1
|
Kuhn J, Lindstrom A, Volkoff H. Effects of fasting and environmental factors on appetite regulators in pond loach Misgurnus anguillicaudatus. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111651. [PMID: 38703991 DOI: 10.1016/j.cbpa.2024.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The pond loach (Misgurnus anguillicaudatus) is an important aquaculture freshwater species, used as an ornamental fish, food source for humans and angling bait. Pond loaches are resistant to fasting and extreme environmental conditions, including temperature and low oxygen levels. Little is known about how these factors affect the feeding physiology and the endocrine regulation of feeding of loaches. In this study, we examined the effects of fasting, as well as increased temperature and decreased oxygen levels on food intake and transcript levels of appetite regulators. Fasted fish had lower blood glucose levels, and lower expression levels of intestine CCK and PYY, and brain CART1, but had higher levels of brain orexin and ghrelin than fed fish. Fish held at 30 °C had higher food intake, glucose levels, and mRNA levels of intestine CCK and PYY, and brain CART2, but lower brain orexin levels than fish at 20 °C. Fish held at low oxygen levels had a lower food intake, higher intestine CCKa and ghrelin, and brain orexin, CART2 and ghrelin mRNA expression levels than fish held at high O2 levels. Our results suggest that fasting and high temperatures increase the expression of orexigenic and anorexigenic factors respectively, whereas the increase in expression of both orexigenic and anorexigenic factors in low O2 environments might not be related to their role in feeding, but possibly to protection from tissue damage. The results of our study might shed new light on how pond loaches are able to cope with extreme environmental conditions such as low food availability, extreme temperatures and hypoxia.
Collapse
Affiliation(s)
- Jannik Kuhn
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Hochschule Mannheim University, Mannheim 68163, Germany
| | - Annika Lindstrom
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
2
|
Fayazi B, Tadibi V, Ranjbar K. The role of hypoxia related hormones responses in acute mountain sickness susceptibility individuals unaccustomed to high altitude. PLoS One 2023; 18:e0292173. [PMID: 37796960 PMCID: PMC10553285 DOI: 10.1371/journal.pone.0292173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Acute mountain sickness (AMS) is caused by rapid ascent to altitude (>2500 m) and remains a poorly understood pathophysiological condition. Accordingly, we investigated the relationship between acute exposure to high altitude and hypoxia related biochemical proteins. 21 healthy subjects (Female (8) and male (13), Age: 36.7±8.5, BMI: 23.2±3.1) volunteers participated in this project and fasting blood samples were taken before (sea level) and after 1 and 24-h exposure to high altitude (3,550 m). Blood oxygen saturation (SpO2), AMS status (Lake Louise Score) and serum HIF-1, Endothelin-1, VEGF and Orexin-A were measured (via ELISA) at 1, 6 and 24 h after exposure to high altitude. Pre-ascent measurement of hypoxia related proteins (Orexin-A, HIF-1, VEGF and Endothelin-1) where all significantly (<0.05) higher in the AMS-resistant individuals (No-AMS) when compared to AMS susceptible individuals (AMS+). Upon ascent to high altitude, 11 out of 21 volunteers had AMS (10.1±0.6 in AMS+ vs. 0.9±0.6 in No-AMS, P<0.05) and presented with lower resting SpO2 levels (77.7±0.4 vs. 83.5±0.3 respectively, p<0.05). Orexin-A, HIF-1, VEGF and Endothelin-1, significantly increased 24 hrs after exposure to high altitude in both AMS+ and No-AMS. The response of Orexin-A was similar between two groups, also, HIF-1 elevation 24 hrs after exposure to altitude was more in AMS+ (13% vs. 19%), but the increase of VEGF and Endothelin-1, 1 and 24 hrs after exposure to altitude in No-AMS was double that of AMS+. Hypoxia related proteins include Orexin-A, HIF-1, VEGF and Endothelin-1 may play a pathophysiological role in those who are susceptible to AMS.
Collapse
Affiliation(s)
- Bayan Fayazi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Vahid Tadibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Kamal Ranjbar
- Department of Exercise Physiology, Faculty of Sport Sciences, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
3
|
Sithirungson S, Sonsuwan N, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Functional roles of orexin in obstructive sleep apnea: From clinical observation to mechanistic insights. Sleep Med 2023; 101:40-49. [PMID: 36334500 DOI: 10.1016/j.sleep.2022.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder. Repetitive episodes of the obstructive respiratory events lead to arousal, sleep fragmentation, and excessive daytime sleepiness. Orexin, also known as hypocretin, is one of the most important neurotransmitters responsible for sleep and arousal regulation. Deficiency of orexin has been shown to be involved in the pathogenesis of narcolepsy, which shares cardinal symptoms of sleep apnea and excessive daytime sleep with obstructive sleep apnea. However, the relationship between orexin and obstructive sleep apnea is not well defined. In this review, we summarize the current evidence, from in vitro, in vivo, and clinical data, regarding the association between orexin and obstructive sleep apnea. The effects of orexin on sleep apnea, as well as how the consequences of obstructive sleep apnea affect the orexin system function are also discussed. Additionally, the contrary findings are also included and discussed.
Collapse
Affiliation(s)
- Suchanya Sithirungson
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuntigar Sonsuwan
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Current Management of Residual Excessive Daytime Sleepiness Due to Obstructive Sleep Apnea: Insights for Optimizing Patient Outcomes. Neurol Ther 2021; 10:651-672. [PMID: 34658002 PMCID: PMC8520824 DOI: 10.1007/s40120-021-00289-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023] Open
Abstract
Although excessive daytime sleepiness (EDS) attributable to obstructive sleep apnea (OSA) can be resolved by consistent usage of and effective treatment (often with the use of continuous positive airway pressure therapy), 12–58% of patients report residual EDS (REDS). While REDS is difficult to treat, a proportion of cases are possibly due to reversible issues, and wake-promoting medications can prove useful for the remaining cases. Given the challenges associated with effective management of REDS and its relationship to multiple comorbidities, multidisciplinary management of patients with REDS is often recommended. Here we aim to bridge the knowledge gap on the burden, risk factors, prevalence, and potential pathophysiologic mechanisms of REDS in patients with OSA after first-line treatment. The roles of primary care physicians and sleep specialists, as well as the importance of the use of objective assessment tools for the evaluation of REDS and the effective management of comorbidities, are discussed. An update of approved treatments and emerging candidate treatments is also presented.
Collapse
|
6
|
Basini G, Bussolati S, Grolli S, Ragionieri L, Di Lecce R, Grasselli F. Orexin B inhibits viability and differentiation of stromal cells from swine adipose tissue. Domest Anim Endocrinol 2021; 75:106594. [PMID: 33291037 DOI: 10.1016/j.domaniend.2020.106594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Adipose tissue is recognized as a fundamental endocrine organ. Nowadays, we are also aware that it contains the highest number of stromal cells (ASCs) per unit of volume. These cells can differentiate between different phenotypes among which the adipocytes. The aim of this work was to verify whether orexin B, crucial mediator of the energy balance, modifies the differentiation of cultured ASCs. We used the pig as a model. Our data demonstrate that swine ASCs express prepro-orexin. Orexin B treatment inhibits ASCs proliferation (P < 0.05) and adipogenic differentiation (P < 0.05). Data collected could be interesting both in animal production field because consumers require lean meat, and in human medicine study about obesity because pig can be considered a valuable animal model for translational studies.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|
7
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Dergacheva O, Mendelowitz D. Combined hypoxia and hypercapnia, but not hypoxia alone, suppresses neurotransmission from orexin to hypothalamic paraventricular spinally-projecting neurons in weanling rats. Brain Res 2017; 1679:33-38. [PMID: 29162453 DOI: 10.1016/j.brainres.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
Both orexin neurons in the lateral hypothalamus and spinally-projecting pre-sympathetic neurons (PSNs) in the paraventricular nucleus of the hypothalamus (PVN) play an important role in the regulation of cardiovascular function under normal conditions and during cardiovascular challenges such as hypoxia and/or hypercapnia. We have previously established, using selective optogenetic excitation of orexin neurons and pathways, there is a heterogeneous neurotransmission from orexin neurons to PSNs in the PVN. This study was undertaken to test whether this pathway is altered by acute exposure to hypoxia alone and/or combined hypoxia and hypercapnia (H/H). To test this hypothesis, we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in the lateral hypothalamus and photoactivated ChR2-expressing fibers to evoke postsynaptic currents in spinally-projecting PSNs in an in vitro slice preparation in rats. In accordance with previously published data, two subpopulations of spinally-projecting PSNs were established, including those with glutamatergic or GABAergic inputs from orexin neurons. Hypoxia alone did not alter the peak amplitude of either glutamatergic or GABAergic neurotransmission, however, H/H significantly inhibited both glutamatergic and GABAergic neurotransmission from orexin neurons to SPNs. In conclusion, H/H may modulate cardiovascular function by affecting heterogeneous pathways from orexin neurons to spinally-projecting PSNs in the PVN.
Collapse
Affiliation(s)
- Olga Dergacheva
- *Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA.
| | - David Mendelowitz
- *Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| |
Collapse
|
9
|
Vivekanandarajah A, Aishah A, Waters KA, Machaalani R. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Neurotoxicology 2017; 60:23-33. [PMID: 28235547 DOI: 10.1016/j.neuro.2017.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O2, 7%CO2, balance N2) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia
| | - Atqiya Aishah
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Discipline of Pharmacology, Blackburn Building, D06, University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Rita Machaalani
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead, Sydney, NSW 2145, Australia.
| |
Collapse
|
10
|
Hunt NJ, Waters KA, Machaalani R. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression. Mol Neurobiol 2016; 54:7171-7185. [PMID: 27796753 DOI: 10.1007/s12035-016-0234-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that sudden infant death syndrome (SIDS) infants have decreased orexin immunoreactivity within the hypothalamus and pons compared to non-SIDS infants. In this study, we examined multiple mechanisms that may promote loss of orexin expression including programmed cell death, impaired maturation/structural stability, neuroinflammation and impaired unfolding protein response (UPR). Immunofluorescent and immunohistochemical staining for a number of markers was performed in the tuberal hypothalamus and pons of infants (1-10 months) who died from SIDS (n = 27) compared to age- and sex-matched non-SIDS infants (n = 19). The markers included orexin A (OxA), dynorphin (Dyn), cleaved caspase 3 (CC3), cleaved caspase 9 (CC9), glial fibrillary acid protein (GFAP), tubulin beta chain 3 (TUBB3), myelin basic protein (MBP), interleukin 1β (IL-1β), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), c-fos and the UPR activation markers: phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (pPERK), and activating transcription factor 4 (ATF4). It was hypothesised that pPERK and ATF4 would be upregulated in Ox neurons in SIDS compared to non-SIDS. Within the hypothalamus, OxA and Dyn co-localised with a 20 % decrease in expression in SIDS infants (P = 0.001). pPERK and ATF4 expression in OxA neurons were increased by 35 % (P = 0.001) and 15 % (P = 0.001) respectively, with linear relationships between the decreased OxA/Dyn expression and the percentages of co-localised pPERK/OxA and ATF4/OxA evident (P = 0.01, P = 0.01). No differences in co-localisation with CC9, CC3, TUNEL or c-fos, nor expression of MBP, TUBB3, IL-1β and GFAP, were observed in the hypothalamus. In the pons, there were 40 % and 20 % increases in pPERK expression in the locus coeruleus (P = 0.001) and dorsal raphe (P = 0.022) respectively; ATF4 expression was not changed. The findings that decreased orexin levels in SIDS infants may be associated with an accumulation of pPERK suggest decreased orexin translation. As pPERK may inhibit multiple neuronal groups in the pons in SIDS infants, it could also indicate that a common pathway promotes loss of protein expression and impaired functionality of multiple brainstem neuronal groups.
Collapse
Affiliation(s)
- Nicholas J Hunt
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia
| | - Karen A Waters
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia.,The Children's Hospital, Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia. .,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia. .,The Children's Hospital, Westmead, NSW, Australia.
| |
Collapse
|
11
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Hypoxia and hypercapnia inhibit hypothalamic orexin neurons in rats. J Neurophysiol 2016; 116:2250-2259. [PMID: 27559138 DOI: 10.1152/jn.00196.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/21/2016] [Indexed: 01/18/2023] Open
Abstract
Evidence of impaired function of orexin neurons has been found in individuals with cardiorespiratory disorders, such as obstructive sleep apnea (OSA) and sudden infant death syndrome (SIDS), but the mechanisms responsible are unknown. Individuals with OSA and SIDS experience repetitive breathing cessations and/or rebreathing of expired air, resulting in hypoxia/hypercapnia (H/H). In this study, we examined the responses of fluorescently identified rat orexin neurons in the lateral hypothalamus to acute H/H to test if and how these neurons alter their activity and function during this challenge. Experiments were conducted in an in vitro slice preparation using voltage-clamp and current-clamp configurations. H/H (10 min) induced hyperpolarization, accompanied by rapid depression, and finally, cessation of firing activity in orexin neurons. Hypoxia alone had similar but less potent effects. H/H did not alter the frequency of inhibitory glycinergic postsynaptic currents. The frequency of GABAergic currents was diminished but only at 8-10 min of H/H. In contrast, the frequency of excitatory glutamatergic postsynaptic events was diminished as early as 2-4 min of H/H. In the presence of glutamatergic receptor blockers, the inhibitory effects of H/H on the firing activity and membrane potential of orexin neurons persisted but to a lesser extent. In conclusion, both direct alteration of postsynaptic membrane properties and diminished glutamatergic neurotransmission likely contribute to the inhibition of orexin neurons by H/H. These mechanisms could be responsible for the decreased function of orexin in individuals at risk for OSA and SIDS.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| |
Collapse
|
12
|
Hunt NJ, Russell B, Du MK, Waters KA, Machaalani R. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia. Eur J Neurosci 2016; 43:1612-22. [DOI: 10.1111/ejn.13246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/10/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Nicholas J. Hunt
- Department of Medicine; Central Clinical School; University of Sydney; Camperdown NSW Australia
- BOSCH Institute of Biomedical Research; University of Sydney; Camperdown NSW Australia
| | - Benjamin Russell
- Summer Research Scholarship Program; Sydney Medical School; University of Sydney; Camperdown NSW Australia
| | - Man K. Du
- Department of Pathology; Sydney Medical School; University of Sydney; Camperdown NSW Australia
| | - Karen A. Waters
- Department of Medicine; Central Clinical School; University of Sydney; Camperdown NSW Australia
- BOSCH Institute of Biomedical Research; University of Sydney; Camperdown NSW Australia
- The Children's Hospital; Westmead NSW Australia
| | - Rita Machaalani
- Department of Medicine; Central Clinical School; University of Sydney; Camperdown NSW Australia
- BOSCH Institute of Biomedical Research; University of Sydney; Camperdown NSW Australia
- The Children's Hospital; Westmead NSW Australia
- Room 206; SIDS and Sleep Apnoea Laboratory; University of Sydney; Blackburn Building, D06 Camperdown NSW 2006 Australia
| |
Collapse
|