1
|
Veshchitskii AA, Kirik OV, Korzhevskii DE, Merkulyeva N. Development of neurochemical labeling in the intermediolateral nucleus of cats' spinal cord. Anat Rec (Hoboken) 2023; 306:2400-2410. [PMID: 35500068 DOI: 10.1002/ar.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 08/11/2023]
Abstract
NeuN is a neuron-specific nuclear protein expressed in most mature neuronal cell types, with some exceptions. These exceptions are known mainly for the brain but not for the spinal cord or the spinal visceral networks for which only scarce information is available. One of the most defined visceral structures in the spinal cord is the sympathetic intermediolateral nucleus located within the thoracolumbar segments. We investigated the NeuN staining in the intermediolateral nucleus and compared it with the staining for two neurochemical markers of visceral neurons: nitric oxide synthase and calcium-binding protein calretinin in adult cats and in kittens aged 0, 14, and 35 days. A clear NeuN-immunonegativity was obtained for intermediolateral neurons labeled for nitric oxide synthase for both adult cats and kittens. In contrast, a matched immunopositivity for the NeuN and calretinin was obtained, showing an age-dependent degree of this colocalization, which was high in newborn kittens, decreased on postnatal 14 and 35 days and persisted at a moderate level up to adulthood. Perhaps our data displayed a heterogeneity of the intermediolateral neurons.
Collapse
Affiliation(s)
| | - Olga V Kirik
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Institute of Experimental Medicine RAS, Saint-Petersburg, Russia
| | - Dmitriy E Korzhevskii
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Institute of Experimental Medicine RAS, Saint-Petersburg, Russia
| | - Natalia Merkulyeva
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
3
|
Budnik AF, Aryaeva D, Vyshnyakova P, Masliukov PM. Age related changes of neuropeptide Y-ergic system in the rat duodenum. Neuropeptides 2020; 80:101982. [PMID: 31708113 DOI: 10.1016/j.npep.2019.101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide Y (NPY) is widely distributed in the autonomic nervous system and acts as a neurotransmitter and a trophic factor. However, there is no report concerning the expression of NPY and its receptors in the intestine during postnatal ontogenesis. In the current study, immunohistochemistry and western blot analysis was used to label NPY, Y1R, Y2R and Y5R receptors in the duodenum from rats of different ages (1-, 10-, 20-, 30-, 60-day-old and 2-year-old). The obtained data suggest age-dependent changes of NPY-mediated gut innervation. NPY-immunoreactive (IR) neurons were observed in the myenteric (MP) and submucous (SP) plexus from the moment of birth. In the MP, the percentage of NPY-IR neurons was low and varied from 4.1 ± 0.32 in 1-day-old to 2.9 ± 0.62 in 2-year-old rats. The proportion of NPY-IR myenteric neurons did not change significantly through the senescence (p > .05). In the SP, the proportion of NPY-IR neurons significantly increased in the first month of life from 56.3 ± 2.4% in 1-day-old to 78.1 ± 5.18% in 20-day-old and significantly decreased from 75.6 ± 4.62% in 30-day-old rats to 59.8 ± 4.24% in 2-year-old rats. The expression of NPY in the duodenum did not change significantly during the development by western blot analysis. The expression of Y1R and Y2R was low in newborns and upregulated in the first ten days of life. The expression of Y5R was maximal in newborn pups and significantly decreased in in the first 20 days. Thus, there are some fluctuation of the percentage of NPY-IR neurons accompanies changes in relation of different subtypes of NPY receptors in the small intestine during postnatal ontogenesis.
Collapse
Affiliation(s)
- Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| | - Daria Aryaeva
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Polina Vyshnyakova
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia; Petrozavodsk State University, Petrozavodsk, Russia.
| |
Collapse
|
4
|
Kokubun S, Sato T, Yajima T, Ichikawa H. Distribution of postganglionic neurons which contain dopamine β-hydroxylase, tyrosine hydroxylase, neuropeptide Y and vasoactive intestinal polypeptide in the human middle cervical ganglion. Tissue Cell 2019; 58:42-50. [PMID: 31133245 DOI: 10.1016/j.tice.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 01/31/2023]
Abstract
The middle cervical ganglion (MCG) has been shown to contain neurotransmitters and related substances in the cat, dog and sheep. However, little is known about their presence or distribution in the human MCG. In this study, immunohistochemistry for catecholamine-synthesizing enzymes and neuropeptides was performed on the MCG in human cadavers. In 4 samples of human cadavers, MCG swellings contained numerous postganglionic neurons. In another sample, a distinct swelling of the MCG could not be detected. However, neuronal cell bodies were present within the sympathetic nerve trunk between the superior cervical and stellate ganglia. The cell size analysis demonstrated that cell bodies of postganglionic neurons measured 94.1-1774.1 μm2 (mean ± S.D. = 578.1 ± 127.7 μm2) in the MCG. Postganglionic neurons in the MCG were immunoreactive for dopamine β-hydroxylase (DBH, 92.1%), tyrosine hydroxylase (TH, 59.3%), neuropeptide Y (NPY, 71.9%) and vasoactive intestinal polypeptide (VIP, 19.3%). TH-positive neurons in the human MCG appear to be infrequent compared to the sheep MCG in a previous study. In the superior cervical (SCG) and stellate ganglia (SG), 91.0% and 94.2%, respectively, of postganglionic neurons showed DBH-immunoreactivity. A total of 83.8% and 70.4%of them contained TH-immunoreactivity in the SCG and SG. However, expression of NPY in the SG (78.2%) was more abundant than in the SCG (59.1%). Only 16.4% and 13.8% of postganglionic neurons were immunoreactive for VIP in the SCG and SG, respectively. VIP-immunoreactivity was also expressed by nerve fibers surrounding some postganglionic neurons in the MCG (8.7%), SCG (11.5%) and SG (5.9%). The present study suggests that catecholamine, NPY and VIP are neurotransmitters in the MCG, SCG and SG of the human.
Collapse
Affiliation(s)
- Souichi Kokubun
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| | - Takehiro Yajima
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Emanuilov AI, Konovalov VV, Masliukov PM, Polyakov EL, Nozdrachev AD. Age-Related Changes in Sympathetic Innervation of the Stomach in Rats. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019020097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Mitsuoka K, Miwa Y, Kikutani T, Sato I. Localization of CGRP and VEGF mRNAs in the mouse superior cervical ganglion during pre- and postnatal development. Eur J Histochem 2018; 62. [PMID: 30465595 PMCID: PMC6275463 DOI: 10.4081/ejh.2018.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) mediates inflammation and head pain by influencing the functional vascular blood supply. CGRP is a well-characterized mediator of receptor-regulated neurotransmitter release. However, knowledge regarding the role of CGRP during the development of the superior cervical ganglion (SCG) is limited. In the present study, we observed the localization of CGRP and vascular endothelial growth factor (VEGFA) mRNAs during prenatal development at embryonic day 14.5 (E14.5), E17.5 and postnatal day 1 (P1) using in situ hybridization. The antisense probe for CGRP was detected by in situ hybridization at E14.5, E17.5, and P1, and the highest levels were detected at E17.5. In contrast, the antisense probe for VEGF-A was detected by in situ hybridization in gradually increasing intensity from E14.5 to P1. The differences in the expression of these two markers revealed specific characteristics related to CGRP concentration and release compared to those of VEGF-A during development. The correlation between CGRP and VEGF-A may influence functional stress and the vascular blood supply during prenatal and postnatal development.
Collapse
|
7
|
Emanuilov AI, Masliukov PM, Nozdrachev AD. Sympathetic Innervation of Stomach in Postnatal Development. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2018; 483:219-221. [PMID: 30603941 DOI: 10.1134/s0012496618060017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/09/2023]
Abstract
Sympathetic innervation of the stomach was studied in rats by the method of retrograde axon transport of Fast Blue in postnatal ontogenesis. The number of labeled neurons increased in the first 10 days of life and then did not change until the senescence. All labeled neurons innervating the stomach contain the catecholamine synthesis enzyme, tyrosine hydroxylase. The proportion of labeled neuropeptide Y-immunopositive neurons did not change in the development, the percentage of labeled calbindin-immunoreactive neurons decreased in the first month of life.
Collapse
Affiliation(s)
- A I Emanuilov
- Yaroslavl State Medical University, Yaroslavl, 150000, Russia
| | - P M Masliukov
- Yaroslavl State Medical University, Yaroslavl, 150000, Russia.
| | - A D Nozdrachev
- St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
8
|
Moiseev KY, Romanova IV, Masliukov AP, Masliukov PM. Development of nNOS-positive preganglionic sympathetic neurons in the rat thoracic spinal cord. Cell Tissue Res 2018; 375:345-357. [PMID: 30267140 DOI: 10.1007/s00441-018-2925-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022]
Abstract
To gain a better understanding of the neuroplasticity of sympathetic neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in sympathetic preganglionic neurons (SPN) in the spinal cord (Th2 segment) of female Wistar rats at different ages (newborn, 10-, 20-, 30-day-old; 2-, 6-month-old; 3-year-old). In all age groups, the majority of nNOS-immunoreactive (IR) neurons was observed in the nucleus intermediolateralis thoracolumbalis pars principalis. In the first month, the proportion of nNOS-IR neurons decreased significantly from 92 ± 3.4% in newborn to 55 ± 4.6% in 1-month-old, while the number of choline acetyltransferase (ChAT)-IR neurons increased from 74 ± 4.2% to 99 ± 0.3% respectively. Decreasing nNOS expression in the first 10 days of life was also confirmed by western blot analysis. Some nNOS-IR SPN also colocalized calbindin (CB) and cocaine and amphetamine-regulated transcript (CART). The percentage of NOS(+)/CB(-) SPN increased from 23 ± 3.6% in 10-day-old to 36 ± 4.2% in 2-month-old rats. Meanwhile, the proportion of NOS(+)/CART(-) neurons decreased from 82 ± 4.7% in newborn to 53 ± 6.1% in 1-month-old rats. The information provided here will also serve as a basis for future studies investigating the mechanisms of autonomic neuron development.
Collapse
Affiliation(s)
- Konstantin Y Moiseev
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000
| | - Irina V Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| |
Collapse
|
9
|
Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057017040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Palus K, Bulc M, Czajkowska M, Miciński B, Całka J. Neurochemical characteristics of calbindin-like immunoreactive coeliac-cranial mesenteric ganglion complex (CCMG) neurons supplying the pre-pyloric region of the porcine stomach. Tissue Cell 2018; 50:8-14. [DOI: 10.1016/j.tice.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/29/2023]
|
11
|
Masliukov PM, Moiseev K, Budnik AF, Nozdrachev AD, Timmermans JP. Development of Calbindin- and Calretinin-Immunopositive Neurons in the Enteric Ganglia of Rats. Cell Mol Neurobiol 2017; 37:1257-1267. [PMID: 28008568 PMCID: PMC11482072 DOI: 10.1007/s10571-016-0457-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
Calbindin D28 K (CB) and calretinin (CR) are the members of the EF-hand family of calcium-binding proteins that are expressed in neurons and nerve fibers of the enteric nervous system. CB and CR are expressed differentially in neuronal subpopulations throughout the central and peripheral nervous systems and their expression has been used to selectively target specific cell types and isolate neuronal networks. The present study presents an immunohistochemical analysis of CB and CR in the enteric ganglia of small intestine in rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 60-day-old, 1-year-old, and 2-year-old). The data obtained suggest a number of age-dependent changes in CB and CR expression in the myenteric and submucous plexuses. In the myenteric plexus, the lowest percentage of CB-immunoreactive (IR) and CR-IR neurons was observed at birth, after which the number of IR cells increased in the first 10 days of life. In the submucous plexus, CB-IR and CR-IR neurons were observed from 10-day-old onwards. The percentage of CR-IR and CB-IR neurons increased in the first 2 months and in the first 20 days, respectively. In all animals, the majority of the IR neurons colocalized CR and CB. From the moment of birth, the mean of the cross-sectional area of the CB-IR and CR-IR neuronal profiles was larger than that of CB- and CR-negative cells.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| | - Konstantin Moiseev
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| | | | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Masliukov PM, Nozdrachev AD, Emanuilov AI. Age-related features in expression of calcium-binding proteins in autonomic ganglionic neurons. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s207905701604010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Botti M, Ragionieri L, Cacchioli A, Panu R, Gazza F. Immunohistochemical Properties of the Peripheral Neurons Projecting to the Pig Bulbospongiosus Muscle. Anat Rec (Hoboken) 2016; 299:1192-202. [DOI: 10.1002/ar.23389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Maddalena Botti
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Luisa Ragionieri
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Antonio Cacchioli
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Rino Panu
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Ferdinando Gazza
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| |
Collapse
|
14
|
Masliukov PM, Moiseev K, Emanuilov AI, Anikina TA, Zverev AA, Nozdrachev AD. Development of neuropeptide Y-mediated heart innervation in rats. Neuropeptides 2016; 55:47-54. [PMID: 26589184 DOI: 10.1016/j.npep.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) plays a trophic role in the nervous and vascular systems and in cardiac hypertrophy. However, there is no report concerning the expression of NPY and its receptors in the heart during postnatal development. In the current study, immunohistochemistry and Western blot analysis was used to label NPY, and Y1R, Y2R, and Y5R receptors in the heart tissue and intramural cardiac ganglia from rats of different ages (newborn, 10 days old, 20 days old, 30 days old, 60 days old, 1 year old, and 2 years old).The obtained data suggest age-dependent changes of NPY-mediated heart innervation. The density of NPY-immunoreactive (IR) fibers was the least in newborn animals and increased in the first 20 days of life. In the atria of newborn and 10-day-old rats, NPY-IR fibers were more abundant compared with the ventricles. The vast majority of NPY-IR fibers also contained tyrosine hydroxylase, a key enzyme in catecholamine synthesis.The expression of Y1R increased between 10 and 20 days of life. Faint Y2R immunoreactivity was observed in the atria and ventricles of 20-day-old and older rats. In contrast, the highest level of the expression of Y5R was found in newborn pups comparing with more adult rats. All intramural ganglionic neurons were also Y1R-IR and Y5R-IR and Y2R-negative in all studied animals.Thus, the increasing of density of NPY-containing nerve fibers accompanies changes in relation of different subtypes of NPY receptors in the heart during development.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, ul. Revolucionnaya, 5, Yaroslavl 150000, Russia.
| | - Konstantin Moiseev
- Department of Normal Physiology, Yaroslavl State Medical University, ul. Revolucionnaya, 5, Yaroslavl 150000, Russia
| | - Andrey I Emanuilov
- Department of Normal Physiology, Yaroslavl State Medical University, ul. Revolucionnaya, 5, Yaroslavl 150000, Russia
| | - Tatyana A Anikina
- Department of Anatomy, Physiology and Healthcare, Kazan (Volga Region) Federal University, Kremlyovskaya St. 18, Kazan 420008, Russia
| | - Alexey A Zverev
- Department of Anatomy, Physiology and Healthcare, Kazan (Volga Region) Federal University, Kremlyovskaya St. 18, Kazan 420008, Russia
| | - Alexandr D Nozdrachev
- Department of Physiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint-Petersburg 199034, Russia
| |
Collapse
|