1
|
Santos AVS, Cardoso DS, Takada SH, Echeverry MB. Prenatal exposition to haloperidol: A preclinical narrative review. Neurosci Biobehav Rev 2023; 155:105470. [PMID: 37984569 DOI: 10.1016/j.neubiorev.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Pre-existing maternal mental disorders may affect the early interactions between mother and baby, impacting the child's psychoemotional development. The typical antipsychotic haloperidol can be used during pregnancy, even with some restrictions. Its prescription is not limited to psychotic disorders, but also to other psychiatric conditions of high incidence and prevalence in the woman's fertile period. The present review focused on the preclinical available data regarding the biological and behavioral implications of embryonic exposure to haloperidol. The understanding of the effects of psychotropic drugs during neurodevelopment is important for its clinical aspect since there is limited evidence regarding the risks of antipsychotic drug treatment in pregnant women and their children. Moreover, a better comprehension of the mechanistic events that can be affected by antipsychotic treatment during the critical period of neurodevelopment may offer insights into the pathophysiology of neurodevelopmental disorders. The findings presented in this review converge to the existence of several risks associated with prenatal exposure to such medication and emphasize the need for further studies regarding its dimensions.
Collapse
Affiliation(s)
- Aline Valéria Sousa Santos
- Laboratory of Neuropharmacology and Motor Behavior, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Marcela Bermúdez Echeverry
- Laboratory of Neuropharmacology and Motor Behavior, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil; Neuroscience Laboratory, School of Medicine, Universidad de Santander (UDES), Bucaramanga, Santander, Colombia.
| |
Collapse
|
2
|
Osacka J, Kiss A, Bacova Z, Tillinger A. Effects of antipsychotics, haloperidol and olanzapine, on the expression of apoptosis-related genes in mouse mHippoE-2 cells and rat hippocampus. Endocr Regul 2023; 57:152-161. [PMID: 37561834 DOI: 10.2478/enr-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Objective. Modified levels of pro- (caspase3, Bax) and anti-apoptotic (Bcl-2) regulatory proteins have been detected in certain brain areas of schizophrenic patients indicating a possible dysregulation of apoptosis. In the present study, effects of antipsychotics, haloperidol (HAL) and olanzapine (OLA), on the gene expression of caspase3 (casp3), Bax and Bcl-2 were studied in vitro in mouse hippocampal mHippoE-2 cell line and in vivo in the hippocampus of MK-801 animal schizophrenia model with the aim to provide evidence that antipsychotics may affect the activity of apoptosis-related markers. Methods. mHippoE-2 cells were incubated with MK-801 (20 µM), HAL (10 µM), and OLA (10 µM) alone or combined, MK-801+HAL/OLA, for 24, 48, and 72 h. Male Sprague Dawley rats were injected with saline or MK-801 (0.5 mg/kg) for 6 days and since the 7th day, they were treated with vehicle (VEH), HAL (1 mg/kg) or OLA (2 mg/kg) for the next 7 days. The casp3, Bax and Bcl-2 gene expression in mHippoE-2 cells and rat hippocampus was measured by RT-PCR. Results. In mHippoE-2 cells, casp3 gene expression was increased by MK-801 and OLA treatments alone for 48 h, HAL treatment alone for 24 and 72 h, and co-treatment with MK-801+OLA for 24 and 72 h compared to controls. HAL and OLA suppressed the stimulatory effect of MK-801 on casp3 mRNA levels in cells after 48 h of incubation. Bax mRNA levels in mHippoE-2 cells were decreased after HAL treatment for 24 and 48 h, and also after co-treatment with MK-801+HAL for 72 h. In vivo, MK-801 decreased mRNA levels of both pro-apoptotic markers, casp3 and Bax, in hippocampus of VEH-treated rats and Bax mRNA levels in hippocampus of HAL-treated animals. OLA reversed the inhibitory effect of MK-801 on casp3 expression in the VEH-treated animals. Neither MK-801 nor antipsychotics induced changes in the gene expression of anti-apoptotic marker Bcl-2 in mHippoE-2 cells as well as hippocampus of rats. Conclusions. The results of the present study demonstrate that antipsychotics, HAL and OLA, may affect mRNA levels of pro-apoptotic markers in hippocampal cells in vitro, but not in vivo. The obtained data do not clearly support the assumed potentiating role of MK-801 in inducing apoptosis in specific brain areas and a possible protective role of antipsychotics against induction of apoptosis. The obtained data may contribute to a deeper insight into the neurodevelopmental changes connected with schizophrenia.
Collapse
Affiliation(s)
- Jana Osacka
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander Kiss
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Tillinger
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Aripiprazole Offsets Mutant ATXN3-Induced Motor Dysfunction by Targeting Dopamine D2 and Serotonin 1A and 2A Receptors in C. elegans. Biomedicines 2022; 10:biomedicines10020370. [PMID: 35203579 PMCID: PMC8962381 DOI: 10.3390/biomedicines10020370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
The atypical antipsychotic aripiprazole is a Food and Drug Administration-approved drug for the treatment of psychotic, mood, and other psychiatric disorders. Previous drug discovery efforts pinpointed aripiprazole as an effective suppressor of Machado–Joseph disease (MJD) pathogenesis, as its administration resulted in a reduced abundance and aggregation of mutant Ataxin-3 (ATXN3) proteins. Dopamine partial agonism and functional selectivity have been proposed as the main pharmacological mechanism of action of aripiprazole in the treatment of psychosis; however, this mechanism remains to be determined in the context of MJD. Here, we focus on confirming the efficacy of aripiprazole to reduce motor dysfunction in vivo, using a Caenorhabditis elegans (C. elegans) model of MJD, and on unveiling the drug targets required for its positive action against mutant ATXN3 pathogenesis. We employed pharmacogenetics and pharmacological approaches to identify which dopamine and serotonin receptors are critical for aripiprazole-mediated improvements in motor function. We demonstrated that dopamine D2-like and serotonin 5-HT1A and 5-HT2A receptors play important roles in this process. Our findings strengthen the relevance of dopaminergic and serotoninergic signaling modulation against mutant ATXN3-mediated pathogenesis. The identification of aripiprazole’s cellular targets, relevant for MJD and perhaps other neurodegenerative diseases, may pave the way for prospective drug discovery and development campaigns aiming to improve the features of this prototypical compound and reduce side effects not negligible in the case of aripiprazole.
Collapse
|
4
|
Gaur AV, Agarwal R. Risperidone induced alterations in feeding and locomotion behavior of Caenorhabditis elegans. Curr Res Toxicol 2021; 2:367-374. [PMID: 34806037 PMCID: PMC8585583 DOI: 10.1016/j.crtox.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
Antipsychotic drugs (APDs) are prescribed for the treatment of psychiatric illness. However, these drugs can also contribute to several developmental and behavioral disorders. Contemporary studies to evaluate the toxic effects of numerous atypical antipsychotics are reported to cause behavioral alteration at variable doses in mammals and nematodes. Risperidone, the second most prescribed drug in India, requires more exploration of its adverse effects on humans. Here, we explore effects on feeding behavior and locomotion patterns due to risperidone exposure in C. elegans model. The study targets to work out the toxic effects of risperidone exposure on feeding and locomotion behavior in addition to the expected pharmacological effects. N2 wild type strain was exposed in liquid culture assay for 2, 4, 6, 8, 10, and 12 hours with fixed 50 µM concentration. Feeding behavior was depleted due to inhibition in pharyngeal pumping varying from 11.05% - 45.67% in a time-dependent manner. Results of locomotion assay also show time-varying increase in reversals (4.9%-34.03%) and omega bends (26.23%-62.17%) with reduction in turn counts (29.07%- 42.2%) and peristaltic speed (31.38%-42.22%) amongst exposed groups as to control. The present work shows behavioral alterations due to risperidone exposure (50 µM) in C. elegans is in a time-dependent manner. The study concludes that risperidone exposure in C. elegans produces toxic effects with time, possibly caused by antagonizing other receptors apart from serotonin (5-H2T) and dopamine (D2) adding to its expected pharmacological effects.
Collapse
Key Words
- 5-H2T
- 5-HT, 5-hydroxytryptamine
- ADF, Amphid Neuron
- APDs, Antipsychotic drugs
- Antipsychotic drugs
- Behavioral alteration
- C, Control Group
- C-0h, Control Group at 0 h
- C-10h, Control Group at 10 h
- C-12h, Control Group at 12 h. E-2h, Exposure Group at 2 h
- C-2h, Control Group at 2 h
- C-4h, Control Group at 4 h
- C-6h, Control Group at 6 h
- C-8h, Control Group at 8 h
- C. elegans
- C. elegans, Caenorhabditis elegans
- D2
- D2, Dopamine Receptor 2
- E, Exposed Group
- E-10h, Exposure Group at ten
- E-12h, Exposure Group at 12 h
- E-4h, Exposure Group at 4 h
- E-6h, Exposure Group at 6 h
- E-8h, Exposure Group at 8 h
- E. coli, Escherichia coli BOD-Biochemical Oxygen Demand
- GPR, G coupled Protein Receptor
- HSN, Hermaphrodite Specific Neuron
- Min., Minutes
- N2 Wild type
- NSM, Neurosecretory Motor Neuron
- Peristaltic speed
- Pharyngeal pumping
- Reversals
- Risperidone
- SD, Standard Deviation
- SDA, Serotonin Dopamine Antagonist
- Turn counts
- omega bends
Collapse
Affiliation(s)
- Aaditya Vikram Gaur
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar 382007, Gujarat, India
- Forensic Science Laboratory, Kirumampakkam, Puducherry 607402, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar 382007, Gujarat, India
| |
Collapse
|
5
|
Krum BN, Martins AC, Queirós L, Ferrer B, Milne GL, Soares FAA, Fachinetto R, Aschner M. Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans. Mol Neurobiol 2020; 58:304-316. [PMID: 32935232 DOI: 10.1007/s12035-020-02124-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
Haloperidol is a typical antipsychotic drug commonly used to treat a broad range of psychiatric disorders related to dysregulations in the neurotransmitter dopamine (DA). DA modulates important physiologic functions and perturbations in Caenorhabditis elegans (C. elegans) and, its signaling have been associated with alterations in behavioral, molecular, and morphologic properties in C. elegans. Here, we evaluated the possible involvement of dopaminergic receptors in the onset of these alterations followed by haloperidol exposure. Haloperidol increased lifespan and decreased locomotor behavior (basal slowing response, BSR, and locomotion speed via forward speed) of the worms. Moreover, locomotion speed recovered to basal conditions upon haloperidol withdrawal. Haloperidol also decreased DA levels, but it did not alter neither dop-1, dop-2, and dop-3 gene expression, nor CEP dopaminergic neurons' morphology. These effects are likely due to haloperidol's antagonism of the D2-type DA receptor, dop-3. Furthermore, this antagonism appears to affect mechanistic pathways involved in the modulation and signaling of neurotransmitters such as octopamine, acetylcholine, and GABA, which may underlie at least in part haloperidol's effects. These pathways are conserved in vertebrates and have been implicated in a range of disorders. Our novel findings demonstrate that the dop-3 receptor plays an important role in the effects of haloperidol.
Collapse
Affiliation(s)
- Bárbara Nunes Krum
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ginger L Milne
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Roselei Fachinetto
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Zgheib E, Limonciel A, Jiang X, Wilmes A, Wink S, van de Water B, Kopp-Schneider A, Bois FY, Jennings P. Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases. Front Genet 2018; 9:429. [PMID: 30333853 PMCID: PMC6176024 DOI: 10.3389/fgene.2018.00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Toxicological responses to chemical insult are largely regulated by transcriptionally activated pathways that may be independent, correlated and partially or fully overlapping. Investigating the dynamics of the interactions between stress responsive transcription factors from toxicogenomic data and defining the signature of each of them is an additional step toward a system level understanding of perturbation driven mechanisms. To this end, we investigated the segregation of the genes belonging to the three following transcriptionally regulated pathways: the AhR pathway, the Nrf2 pathway and the ATF4 pathway. Toxicogenomic datasets from three projects (carcinoGENOMICS, Predict-IV and TG-GATEs) obtained in various experimental conditions (in human and rat in vitro liver and kidney models and rat in vivo, with bolus administration and with repeated doses) were combined and consolidated where overlaps between datasets existed. A bioinformatic analysis was performed to refine pathways' signatures and to create chemical activation capacity scores to classify chemicals by their potency and selectivity of activation of each pathway. With some refinement such an approach may improve chemical safety classification and allow biological read across on a pathway level.
Collapse
Affiliation(s)
- Elias Zgheib
- Laboratoire de Biomécanique et Bio-ingénierie, Sorbonne Universités - Université de Technologie de Compiègne, Compiègne, France
| | - Alice Limonciel
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Wink
- Division of Drug Discovery and Safety, Leiden Cell Observatory High Content Imaging Screening Facility, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Cell Observatory High Content Imaging Screening Facility, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Frederic Y Bois
- Models for Ecotoxicology and Toxicology Unit (DRC/VIVA/METO), Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Osuna-Luque J, Rodríguez-Ramos Á, Gámez-Del-Estal MDM, Ruiz-Rubio M. Behavioral Mechanisms That Depend on Dopamine and Serotonin in Caenorhabditis elegans Interact With the Antipsychotics Risperidone and Aripiprazole. J Exp Neurosci 2018; 12:1179069518798628. [PMID: 30245571 PMCID: PMC6144587 DOI: 10.1177/1179069518798628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
The neurotransmitters dopamine and serotonin participate in specific behavioral neuromuscular mechanisms in the nematode Caenorhabditis elegans. Dopamine is involved in the gentle touch response and serotonin in the pharyngeal pumping rate. In its genome, the worm presents genes encoding dopamine and serotonin receptors orthologous to those of human genes. Risperidone and aripiprazole are a class of drugs known as atypical antipsychotics commonly used to treat schizophrenia, bipolar disorder, and irritability associated with autism. Risperidone is an antagonist of the dopamine D2 and serotonin 5-HT2A receptors. Aripiprazole functions as a partial agonist of the dopamine D2 receptor and as a partial agonist and antagonist of 5-HT1A and 5-HT2A serotonin receptors, respectively. Our results show that risperidone and aripiprazole alter the touch response and pharyngeal pumping in wild-type worm animals. Furthermore, in the presence of the drugs, both behaviors change to varying degrees in dopamine (dop-1, dop-2, and dop-3), serotonin (ser-1), and tyramine (ser-2) receptor-deficient mutants. This variation in response reveals specific targets for these antipsychotics in the nematode. Interestingly, their effect on behavior persisted to some extent in successive generations, indicating that they might induce epigenetic changes throughout development. Sodium butyrate, a histone deacetylase inhibitor, eliminated the consecutive generation effect of both drugs. In addition, these transgenerational effects were also abolished after the dauer stage. These observations suggest that risperidone and aripiprazole, in addition to interacting with specific receptors impairing the function of the nervous system of the nematode, may lead to the deposition of long-lasting epigenetic marks.
Collapse
Affiliation(s)
- Jaime Osuna-Luque
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| | - Ángel Rodríguez-Ramos
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| | - María Del Mar Gámez-Del-Estal
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| | - Manuel Ruiz-Rubio
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| |
Collapse
|
8
|
Blazie SM, Jin Y. Pharming for Genes in Neurotransmission: Combining Chemical and Genetic Approaches in Caenorhabditis elegans. ACS Chem Neurosci 2018; 9:1963-1974. [PMID: 29432681 DOI: 10.1021/acschemneuro.7b00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission is central to nervous system function. Chemical and genetic screens are valuable approaches to probe synaptic mechanisms in living animals. The nematode Caenorhabditis elegans is a prime system to apply these methods to discover genes and dissect the cellular pathways underlying neurotransmission. Here, we review key approaches to understand neurotransmission and the action of psychiatric drugs in C. elegans. We start with early studies on cholinergic excitatory signaling at the neuromuscular junction, and move into mechanisms mediated by biogenic amines. Finally, we discuss emerging work toward understanding the mechanisms driving synaptic plasticity with a focus on regulation of protein translation.
Collapse
Affiliation(s)
- Stephen M. Blazie
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:642798. [PMID: 24955366 PMCID: PMC4052930 DOI: 10.1155/2014/642798] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG) side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD), schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.
Collapse
|
10
|
Johnstone AL, Reierson GW, Smith RP, Goldberg JL, Lemmon VP, Bixby JL. A chemical genetic approach identifies piperazine antipsychotics as promoters of CNS neurite growth on inhibitory substrates. Mol Cell Neurosci 2012; 50:125-35. [PMID: 22561309 DOI: 10.1016/j.mcn.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 04/20/2012] [Indexed: 01/22/2023] Open
Abstract
Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.
Collapse
Affiliation(s)
- Andrea L Johnstone
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1400 NW 12th Ave, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
11
|
Weeks KR, Dwyer DS, Aamodt EJ. Clozapine and lithium require Caenorhabditis elegans β-arrestin and serum- and glucocorticoid-inducible kinase to affect Daf-16 (FOXO) localization. J Neurosci Res 2011; 89:1658-65. [PMID: 21732403 DOI: 10.1002/jnr.22705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
Numerous studies have implicated low levels of signaling in the Akt network with psychotic illnesses, and a growing body of literature has shown that all classes of antipsychotic drugs increase Akt signaling. The most clinically effective antipsychotic drug is clozapine. With Caenorhabditis elegans as a model system, this study demonstrates that clozapine is unique among antipsychotic drugs because it requires β-arrestin and serum and glucocorticoid-inducible kinase (SGK) in addition to Akt to suppress the nuclear localization of DAF-16 (Forkhead box O [FOXO]). Lithium, a mood stabilizer often used to treat psychosis, also requires β-arrestin and SGK to suppress the nuclear localization of DAF-16.
Collapse
Affiliation(s)
- Kathrine R Weeks
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130-3932, USA
| | | | | |
Collapse
|
12
|
Karmacharya R, Lynn SK, Demarco S, Ortiz A, Wang X, Lundy MY, Xie Z, Cohen BM, Miller GM, Buttner EA. Behavioral effects of clozapine: involvement of trace amine pathways in C. elegans and M. musculus. Brain Res 2011; 1393:91-9. [PMID: 21529784 PMCID: PMC3107707 DOI: 10.1016/j.brainres.2011.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 11/27/2022]
Abstract
Clozapine is an antipsychotic medication with superior efficacy in treatment refractory schizophrenia. The molecular basis of clozapine's therapeutic profile is not well understood. We studied behavioral effects of clozapine in Caenorhabditis elegans to identify novel pathways that modulate clozapine's biological effects. Clozapine stimulated egg laying in C. elegans in a dose-dependent manner. This effect was clozapine-specific, as it was not observed with exposure to a typical antipsychotic, haloperidol or an atypical antipsychotic, olanzapine. A candidate gene screen of biogenic amine neurotransmitter systems identified signaling pathways that mediate this clozapine-specific effect on egg laying. Specifically, we found that clozapine-induced increase in egg laying requires tyramine biosynthesis. To test the implications of this finding across species, we explored whether trace amine systems modulate clozapine's behavioral effects in mammals by studying trace amine-associated receptor 1 (TAAR1) knockout mice. Clozapine increased prepulse inhibition (PPI) in wild-type mice. This increase in PPI was abrogated in TAAR1 knockout mice, implicating TAAR1 in clozapine-induced PPI enhancement. In transfected mammalian cell lines, we found no TAAR activation by antipsychotics, suggesting that modulation of trace amine signaling in mice does not occur directly at the receptor itself. In summary, we report a heretofore-unknown role for trace amine systems in clozapine-mediated effects across two species: C. elegans and mice.
Collapse
Affiliation(s)
- Rakesh Karmacharya
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
- Chemical Biology Program, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Spencer K. Lynn
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
- Department of Psychology, Boston College, Chestnut Hill, MA 02467 USA
| | - Sarah Demarco
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Angelica Ortiz
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Xin Wang
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Miriam Y. Lundy
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Zhihua Xie
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772 USA
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Gregory M. Miller
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772 USA
| | - Edgar A. Buttner
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| |
Collapse
|
13
|
Benítez-King G, Ortíz-López L, Jiménez-Rubio G, Ramírez-Rodríguez G. Haloperidol causes cytoskeletal collapse in N1E-115 cells through tau hyperphosphorylation induced by oxidative stress: Implications for neurodevelopment. Eur J Pharmacol 2010; 644:24-31. [PMID: 20621083 DOI: 10.1016/j.ejphar.2010.06.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/31/2010] [Accepted: 06/24/2010] [Indexed: 12/30/2022]
Abstract
Haloperidol a typical antipsychotic commonly used in the treatment of schizophrenia causes neuronal damage and extrapiramidal symptoms after several years of treatment. These symptoms have been associated with increased levels of oxidative stress. Reactive oxygen species produce cytoskeletal collapse and an excessive phosphorylation of tau, a microtubule-associated protein that plays a key role in microtubule stabilization, and in growth cone and neurite formation, which are cytoskeletal phenotypes that participate in neurodevelopment. Thus, we hypothesized that haloperidol produces neurocytoskeletal disorganization by increasing free radicals and tau hyperphosphorylation, and consequently, the loss of neurodevelopmental cytoskeletal phenotypes, neurites and growth cones. The purpose of this work was the characterization of neuronal cytoskeletal changes caused by haloperidol in neuroblastoma N1E-115 cells. We also studied the mechanisms by which haloperidol causes cytoskeletal changes. The results showed that haloperidol at 100microM caused a complete cytoskeleton collapse in the majority of the cells. Melatonin, a free radical scavenger, blocks tau hyperphosphorylation, and microtubule disorganization caused by haloperidol in a dose-response mode. Additionally, the indole blocks lipoperoxide formation in haloperidol treated cells. The results indicate that free radicals and tau hyperphosphorylation produced by haloperidol caused a cytoskeletal collapse and the lost of growth cones and neurites. These effects were blocked by melatonin. Data suggest that extrapiramidal symptoms in schizophrenic patients can be produced by cytoskeletal disorganization during adult brain neurodevelopment after prolonged haloperidol treatment that can be prevented by melatonin.
Collapse
Affiliation(s)
- Gloria Benítez-King
- Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México, D.F., México.
| | | | | | | |
Collapse
|
14
|
Weeks KR, Dwyer DS, Aamodt EJ. Antipsychotic drugs activate the C. elegans akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci 2010; 1:463-73. [PMID: 22778838 DOI: 10.1021/cn100010p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/15/2010] [Indexed: 01/23/2023] Open
Abstract
The molecular modes of action of antipsychotic drugs are poorly understood beyond their effects at the dopamine D2 receptor. Previous studies have placed Akt signaling downstream of D2 dopamine receptors, and recent data have suggested an association between psychotic illnesses and defective Akt signaling. To characterize the effect of antipsychotic drugs on the Akt pathway, we used the model organism C. elegans, a simple system where the Akt/forkhead box O transcription factor (FOXO) pathway has been well characterized. All major classes of antipsychotic drugs increased signaling through the insulin/Akt/FOXO pathway, whereas four other drugs that are known to affect the central nervous system did not. The antipsychotic drugs inhibited dauer formation, dauer recovery, and shortened lifespan, three biological processes affected by Akt signaling. Genetic analysis showed that AKT-1 and the insulin and insulin-like growth factor receptor, DAF-2, were required for the antipsychotic drugs to increase signaling. Serotonin synthesis was partially involved, whereas the mitogen activated protein kinase (MAPK), SEK-1 is a MAP kinase kinase (MAPKK), and calcineurin were not involved. This is the first example of a common but specific molecular effect produced by all presently known antipsychotic drugs in any biological system. Because untreated schizophrenics have been reported to have low levels of Akt signaling, increased Akt signaling might contribute to the therapeutic actions of antipsychotic drugs.
Collapse
Affiliation(s)
- Kathrine R. Weeks
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932
| | - Donard S. Dwyer
- Department of Psychiatry and Department of Pharmacology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932
| | - Eric J. Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932
| |
Collapse
|
15
|
Kashem MA, Ummehany R, Ukai W, Hashimoto E, Saito T, Mcgregor IS, Matsumoto I. Effects of typical (haloperidol) and atypical (risperidone) antipsychotic agents on protein expression in rat neural stem cells. Neurochem Int 2009; 55:558-65. [PMID: 19463880 DOI: 10.1016/j.neuint.2009.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/17/2022]
Abstract
Neural stem cells (NSCs) play a crucial role in the development and maturation of the central nervous system. Recently studies suggest that antipsychotic drugs regulate the activities of NSCs. However, the molecular mechanisms underlying antipsychotic-induced changes of the activity of NSCs, particularly protein expression, are still unknown. We studied the growth and protein expression in haloperidol (HD) and risperidone (RS) treated rat NSCs. The treatment with RS (3microM) or HD (3microM) had no effect on morphology of NSCs after 24h, but significantly promotes or inhibits the differentiation of NSCs after a 96h of treatment. 2-DE based proteomics was performed at 24h, a stage before phenotypic expression of NSCs. Gel image analysis revealed that 30 protein spots in HD- and 60 spots in RS-treated groups were differentially regulated in their expression compared to control group (p<0.05; ANOVA). When these spots were compared between the two drug-treated groups, 23 spots overlapped leaving 7 HD-specific and 37 RS-specific spots. Of these 67 spots, 32 different proteins were identified. The majority of the differentially regulated proteins were classified into several functional groups, such as cytoskeletal, calcium regulating protein, metabolism, signal transduction and proteins related to oxidative stress. Our data shows that atypical RS expressed more proteins than typical HD, and these results might explain the molecular mechanisms underlying the different effects of both drugs on NSCs activities as described above. Identified proteins in this experiment may be useful in future studies of NSCs differentiation and/or understanding in molecular mechanisms of different neural diseases including schizophenia.
Collapse
|