1
|
Gerik-Celebi HB, Unsel-Bolat G, Bolat H. Association of ABCA13 Gene Variants with Autism Spectrum Disorder and Other Neuropsychiatric Disorders. Mol Syndromol 2024; 15:22-29. [PMID: 38357255 PMCID: PMC10862315 DOI: 10.1159/000534123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/08/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by impaired social skills and limited or repetitive behaviors. In this study, we investigated the role of the ABCA13 gene in the etiopathogenesis of ASD. Methods Single-nucleotide variants were evaluated in 79 ASD patients (59 males +20 females) with no established genetic etiology associated with ASD using whole-exome sequencing/clinical exome sequencing method. Family segregation analysis was performed using Sanger sequencing. We presented the clinical and genetic findings of these cases and their parents in detail. Results We presented 10 different ABCA13 gene variants in cases with ASD and 10 parents carrying the same ABCA13 gene variant. There of these variants were likely pathogenic and seven variants were classified as variant of uncertain significance. Our cases had a comorbidity rate for attention deficit hyperactivity disorder (ADHD) as 70%. Various types of neuropsychiatric symptoms and diagnoses were detected including ADHD, anxiety disorder, intellectual disability, delay in speech, and febrile convulsion among the parents. Conclusion To date, very few variants have been reported in the ABCA13 gene. Our findings enrich the role of ABCA13 gene may play a common role in the landscape of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
2
|
Gerik-Celebi HB, Aydin H, Bolat H, Unsel-Bolat G. Clinical and Genetic Characteristics of Patients with Unexplained Intellectual Disability/Developmental Delay without Epilepsy. Mol Syndromol 2023; 14:208-218. [PMID: 37323201 PMCID: PMC10267527 DOI: 10.1159/000529018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Global developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD) are mainly evaluated under the neurodevelopmental disorder framework. In this study, we aimed to determine the genetic diagnosis yield using step-by-step genetic analysis in 38 patients with unexplained ID/DD and/or ASD. Methods In 38 cases (27 male, 11 female) with unexplained ID/DD and/or ASD, chromosomal microarray (CMA) analysis, clinical exome sequencing (CES), and whole-exome sequencing (WES) analysis were applied, respectively. Results We found a diagnostic rate of only CMA analysis as 21% (8/38) presenting 8 pathogenic and likely pathogenic CNVs. The rate of patients diagnosed with CES/WES methods was 32.2% (10/31). When all pathogenic and likely pathogenic variants were evaluated, the diagnosis rate was 44.7% (17/38). A dual diagnosis was obtained in a case with 16p11.2 microduplication and de novo SNV. We identified eight novel variants: TUBA1A (c.787C>G), TMEM63A (c.334-2A>G), YY1AP1 (c.2051_2052del), ABCA13 (c.12064C>T), ABCA13 (c.13187G>A), USP9X (c.1189T>C), ANKRD17 (c.328_330dup), and GRIA4 (c.17G>A). Conclusion We present diagnostic rates of a complementary approach to genetic analysis (CMA, CES, and WES). The combined use of genetic analysis methods in unexplained ID/DD and/or ASD cases has contributed significantly to diagnosis rates. Also, we present detailed clinical characteristics to improve genotype-phenotype correlation in the literature for rare and novel variants.
Collapse
Affiliation(s)
| | - Hilal Aydin
- Department of Pediatrics, Division of Child Neurology, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
3
|
Cai G, Yu X, Hutchins D, McDermott S. A pilot study that provides evidence of epigenetic changes among mother-child pairs living proximal to mining in the US. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4735-4746. [PMID: 35137284 PMCID: PMC9468238 DOI: 10.1007/s10653-022-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Environmental exposures to chemicals can disrupt gene expression, and the effects could be mediated by methylation. This investigation focused on methylation of genes associated with exposure to metals. Mother-child pairs from three locations in Montana were recruited, and buccal cells were collected for genome-wide methylation assay. Four pairs were from Butte, where there is mining and a Superfund site, four pairs were from Anaconda with a Superfund site, and four pairs were from Missoula with neither a mine nor a Superfund site. Principal component analysis, linear mixed models, hierarchical clustering and heatmap, and gene set enrichment analysis were used to visualize the profiles, identify the top associated methylation loci, and investigate the involved pathways. Distinctly higher or lower methylation in samples from Butte were found at the top differentially methylated loci. The 200 genes harboring the most hypermethylated loci were significantly enriched in genes involved in actin cytoskeleton regulation, ABC transporters, leukocyte transendothelial migration, focal adhesion, and adherens junction, which plays a role in pathogenesis of disease, including autism spectrum disorders. This study lays a foundation for inquiry about genetic changes associated with environmental exposure to metals for people living in proximity to Superfund and open pit mining.
Collapse
Affiliation(s)
- Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - David Hutchins
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Montana Technological University, Butte, MT, USA
| | - Suzanne McDermott
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health & Health Policy, New York, NY, USA.
| |
Collapse
|
4
|
Kim IB, Lee T, Lee J, Kim J, Lee S, Koh IG, Kim JH, An JY, Lee H, Kim WK, Ju YS, Cho Y, Yu SJ, Kim SA, Oh M, Han DW, Kim E, Choi JK, Yoo HJ, Lee JH. Non-coding de novo mutations in chromatin interactions are implicated in autism spectrum disorder. Mol Psychiatry 2022; 27:4680-4694. [PMID: 35840799 DOI: 10.1038/s41380-022-01697-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Three-dimensional chromatin interactions regulate gene expressions. The significance of de novo mutations (DNMs) in chromatin interactions remains poorly understood for autism spectrum disorder (ASD). We generated 813 whole-genome sequences from 242 Korean simplex families to detect DNMs, and identified target genes which were putatively affected by non-coding DNMs in chromatin interactions. Non-coding DNMs in chromatin interactions were significantly involved in transcriptional dysregulations related to ASD risk. Correspondingly, target genes showed spatiotemporal expressions relevant to ASD in developing brains and enrichment in biological pathways implicated in ASD, such as histone modification. Regarding clinical features of ASD, non-coding DNMs in chromatin interactions particularly contributed to low intelligence quotient levels in ASD probands. We further validated our findings using two replication cohorts, Simons Simplex Collection (SSC) and MSSNG, and showed the consistent enrichment of non-coding DNM-disrupted chromatin interactions in ASD probands. Generating human induced pluripotent stem cells in two ASD families, we were able to demonstrate that non-coding DNMs in chromatin interactions alter the expression of target genes at the stage of early neural development. Taken together, our findings indicate that non-coding DNMs in ASD probands lead to early neurodevelopmental disruption implicated in ASD risk via chromatin interactions.
Collapse
Affiliation(s)
- Il Bin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Psychiatry, Hanyang University Guri Hospital, Guri, 11923, Republic of Korea
| | - Taeyeop Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Junehawk Lee
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea
| | - In Gyeong Koh
- Industry-University Cooperation Foundation, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.,BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.,BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Woo Kyeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongseong Cho
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Seok Jong Yu
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, Eulji University, Daejeon, 13135, Republic of Korea
| | - Miae Oh
- Department of Psychiatry, Kyung Hee University Hospital, Seoul, 02447, Republic of Korea
| | - Dong Wook Han
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.,Organoid sciences, Ltd., Bundang-gu, Seongnam, 13488, Republic of Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea. .,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Sovargen Co. Ltd., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
5
|
Ninomiya T, Noritake A, Tatsumoto S, Go Y, Isoda M. Cognitive genomics of learning delay and low level of social performance monitoring in macaque. Sci Rep 2022; 12:16539. [PMID: 36192455 PMCID: PMC9529886 DOI: 10.1038/s41598-022-20948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive skills and the underlying neural architecture are under the influence of genetics. Cognitive genomics research explores the triadic relationship between genes, brain, and cognition, with its major strategy being genotype-driven. Here we show that an inverse strategy is feasible to identify novel candidate genes for particular neuro-cognitive phenotypes in macaques. Two monkeys, originally involved in separate psychological studies, exhibited learning delay and low levels of social performance monitoring. In one monkey, mirror neurons were fewer compared to controls and mu suppression was absent in the frontal cortex. The other monkey showed heightened visual responsiveness in both frontal cortex and dopamine-rich midbrain, with a lack of inter-areal synchronization. Exome analyses revealed that the two monkeys were most likely cousins and shared variants in MAP2, APOC1, and potentially HTR2C. This phenotype-driven strategy in cognitive genomics provides a useful means to clarify the genetic basis of phenotypic variation and develop macaque models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yasuhiro Go
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan. .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| |
Collapse
|
6
|
Blanco-Vázquez C, Alonso-Hearn M, Iglesias N, Vázquez P, Juste RA, Garrido JM, Balseiro A, Canive M, Amado J, Queipo MA, Iglesias T, Casais R. Use of ATP-Binding Cassette Subfamily A Member 13 (ABCA13) for Sensitive Detection of Focal Pathological Forms of Subclinical Bovine Paratuberculosis. Front Vet Sci 2022; 9:816135. [PMID: 35359676 PMCID: PMC8960928 DOI: 10.3389/fvets.2022.816135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Bovine paratuberculosis (PTB) is a chronic enteritis caused by Mycobacterium avium subspecies paratuberculosis (Map) that causes a heavy economic impact worldwide. Map infected animals can remain asymptomatic for years while transmitting the mycobacteria to other members of the herd. Therefore, accurate detection of subclinically infected animals is crucial for disease control. In a previous RNA-Seq study, we identified several mRNAs that were overexpressed in whole blood of cows with different PTB-associated histological lesions compared with control animals without detected lesions. The proteins encoded by two of these mRNAs, ATP binding cassette subfamily A member 13 (ABCA13) and Matrix Metallopeptidase 8 (MMP8) were significantly overexpressed in whole blood of animals with focal histological lesions, the most frequent pathological form in the subclinical stages of the disease. In the current study, the potential of sensitive early diagnostic tools of commercial ELISAs, based on the detection of these two biomarkers, was evaluated in serum samples of 704 Holstein Friesian cows (566 infected animals and 138 control animals from PTB-free farms). For this evaluation, infected animals were classified into three groups, according to the type of histological lesions present in their gut tissues: focal (n = 447), multifocal (n = 59), and diffuse (n = 60). The ELISA based on the detection of ABCA13 was successfully validated showing good discriminatory power between animals with focal lesions and control animals (sensitivity 82.99% and specificity 80.43%). Conversely, the MMP8-based ELISA showed a poor discriminatory power between the different histological groups and non-infected controls. The ABCA13-based ELISA showed a higher diagnostic value (0.822) than the IDEXX ELISA (0.517), the fecal bacterial isolation (0.523) and the real-time PCR (0.531) for the detection of animals with focal lesions. Overall, our results indicate that this ABCA13 ELISA greatly improves the identification of subclinically infected animals with focal lesions that are undetectable using current diagnostic methods.
Collapse
Affiliation(s)
- Cristina Blanco-Vázquez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Natalia Iglesias
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Joseba M. Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, Centro Superior de Investigaciones Científicas (CSIC-Universidad de León), León, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Javier Amado
- Laboratorio Regional de Sanidad Animal del Principado de Asturias, Gijón, Spain
| | - Manuel A. Queipo
- Servicio de Sanidad y Producción Animal del Principado de Asturias, Oviedo, Spain
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Servicios científico-técnicos, Universidad de Oviedo, Gijón, Spain
| | - Rosa Casais
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
- *Correspondence: Rosa Casais
| |
Collapse
|
7
|
Kong XJ, Liu J, Liu K, Koh M, Sherman H, Liu S, Tian R, Sukijthamapan P, Wang J, Fong M, Xu L, Clairmont C, Jeong MS, Li A, Lopes M, Hagan V, Dutton T, Chan ST(P, Lee H, Kendall A, Kwong K, Song Y. Probiotic and Oxytocin Combination Therapy in Patients with Autism Spectrum Disorder: A Randomized, Double-Blinded, Placebo-Controlled Pilot Trial. Nutrients 2021; 13:1552. [PMID: 34062986 PMCID: PMC8147925 DOI: 10.3390/nu13051552] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a rapidly growing neurodevelopmental disorder. Both probiotics and oxytocin were reported to have therapeutic potential; however, the combination therapy has not yet been studied. We conducted a randomized, double-blinded, placebo-controlled, 2-stage pilot trial in 35 individuals with ASD aged 3-20 years (median = 10.30 years). Subjects were randomly assigned to receive daily Lactobacillus plantarum PS128 probiotic (6 × 1010 CFUs) or a placebo for 28 weeks; starting on week 16, both groups received oxytocin. The primary outcomes measure socio-behavioral severity using the Social Responsiveness Scale (SRS) and Aberrant Behavior Checklist (ABC). The secondary outcomes include measures of the Clinical Global Impression (CGI) scale, fecal microbiome, blood serum inflammatory markers, and oxytocin. All outcomes were compared between the two groups at baseline, 16 weeks, and 28 weeks into treatment. We observed improvements in ABC and SRS scores and significant improvements in CGI-improvement between those receiving probiotics and oxytocin combination therapy compared to those receiving placebo (p < 0.05). A significant number of favorable gut microbiome network hubs were also identified after combination therapy (p < 0.05). The favorable social cognition response of the combination regimen is highly correlated with the abundance of the Eubacterium hallii group. Our findings suggest synergic effects between probiotics PS128 and oxytocin in ASD patients, although further investigation is warranted.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jun Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
- Harvard Medical School, Boston, MA 02115, USA; (P.S.); (L.X.); (H.L.)
| | - Kevin Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Madelyn Koh
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Hannah Sherman
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Siyu Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Ruiyi Tian
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | | | - Jiuju Wang
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Michelle Fong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Lei Xu
- Harvard Medical School, Boston, MA 02115, USA; (P.S.); (L.X.); (H.L.)
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cullen Clairmont
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Min-Seo Jeong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Alice Li
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Maria Lopes
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Veronica Hagan
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Tess Dutton
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Suk-Tak (Phoebe) Chan
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Hang Lee
- Harvard Medical School, Boston, MA 02115, USA; (P.S.); (L.X.); (H.L.)
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Kendall
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Kenneth Kwong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Yiqing Song
- Department of Epidemiology, Indiana University, Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA;
| |
Collapse
|
8
|
Isoda M. The Role of the Medial Prefrontal Cortex in Moderating Neural Representations of Self and Other in Primates. Annu Rev Neurosci 2021; 44:295-313. [PMID: 33752448 DOI: 10.1146/annurev-neuro-101420-011820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others' emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others.
Collapse
Affiliation(s)
- Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
9
|
Nakato M, Shiranaga N, Tomioka M, Watanabe H, Kurisu J, Kengaku M, Komura N, Ando H, Kimura Y, Kioka N, Ueda K. ABCA13 dysfunction associated with psychiatric disorders causes impaired cholesterol trafficking. J Biol Chem 2021; 296:100166. [PMID: 33478937 PMCID: PMC7948424 DOI: 10.1074/jbc.ra120.015997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder, and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders. Here, we examined the biochemical activity of ABCA13 using HEK293 cells transfected with mouse ABCA13. The expression of ABCA13 induced the internalization of cholesterol and gangliosides from the plasma membrane to intracellular vesicles. Cholesterol internalization by ABCA13 required the long N-terminal region and ATP hydrolysis. To examine the physiological roles of ABCA13, we generated Abca13 KO mice using CRISPR/Cas and found that these mice exhibited deficits of prepulse inhibition. Vesicular cholesterol accumulation and synaptic vesicle endocytosis were impaired in primary cultures of Abca13 KO cortical neurons. Furthermore, mutations in ABCA13 gene associated with psychiatric disorders disrupted the protein's subcellular localization and impaired cholesterol trafficking. These findings suggest that ABCA13 accelerates cholesterol internalization by endocytic retrograde transport in neurons and that loss of this function is associated with the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Mitsuhiro Nakato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naoko Shiranaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maiko Tomioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hitomi Watanabe
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
ATP-binding cassette transporter 13 mRNA expression level in schizophrenia patients. Sci Rep 2020; 10:21498. [PMID: 33299069 PMCID: PMC7726143 DOI: 10.1038/s41598-020-78530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to investigate the expression and clinical role of ATP-binding cassette transporter 13 (ABCA13) gene previously shown to be associated with schizophrenia (SZ) through Genome-wide association studies studies. Thirty-two first-episode drug-naive SZ patients and forty-eight age and gender-matched healthy controls were enrolled in this study. We measured ABCA13 mRNA expression levels using quantitative real-time PCR at baseline and 12 weeks after antipsychotic therapy. Moreover, clinical symptoms were measured by the Positive and Negative Syndrome Scale (PANSS) at baseline and 12-week follow-up. We found that ABCA13 mRNA levels were significantly lower in SZ patients compared with healthy controls at baseline. SZ patients’ symptoms were decreased, but ABCA13 mRNA levels were increased after 12 weeks antipsychotic therapy. In addition, there was a significant difference in ABCA13 mRNA levels among SZ patients at baseline and 12-week follow-up. The ABCA13 mRNA levels were not associated with age, BMI, years of education. Of the clinical symptoms measured, the ABCA13 mRNA levels were negatively associated with the PANSS scores at baseline and 12-week follow-up. The results indicated that the ABCA13 mRNA expression level is of interest, and upon further studies, it could be used as a biomarker for SZ treatment outcome.
Collapse
|
11
|
Novel genetic link between the ATP-binding cassette subfamily A gene and hippo gene in Drosophila. Exp Cell Res 2020; 386:111733. [DOI: 10.1016/j.yexcr.2019.111733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/16/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022]
|
12
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
13
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
14
|
Li Q, Wang L, Ma Y, Yue W, Zhang D, Li J. P-Rex1 Overexpression Results in Aberrant Neuronal Polarity and Psychosis-Related Behaviors. Neurosci Bull 2019; 35:1011-1023. [PMID: 31286410 DOI: 10.1007/s12264-019-00408-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Neuronal polarity is involved in multiple developmental stages, including cortical neuron migration, multipolar-to-bipolar transition, axon initiation, apical/basal dendrite differentiation, and spine formation. All of these processes are associated with the cytoskeleton and are regulated by precise timing and by controlling gene expression. The P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1) gene for example, is known to be important for cytoskeletal reorganization, cell motility, and migration. Deficiency of P-Rex1 protein leads to abnormal neuronal migration and synaptic plasticity, as well as autism-related behaviors. Nonetheless, the effects of P-Rex1 overexpression on neuronal development and higher brain functions remain unclear. In the present study, we explored the effect of P-Rex1 overexpression on cerebral development and psychosis-related behaviors in mice. In utero electroporation at embryonic day 14.5 was used to assess the influence of P-Rex1 overexpression on cell polarity and migration. Primary neuron culture was used to explore the effects of P-Rex1 overexpression on neuritogenesis and spine morphology. In addition, P-Rex1 overexpression in the medial prefrontal cortex (mPFC) of mice was used to assess psychosis-related behaviors. We found that P-Rex1 overexpression led to aberrant polarity and inhibited the multipolar-to-bipolar transition, leading to abnormal neuronal migration. In addition, P-Rex1 overexpression affected the early development of neurons, manifested as abnormal neurite initiation with cytoskeleton change, reduced the axon length and dendritic complexity, and caused excessive lamellipodia in primary neuronal culture. Moreover, P-Rex1 overexpression decreased the density of spines with increased height, width, and head area in vitro and in vivo. Behavioral tests showed that P-Rex1 overexpression in the mouse mPFC caused anxiety-like behaviors and a sensorimotor gating deficit. The appropriate P-Rex1 level plays a critical role in the developing cerebral cortex and excessive P-Rex1 might be related to psychosis-related behaviors.
Collapse
Affiliation(s)
- Qiongwei Li
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Lifang Wang
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Yuanlin Ma
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Weihua Yue
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Dai Zhang
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Jun Li
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
| |
Collapse
|