-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background Cyclodextrins are active pharmaceutical ingredients to treat neurological diseases by reducing neurotoxicity. The aim of this study was to test if combined consumption of β-cyclodextrin (BCD) and Oleic acid (OA) potentiates brain antioxidant protection. Methods Four groups of young Wistar rats, grouped in 6 animals each, were treated as follows: Group (G) 1, saline solution 0.9% (control); G2, BCD (0.7 g/kg); G3, OA (15 ml/kg); G4, BCD + OA. The same design was assayed for groups of adult rats. Treatments were daily administered by oral means for five consecutive days. On the last day of administration, brains of the animals were extracted to measure dopamine, 5-HIAA, glutathione (GSH), ATPase, Lipoperoxidation and H2O2. Results Oleic acid and β-cyclodextrin upgraded the levels of dopamine, 5-HIAA and lipid peroxidation and downgraded the concentrations of GSH and H2O2 in cortex, hemispheres (striatum) and cerebellum/medulla oblongata regions. Conclusions The results of the present study suggest that combined use of oleic acid and β-cyclodextrin may increase oxidative damage in brain regions and promote alteration in dopamine and 5-HIAA amines and hence, constitutes health risks among age of subjects.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratorio de Neuroquímica, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Norma Osnaya Brizuela
- Laboratorio de Neuroquímica, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | - Hugo Juárez Olguín
- Laboratorio de Farmacología, INP. Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Imán N° 1, 3rd piso Colonia Cuicuilco CP, 04530, Mexico City, Mexico.
| | | | | |
Collapse
|
16
|
Trace elements cause oxidative damage in the brain of rats with induced hypotension. Auton Neurosci 2017; 208:113-116. [PMID: 29158115 DOI: 10.1016/j.autneu.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 12/23/2022]
Abstract
Hypertension causes neuronal damage and apoptosis in the brain. Diazoxide is a drug used in the treatment of hypertension however, its effect on 5-hydroxyindole acetic acid (5-HIAA) and dopamine amines in adult animal models remains unclear. The purpose of this study was to determine the effect of oligoelements on 5-HIAA and dopamine in the brain of adult rats treated with diazoxide METHODS: Male Fisher rats (weight 250g) were treated as follows: Group I, NaCl 0.9% (control); group II, tracefusin® (1.5mL/rat); group III, diazoxide (20mg/rat) and group IV, tracefusin® (1.5mL/rat)+diazoxide (20mg/rat). All doses were intraperitoneally administered on daily basis for four consecutive days. After the last administration, the brain of the animals was obtained and dissected in cortex, hemispheres (striatum) and cerebellum/medulla oblongata to measure the levels of 5-HIAA, dopamine, lipid peroxidation and total ATPase activity through validated methods. RESULTS Dopamine and 5-HIAA levels decreased significantly in the group that received trace elements and diazoxide in the hemisphere regions, while in cerebellum/medulla oblongata, dopamine levels increased significantly in the groups that received diazoxide alone in. Lipid peroxidation in all brain regions increased significantly in the groups that received trace elements and diazoxide. ATPase dependent of calcium and magnesium decreased in the groups that received diazoxide alone or combined with trace elements in cerebellum/medulla oblongata regions. CONCLUSION The present results suggest that the use of trace elements and diazoxide alters metabolism of dopamine and 5-HIAA amines. Free radicals may be involved in this effect.
Collapse
|
17
|
Soares MSP, Viau CM, Saffi J, Costa MZ, da Silva TM, Oliveira PS, Azambuja JH, Barschak AG, Braganhol E, S Wyse AT, Spanevello RM, Stefanello FM. Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. Metab Brain Dis 2017; 32:1693-1703. [PMID: 28676970 DOI: 10.1007/s11011-017-0054-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 01/24/2023]
Abstract
High plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO) may occur in several genetic abnormalities. Patients with hypermethioninemia can present neurological dysfunction; however, the neurotoxicity mechanisms induced by these amino acids remain unknown. The aim of the present work was to study the effects of Met and/or MetO on oxidative stress, genotoxicity, cytotoxicity and to evaluate whether the cell death mechanism is mediated by apoptosis in the cerebral cortex of young rats. Forty-eight Wistar rats were divided into groups: saline, Met 0.4 g/Kg, MetO 0.1 g/Kg and Met 0.4 g/Kg + MetO 0.1 g/Kg, and were euthanized 1 and 3 h after subcutaneous injection. Results showed that TBARS levels were enhanced by MetO and Met+MetO 1 h and 3 h after treatment. ROS was increased at 3 h by Met, MetO and Met+MetO. SOD activity was increased in the Met group, while CAT was reduced in all experimental groups 1 h and 3 h after treatment. GPx activity was enhanced 1 h after treatment by Met, MetO and Met+MetO, however it was reduced in the same experimental groups 3 h after administration of amino acids. Caspase-3, caspase-9 and DNA damage was increased and cell viability was reduced by Met, MetO and Met+MetO at 3 h. Also, Met, MetO and Met+MetO, after 3 h, enhanced early and late apoptosis cells. Mitochondrial electrochemical potential was decreased by MetO and Met+MetO 1 h and 3 h after treatment. These findings help understand the mechanisms involved in neurotoxicity induced by hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N CEP: 96010-900, Pelotas, RS, Brazil
| | - Cassiana Macagnan Viau
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcelo Zanusso Costa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Tatiane Morgana da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alethéa Gatto Barschak
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doença Metabólica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N CEP: 96010-900, Pelotas, RS, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
18
|
Soares MSP, Zanusso Costa M, da Silva TM, Gazal M, Couto CATD, Nogueira Debom G, Rodrigues R, Hofstätter Azambuja J, André Casali E, Moritz CEJ, Frescura Duarte M, Braganhol E, Moro Stefanello F, Maria Spanevello R. Methionine and/or Methionine Sulfoxide Alter Ectoenzymes Activities in Lymphocytes and Inflammatory Parameters in Serum from Young Rats: Acute and Chronic Effects. Cell Biochem Biophys 2017; 76:243-253. [PMID: 28726179 DOI: 10.1007/s12013-017-0815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
In this study we investigated the effect of acute and chronic treatment with Met and/or methionine sulfoxide (MetO) on ectonucleotidases and cholinesterases activities from lymphocytes and purine derivatives compounds, C-protein reactive, interleukin-10, interleukin-6, and tumor necrosis factor-α levels in serum of young rats. Adenosine triphosphate hydrolysis was decreased in lymphocytes 1 h after treatment by MetO and Met + MetO. However, adenosine triphosphate and adenosine diphosphate hydrolysis in lymphocytes was increased in the groups MetO and Met + MetO and adenosine deaminase activity was increased in MetO 3 h after the treatment. Acetylcholinesterase activity was increased in lymphocytes after 3 h and 21 days of treatment by MetO and Met + MetO, while serum butyrycholinesterase activity was decreased after 1 h and 21 days of treatment in the same groups. In chronic treatment, interleukin-6 and tumor necrosis factor-α level were increased, while that interleukin-10 level was decreased by Met, MetO, and Met + MetO when compared to control group. C-protein reactive level was increased by MetO and Met + MetO. Adenosine triphosphate and adenosine monophosphate levels were reduced in all amino acids treated groups, while adenosine diphosphate and hypoxanthine were enhanced by MetO and Met + MetO. Adenosine and xanthine were reduced in the MetO group, whereas inosine levels were decreased in the MetO and Met + MetO groups. These findings help to understand the inflammatory alterations observed in hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marcelo Zanusso Costa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Tatiane Morgana da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marta Gazal
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana Hofstätter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marta Frescura Duarte
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Laboratório de Análises Clínicas Labimed, Universidade Luterana do Brasil, Santa Maria, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Mechanistic basis of hypermethioninemia. Amino Acids 2016; 48:2479-2489. [PMID: 27465642 DOI: 10.1007/s00726-016-2302-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
Hypermethioninemia is a condition defined as elevated plasma methionine levels and may be a consequence of different conditions that include non-genetic and genetic causes. In severe cases, hypermethioninemia may lead to development of neurological and hepatic impairments, but mechanisms are still not well elucidated. Therefore, this review aims to reunite the knowledge acquired about the methionine-induced brain and liver toxicity focusing on the results obtained by studies from patients, in vitro experiments, and in vivo animal models. In general, some studies have shown that methionine decreases Na+,K+-ATPase activity, induces oxidative stress, increases acetylcholinesterase activity, and leads to dendritic spine downregulation in brain. Concerning to liver, hypermethioninemia seems to provoke changes in cell morphology, lipid accumulation, oxidative stress, inflammation, and ATP depletion. It is possible to infer that oxidative damage is one of the most important mechanisms responsible for methionine toxicity, since different studies showed that this amino acid induces oxidative stress in brain and liver tissues. Besides, reactive oxygen species may mediate other alterations induced by methionine, such as the reduction in brain Na+,K+-ATPase activity, and liver inflammation.
Collapse
|
20
|
Chaturvedi P, Kamat PK, Kalani A, Familtseva A, Tyagi SC. High Methionine Diet Poses Cardiac Threat: A Molecular Insight. J Cell Physiol 2016; 231:1554-61. [PMID: 26565991 DOI: 10.1002/jcp.25247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
High methionine diet (HMD) for example red meat which includes lamb, beef, pork can pose cardiac threat and vascular dysfunction but the mechanisms are unclear. We hypothesize that a diet rich in methionine can malfunction the cardiovascular system in three ways: (1) by augmenting oxidative stress; (2) by inflammatory manifestations; and (3) by matrix/vascular remodeling. To test this hypothesis we used four groups of mice: (1) WT; (2) WT + methionine; (3) CBS(+/-) ; (4) CBS(+/-) +methionine. We observed high oxidative stress in mice fed with methionine which was even higher in CBS(+/-) and CBS(+/-) +methionine. Higher oxidative stress was indicated by high levels of SOD-1 in methionine fed mouse hearts whereas IL-1β, IL-6, TNFα, and TLR4 showed high inflammatory manifestations. The upregulated levels of eNOS/iNOS and upregulated levels of MMP2/MMP9 along with high collagen deposition indicated vascular and matrix remodeling in methionine fed mouse. We evaluated the cardiac function which was dysregulated in the mice fed with HMD. These mice had decreased ejection fraction and left ventricular dysfunction which subsequently leads to adverse cardiac remodeling. In conclusion, our study clearly shows that HMD poses a cardiac threat by increasing oxidative stress, inflammatory manifestations, matrix/vascular remodeling, and decreased cardiac function.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Anuradha Kalani
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Anastasia Familtseva
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
21
|
Severe Hyperhomocysteinemia Decreases Respiratory Enzyme and Na(+)-K(+) ATPase Activities, and Leads to Mitochondrial Alterations in Rat Amygdala. Neurotox Res 2015; 29:408-18. [PMID: 26694914 DOI: 10.1007/s12640-015-9587-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/13/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022]
Abstract
Severe hyperhomocysteinemia is caused by increased plasma levels of homocysteine (Hcy), a methionine derivative, and is associated with cerebral disorders. Creatine supplementation has emerged as an adjuvant to protect against neurodegenerative diseases, due to its potential antioxidant role. Here, we examined the effects of severe hyperhomocysteinemia on brain metabolism, and evaluated a possible neuroprotective role of creatine in hyperhomocysteinemia, by concomitant treatment with Hcy and creatine (50 mg/Kg body weight). Hyperhomocysteinemia was induced in young rats (6-day-old) by treatment with homocysteine (0.3-0.6 µmol/g body weight) for 23 days, and then the following parameters of rat amygdala were evaluated: (1) the activity of the respiratory chain complexes succinate dehydrogenase, complex II and cytochrome c oxidase; (2) mitochondrial mass and membrane potential; (3) the levels of necrosis and apoptosis; and (4) the activity and immunocontent of Na(+),K(+)-ATPase. Hcy treatment decreased the activities of succinate dehydrogenase and cytochrome c oxidase, but did not alter complex II activity. Hcy treatment also increased the number of cells with high mitochondrial mass, high mitochondrial membrane potential, and in late apoptosis. Importantly, creatine administration prevented some of the key effects of Hcy administration on the amygdala. We also observed a decrease in the activity and immunocontent of the α1 subunit of the Na(+),K(+)-ATPase in amygdala after Hcy- treatment. Our findings support the notion that Hcy modulates mitochondrial function and bioenergetics in the brain, as well as Na(+),K(+)-ATPase activity, and suggest that creatine might represent an effective adjuvant to protect against the effects of high Hcy plasma levels.
Collapse
|
22
|
Pires LF, Costa LM, de Almeida AAC, Silva OA, Cerqueira GS, de Sousa DP, Pires RMC, Satyal P, de Freitas RM. Neuropharmacological effects of carvacryl acetate on δ-aminolevulinic dehydratase, Na+, K+-ATPase activities and amino acids levels in mice hippocampus after seizures. Chem Biol Interact 2015; 226:49-57. [DOI: 10.1016/j.cbi.2014.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/23/2022]
|
23
|
Scherer EBS, Loureiro SO, Vuaden FC, Schmitz F, Kolling J, Siebert C, Savio LEB, Schweinberger BM, Bogo MR, Bonan CD, Wyse ATS. Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic α subunits of cerebral Na+,K+-ATPase. Mol Cell Biochem 2013; 378:91-7. [DOI: 10.1007/s11010-013-1598-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/22/2013] [Indexed: 12/27/2022]
|
24
|
An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 2012; 225:258-68. [PMID: 22960313 DOI: 10.1016/j.neuroscience.2012.08.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/20/2023]
Abstract
Valproic acid (VPA), a branched short-chain fatty acid, is generally used as an antiepileptic drug and a mood stabilizer. VPA is a relatively safe drug, but its use in higher concentrations is associated with idiosyncratic neurotoxicity. Investigations involving cerebral cortex and cerebellum can shed light on whether neurotoxicity induced by branched chain fatty acids like VPA is mediated by oxidative stress. The aim of our investigation was to evaluate the neurotoxic potential of VPA by using preparation of cerebral cortex and cerebellum of young rats as an in vitro model. Oxidative stress indexes such as lipid peroxidation (LPO) and protein carbonyl (PC) formation were evaluated to visualize whether the first line of defence was breached. The levels of oxidative stress markers, LPO and PC were significantly elevated. Non-enzymatic antioxidants' effect was also demonstrated as a significant depletion in reduced glutathione (GSH) and non-protein thiol activity (NP-SH), but there was no significant increase or decrease in the concentrations of total thiol (T-SH) and protein thiol (P-SH). VPA also showed significant reduction in the activities of glutathione metabolizing enzymes such as glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) and other antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) in cerebellum and cerebral cortex. A significant elevation was also observed in the activity of xanthine oxidase (XO). Some neurotoxicity biomarkers were investigated in which the activity of acetylcholinesterase (AChE) and sodium-potassium ATPase (Na(+), K(+)-ATPase) was decreased and monoamine oxidase (MAO) was increased. These results indicate that VPA induces oxidative stress by compromising the antioxidant status of the neuronal tissue. Further studies are required to decipher the cellular and molecular mechanisms of branched chain fatty acid-induced neurotoxicity.
Collapse
|
25
|
Viggiano A, Viggiano E, Monda M, Ingrosso D, Perna AF, De Luca B. Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long-term potentiation in rats. Brain Res 2012; 1471:66-74. [DOI: 10.1016/j.brainres.2012.06.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
26
|
Adegunlola JG, Afolabi OK, Akhigbe RE, Adegunlola GA, Adewumi OM, Oyeyipo IP, Ige SF, Afolabi AO. Lipid peroxidation in brain tissue following administration of low and high doses of arsenite and L-ascorbate in wistar strain rats. Toxicol Int 2012; 19:47-50. [PMID: 22736903 PMCID: PMC3339245 DOI: 10.4103/0971-6580.94516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed at investigating the mechanism by which sodium arsenite induces brain injury and the role of L-ascorbate. Thirty adult (n=5) Wistar rats weighing between 140 and 160 g were used. Group 1 neither received sodium arsenite nor L-ascorbate (control), group 2 was administered low dose of arsenite only, group 3 received high dose of arsenite only, group 4 was administered L-ascorbate only, group 5 was administered low dose of arsenite and L-ascorbate, and group 6 received high dose of arsenite and L-ascorbate. M0 alon dialdehyde, MDA, levels were significantly increased in rats treated with high dose of arsenite when compared with those treated with low dose of arsenite. However, all treated groups except those treated with L-ascorbate only showed significant increase in MDA levels when compared with the control group. Rats treated with high dose of arsenite and L-ascorbate showed a significantly higher MDA level than those treated with low dose of arsenite and L-ascorbate. However, catalase activity, body weight gain, brain weight and mean food consumption were comparable across all groups. Brain tissue total protein was similar in all groups except in both groups treated with high dose of arsenite, where they were significantly reduced when compared with the control group. I0 n conclusion, sodium arsenite treatment induces brain injury via a mechanism associated with lipid peroxidation, but not catalase-dependent. However, L-ascorbate ameliorates arsenite-induced oxidative injury in the brain. L-ascorbate antioxidative potential in alleviating arsenite-induced brain injury is dependent on the concentration of arsenite.
Collapse
Affiliation(s)
- J. G. Adegunlola
- Department of Biochemistry, College of Health Sciences, Ogbomoso, Oyo State, Nigeria
| | - O. K. Afolabi
- Department of Biochemistry, College of Health Sciences, Ogbomoso, Oyo State, Nigeria
| | - R. E. Akhigbe
- Department of Physiology, College of Health Sciences, Ogbomoso, Oyo State, Nigeria
| | - G. A. Adegunlola
- Department of Pure and Applied Biology, Faculty of Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - O. M. Adewumi
- Department of Plant Biology, Faculty of Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - I. P. Oyeyipo
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - S. F. Ige
- Department of Physiology, College of Health Sciences, Ogbomoso, Oyo State, Nigeria
| | - A. O. Afolabi
- Department of Physiology, College of Health Sciences, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
27
|
Gopinath K, Prakash D, Sudhandiran G. Neuroprotective effect of naringin, a dietary flavonoid against 3-nitropropionic acid-induced neuronal apoptosis. Neurochem Int 2011; 59:1066-73. [PMID: 21945202 DOI: 10.1016/j.neuint.2011.08.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 08/11/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the protective effect of naringin, a flavonoid on 3-Nitropropionic acid (3-NP)-induced neurodegeneration through the modulation of intrinsic apoptotic cascade in Wistar rats. 3-NP is an irreversible inhibitor of complex II in the mitochondria. 3-NP-induced neurodegeneration has been widely used as an animal model of Huntington's disease (HD). Increased oxidative stress is one of the major deleterious events in 3-NP-induced neuronal apoptosis. Rats administered with 3-NP showed increase in the levels of lipid peroxidation and protein carbonyl, which was significantly decreased upon naringin treatment (80 mg/kg body weight). 3-NP-induced rats showed decrease in the activities of enzymic antioxidants and reduced levels of non-enzymic antioxidants. Naringin treatment ameliorated the antioxidant status by increasing the activities of enzymic antioxidants and the levels of non-enzymatic antioxidants. 3-NP-induced rats showed decrease in the activities of ATPases in striatum, which was restored to normal level upon naringin treatment. Histopathological observation of the striatal tissue showed protective role of naringin in 3-NP-induced rats. Naringin also reduced the 3-NP-induced apoptosis via decrease in the cytochrome c release from mitochondria and caspase 3 activation as revealed by Western blot. Naringin treatment also decreased the expressions of pro-apoptotic markers like Bad and Bax. Further, naringin antagonized 3-NP-induced decrease in Bcl-2 mRNA expression. The results of this study show evidence on the neuroprotective effect of naringin against 3-NP-induced neuronal apoptosis through its antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
- Kulasekaran Gopinath
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | | | | |
Collapse
|
28
|
Ferreira AGK, Stefanello FM, Cunha AA, da Cunha MJ, Pereira TCB, Bonan CD, Bogo MR, Netto CA, Wyse ATS. Role of antioxidants on Na(+),K (+)-ATPase activity and gene expression in cerebral cortex of hyperprolinemic rats. Metab Brain Dis 2011; 26:141-7. [PMID: 21509571 DOI: 10.1007/s11011-011-9243-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Considering that Na(+),K(+)-ATPase is an embedded-membrane enzyme and that experimental chronic hyperprolinemia decreases the activity of this enzyme in brain synaptic plasma membranes, the present study investigated the effect of chronic proline administration on thiobarbituric acid-reactive substances, as well as the influence of antioxidant vitamins E plus C on the effects mediated by proline on Na(+),K(+)-ATPase activity in cerebral cortex of rats. The expression of Na(+),K(+)-ATPase catalytic subunits was also evaluated. Results showed that proline increased thiobarbituric acid-reactive substances, suggesting an increase of lipid peroxidation. Furthermore, concomitant administration of vitamins E plus C significantly prevented the increase of lipid peroxidation, as well as the inhibition of Na(+),K(+)-ATPase activity caused by proline. We did not observe any change in levels of Na(+),K(+)-ATPase mRNA transcripts after chronic exposure to proline and vitamins E plus C. These findings provide insights into the mechanisms through which proline exerts its effects on brain function and suggest that treatment with antioxidants may be beneficial to treat neurological dysfunctions present in hyperprolinemic patients.
Collapse
Affiliation(s)
- Andréa G K Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Stefanello FM, Ferreira AGK, Pereira TCB, da Cunha MJ, Bonan CD, Bogo MR, Wyse ATS. Acute and chronic hypermethioninemia alter Na+ K+-ATPase activity in rat hippocampus: prevention by antioxidants. Int J Dev Neurosci 2011; 29:483-8. [PMID: 21354298 DOI: 10.1016/j.ijdevneu.2011.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/21/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022] Open
Abstract
In the current study we initially investigated the influence of antioxidants (vitamins E plus C) on the effect mediated by acute and chronic administration of methionine (Met) on Na(+),K(+)-ATPase activity in rat hippocampus. We also verified whether the alterations on the enzyme after administration of Met and/or antioxidants were associated with changes in relative expression of Na(+),K(+)-ATPase catalytic subunits (isoforms α1, α2 and α3). For acute treatment, young rats received a single subcutaneous injection of Met or saline (control) and were sacrificed 12 h later. In another set of experiments, rats were pretreated for 1 week with daily intraperitoneal administration of vitamins E (40 mg/kg) and C (100 mg/kg) or saline. After that, rats received a single injection of Met or saline and were killed 12 h later. For chronic treatment, Met was administered to rats from the 6th to the 28th day of life; controls and treated rats were sacrificed 12 h after the last injection. In parallel to chronic treatment, rats received a daily intraperitoneal injection of vitamins E and C from the 6th to the 28th day of life and were killed 12 h after the last injection. Results showed that administration of antioxidants partially prevented the inhibition of enzyme activity caused by acute and chronic hypermethioninemia. Besides, we demonstrated that transcription of catalytic subunits of Na(+),K(+)-ATPase was not altered by chronic and acute exposure to Met and/or vitamins E plus C. These data strongly suggest the oxidative damage as one possible mechanism involved in the reduction of Na(+),K(+)-ATPase activity caused by hypermethioninemia and if confirmed in human beings, we might propose the use of antioxidants as an adjuvant therapy in hypermethioninemic patients.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Laboratório de Neuroproteção e Doença Metabólica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Calderón Guzmán D, Bratoeff E, Ramírez López E, Hernández García E, Pierdant Rioja F, Osnaya Brizuela N, Trujillo Jiménez F, Barragán Mejía G, Juárez Olguín H, Santamaría Del Ángel D. Effect of flutamide and two novel synthetic steroids on GABA, glutamine and some oxidative stress markers in rat brain and prostate. Andrologia 2011; 43:225-32. [PMID: 21486400 DOI: 10.1111/j.1439-0272.2010.01051.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Flutamide is a steroid used to treat androgen-dependent disorders and as antiepileptic, but it induces a number of non-desirable side effects. This work was aimed at assaying the effect of flutamide and two novel synthetic steroids on the levels of GABA, glutamine and oxidative stress markers. Male Wistar rats (weight 180 g) received a single diazepam dose (5 mg/kg) 30 min prior to sacrifice (group A). Group B, flutamide; group C, 16β-methyl-17α-benzoyloxypregnen-4-en-3,20-dione; group D, estrone-3-hemisuccinate; group E, testosterone; group F, progesterone; all administered intraperitoneally at 10 mg/kg, daily for 3 days. Brain and prostate were obtained to assess lipid peroxidation (TBARS), Na(+) , K(+) ATPase activity, reduced glutathione (GSH), γ-amino butiric acid (GABA), glutamine and serotonin (5-HT) concentrations through spectrophotometry, fluorescence and HPLC. GABA levels increased and glutamine decreased in group A (P < 0.05). Total ATPase activity increased in group F and TBARS decreased in group B (P < 0.05). GSH decreased in A, B and C groups. 5-HT increased in group A and the prostate weight was increased in group E. The conclusion is that 16β-methyl-17α-benzoyloxypregnen-4-en-3,20-dione may be considered novel and promising to treat androgen-dependent diseases and epilepsy, since it showed an antioxidant effect and seemed to impair the GABAergic and serotonergic metabolism.
Collapse
Affiliation(s)
- D Calderón Guzmán
- Laboratorio de Neuroquímica, Instituto Nacional de Pediatría (INP), México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J Bioenerg Biomembr 2009; 41:309-21. [PMID: 19633937 DOI: 10.1007/s10863-009-9229-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Methionine restriction without energy restriction increases, like caloric restriction, maximum longevity in rodents. Previous studies have shown that methionine restriction strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative damage to mitochondrial DNA, lowers membrane unsaturation, and decreases five different markers of protein oxidation in rat heart and liver mitochondria. It is unknown whether methionine supplementation in the diet can induce opposite changes, which is also interesting because excessive dietary methionine is hepatotoxic and induces cardiovascular alterations. Because the detailed mechanisms of methionine-related hepatotoxicity and cardiovascular toxicity are poorly understood and today many Western human populations consume levels of dietary protein (and thus, methionine) 2-3.3 fold higher than the average adult requirement, in the present experiment we analyze the effect of a methionine supplemented diet on mitochondrial ROS production and oxidative damage in the rat liver and heart mitochondria. In this investigation male Wistar rats were fed either a L-methionine-supplemented (2.5 g/100 g) diet without changing any other dietary components or a control (0.86 g/100 g) diet for 7 weeks. It was found that methionine supplementation increased mitochondrial ROS generation and percent free radical leak in rat liver mitochondria but not in rat heart. In agreement with these data oxidative damage to mitochondrial DNA increased only in rat liver, but no changes were observed in five different markers of protein oxidation in both organs. The content of mitochondrial respiratory chain complexes and AIF (apoptosis inducing factor) did not change after the dietary supplementation while fatty acid unsaturation decreased. Methionine, S-AdenosylMethionine and S-AdenosylHomocysteine concentration increased in both organs in the supplemented group. These results show that methionine supplementation in the diet specifically increases mitochondrial ROS production and mitochondrial DNA oxidative damage in rat liver mitochondria offering a plausible mechanism for its hepatotoxicity.
Collapse
|
32
|
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction. Biochim Biophys Acta Gen Subj 2008; 1780:1337-47. [DOI: 10.1016/j.bbagen.2008.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 12/31/2022]
|
33
|
Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 2008; 9:183-96. [DOI: 10.1007/s10522-008-9130-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
34
|
Chen B, Huang J, Wang J, Huang L. Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum. Colloids Surf B Biointerfaces 2008; 61:88-92. [PMID: 17825535 DOI: 10.1016/j.colsurfb.2007.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/12/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
Ultrasound is a special physical stimulus that has a variety of biological effects. This study provides a first systemic investigation on the ultrasound-induced oxidation and protection actions of the antioxidant defense system in Porphyridium cruentum. The hydroxyl radical and superoxide anion radical scavenging ability of the cells and the electrolyte leakage of the cell membrane were examined. The change of glutathione and carotenoids produced with/without ultrasonic processing were measured; the enzyme activities of superoxide dismutase, catalase, and membrane bound ATPases (Na(+)/K(+)-ATPase, Ca(2+)/Mg(2+)-ATPase) were evaluated for either ultrasound-treated or untreated P. cruentum. The hydroxyl radical and superoxide anion radical scavenging ability of ultrasound-treated P. cruentum increase 49.8 and 76.0%, respectively, of which the electrolyte leakage and malonyldialdehyde accumulation are also found increased 48.6 and 48.0%, respectively, indicating a state of oxidative stress. A significant enhancement of the activities of superoxide dismutase by 53.5%, catalase, membrane bound ATPases (Na(+)/K(+)-ATPase, Ca(2+)/Mg(2+)-ATPase increased by 67.7 and 69.3%, respectively), and the increment of glutathione and carotenoids production are also observed. These results suggested that oxidative stress manifested by elevated reactive oxygen species levels and malonyldialdehyde contents might be resulted from the biophysical responses of P. cruentum to the physical stimuli, and most likely the enhanced antioxidation ability of the algal cells stimuli by ultrasonic comes from the enhancement of enzymatic and nonenzymatic preventive substances as observed in this work.
Collapse
Affiliation(s)
- Bilian Chen
- Department of Biotechnology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China.
| | | | | | | |
Collapse
|
35
|
Stefanello FM, Kreutz F, Scherer EBS, Breier AC, Vianna LP, Trindade VMT, Wyse ATS. Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 2007; 25:473-7. [PMID: 17890041 DOI: 10.1016/j.ijdevneu.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022] Open
Abstract
Neurological dysfunction is observed in patients with severe hypermethioninemia, whose physiopathology is still poorly understood. In the current study we investigated the effect of chronic administration of methionine on the content and species of gangliosides and phospholipids, as well as on the concentration of cholesterol in rat cerebral cortex. Wistar rats received subcutaneous injections of methionine (1.34-2.68 micromol/g of body weight), twice a day, from the 6th to the 28th day of age and controls received saline. Animals were killed 12h after the last injection. Results showed that methionine administration significantly decreased the total content of lipids in cerebral cortex of rats. We also observed that this amino acid significantly reduced the absolute quantity of the major brain gangliosides (GM1, GD1a, GD1b and GT1b) and phospholipids (sphingomyelin, phosphatidylcholine and phosphatidylethanolamine). We also showed that Na+,K+-ATPase activity and TBARS were changed in cerebral cortex of rats subjected to hypermethioninemia. If confirmed in human beings, these data could suggest that the alteration in lipid composition, Na+,K+-ATPase activity and TBARS caused by methionine might contribute to the neurophysiopathology observed in hypermethioninemic patients.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Stefanello FM, Monteiro SC, Matté C, Scherer EBS, Netto CA, Wyse ATS. Hypermethioninemia Increases Cerebral Acetylcholinesterase Activity and Impairs Memory in Rats. Neurochem Res 2007; 32:1868-74. [PMID: 17701348 DOI: 10.1007/s11064-007-9464-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/02/2007] [Indexed: 12/01/2022]
Abstract
In the present study we investigated the effect of chronic hypermethioninemia on rat performance in the Morris water maze task, as well as on acetylcholinesterase (AChE) activity in rat cerebral cortex. For chronic treatment, rats received subcutaneous injections of methionine (1.34-2.68 micromol/g of body weight), twice a day, from the 6th to the 28th day of age; control rats received the same volume of saline solution. Groups of rats were killed 3 h, 12 h or 30 days after the last injection of methionine to AChE assay and another group was left to recover until the 60th day of life to assess the effect of early methionine administration on reference and working spatial memory of rats. AChE activity was also determined after behavioral task. Results showed that chronic treatment with methionine did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant days effect with significant differences between control and methionine-treated animals. Chronic hypermethioninemia significantly increased AChE activity at 3 h, 12 h or 30 days after the last injection of methionine, as well as before or after behavioral test. The effect of acute hypermethioninemia on AChE was also evaluated. For acute treatment, 29-day-old rats received one single injection of methionine (2.68 micromol/g of body weight) or saline and were killed 1, 3 or 12 h later. Results showed that acute administration of methionine did not alter cerebral cortex AChE activity. Our findings suggest that chronic experimental hypermethioninemia caused cognitive dysfunction and an increase of AChE activity that might be related, at least in part, to the neurological problems presented by hypermethioninemic patients.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Stefanello FM, Scherer EBS, Kurek AG, Mattos CB, Wyse ATS. Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+),K (+)-ATPase activity in hippocampus of rats. Metab Brain Dis 2007; 22:172-82. [PMID: 17473966 DOI: 10.1007/s11011-007-9052-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/12/2006] [Indexed: 01/24/2023]
Abstract
In the present study we investigated the effect of chronic administration of methionine, a metabolite accumulated in many inherited pathological conditions such as methionine adenosyltransferase deficiency and homocystinuria, on some parameters of oxidative stress, namely thiobarbituric acid reactive substances (TBARS), catalase activity and total thiol content, as well as on Na(+),K(+)-ATPase activity in rat hippocampus. For chronic treatment, rats received subcutaneous injections of methionine (1.34-2.68 mumol/g of body weight), twice a day, from the 6th to the 28th day of age and controls received saline. Animals were killed 12 h after the last injection. Results showed that chronic hypermethioninemia significantly increased TBARS, decreased Na(+),K(+)-ATPase activity but did not alter catalase and total thiol content. Since chronic hypermethioninemia altered TBARS and Na(+),K(+)-ATPase activity at 12 h after methionine administration, we also investigated the effect of acute administration of this amino acid on the same parameters studied after chronic methionine administration. For acute treatment,29-day-old rats received one single injection of methionine (2.68 mumol/g of body weight) or saline and were killed 1, 3 or 12 h later. Results showed that rats subjected to acute hypermethioninemia presented a reduction of Na(+),K(+)-ATPase activity and an increase in TBARS when the animals were killed at 3 and 12 h, but not at 1 h, after methionine administration. These data indicate that hypermethioninemia increases lipid peroxidation which may, at least partially, explain the effect of methionine on the reduction in Na(+),K(+)-ATPase activity. If confirmed in human beings, our findings could suggest that the induction of oxidative stress and the inhibition of Na(+),K(+)-ATPase activity caused by methionine might contribute to the neurophysiopathology observed in patients with severe hypermethioninemia.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
38
|
Calderón Guzmán D, Trujillo Jiménez F, Hernández García E, Juárez Olguín H. Assessment of Antioxidant Effect of 2,5-Dihydroxybenzoic Acid and Vitamin A in Brains of Rats with Induced Hyperoxia. Neurochem Res 2007; 32:1036-40. [PMID: 17401673 DOI: 10.1007/s11064-006-9269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/20/2006] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effect of 2,5-dihydroxybenzoic acid, a salicylate derived from Acetyl salicylic acid (ASA) and vitamin A (vit A) on Na(+), K(+) ATPase enzyme and GSH levels in brain of rats exposed to hyperoxia (Hyp) as oxidant protocol. Rats were treated as follow: group I (control), group II (Hyp), group III (Hyp, ASA), group IV (vit A), group V (Hyp, vit A), group VI (Hyp, vit A, ASA). Vit A was given 5 days before and during Hyp, aspirin at the end of Hyp. Na(+),K(+) ATPase and total ATPase activity was significantly increased in group V. Levels of GSH showed a significant increase in group III, besides, levels of 2,5-dihydroxybenzoic acid as salicylate in plasma were significantly increased in group II. These results elucidate differences in the biochemical response of animal towards intake of various types of antioxidant substances, with increased GSH and salicylate in hyperoxia.
Collapse
|
39
|
Stefanello FM, Matté C, Scherer EB, Wannmacher CMD, Wajner M, Wyse ATS. Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 2006; 160:1-4. [PMID: 16978704 DOI: 10.1016/j.jneumeth.2006.07.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/20/2006] [Accepted: 07/25/2006] [Indexed: 12/01/2022]
Abstract
In the present study, we developed a chronic chemically induced model of hypermethioninemia in rats. We induced elevated concentrations of methionine in the blood by injecting subcutaneously methionine (1.34-2.68 micromol/g of body weight) to developing animals of various ages. Brain methionine concentrations were approximately 1.25 micromol/g wet tissue ( approximately 1.0mM). We then injected the same doses of methionine to young rats twice a day at 8h intervals from the 6(th) to the 28(th) postpartum day. Controls received saline in the same volumes. The body, brain and hippocampus of rats were weighed after treatment and showed that hypermethioninemic animals had no differences in these parameters, when compared to the control group, suggesting that methionine did not cause malnutrition in the rats. Considering that experimental animal models are useful to understand the pathophysiology of human disease, the present model of hypermethioninemia may contribute to the investigation of the mechanisms of brain damage caused by high tissue methionine levels.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|