1
|
Liu MW, Duan SX, Zhao XY, Wang QF, Yang SL, Ma N, Li X. Research status and advances in dexmedetomidine for sepsis‑induced multiple organ dysfunction syndrome (Review). Int J Mol Med 2025; 55:94. [PMID: 40242975 PMCID: PMC12045470 DOI: 10.3892/ijmm.2025.5535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Sepsis‑induced organ dysfunction syndrome (ODS) arises from a dysregulated response to infection, leading to multiple life‑threatening organ dysfunctions, and is a common complication in critically ill patients. Sepsis results in varying degrees of injury to the brain, lungs, kidneys and liver, culminating in immune dysfunction and multiple ODS (MODS). Current evidence indicates a direct correlation between the severity of organ injury and the prognosis of septic patients. Understanding the mechanisms of MODS in sepsis and developing effective management strategies are vital research areas. The protective effects of dexmedetomidine (DEX) on sepsis are well established, demonstrating its capacity to mitigate injuries to the brain, lungs, kidneys, liver and immune system. The present study reviews recent research progress on the role and mechanisms of action of DEX in the treatment of sepsis.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency Medicine, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Shao-Xin Duan
- Department of Trauma, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Xue-Yan Zhao
- Department of Endocrinology, First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Qiong-Fen Wang
- Department of Gastroenterology, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Shan-Lan Yang
- Department of Oncology, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Ni Ma
- Department of Pharmacy, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Xuan Li
- Department of Rehabilitation, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
2
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2025; 140:409-426. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Bradley S. Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2025; 41:107-130. [PMID: 39153174 PMCID: PMC11748649 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
4
|
Yu Z, Chen X, Liu Z, Ding R, Xu J. Subunit-specific mechanisms of isoflurane-induced acute tonic inhibition in dentate gyrus granule neuron. Exp Biol Med (Maywood) 2024; 249:10171. [PMID: 39529664 PMCID: PMC11550974 DOI: 10.3389/ebm.2024.10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Prolonged exposure to volatile anesthetics may raise the risk of developing cognitive impairment by acting on gamma-a Aminobutyric acid A receptors (GABAAR). The dentate gyrus plays an important role in the hippocampus and has a high potential for neural plasticity. However, it is unknown whether prolonged anesthesia induces a change in acute phasic or tonic inhibition in dentate gyrus granule cells (DGGCs) by acting on GABAAR. In order to verify the effects of volatile anesthetics on the current in DGGCs, a whole-cell patch was applied to record acute brain slices, and this study indicated that 4 h but not 2 h of isoflurane (ISO) exposure induced significantly larger tonic currents in DGGCs other than hippocampal CA1 pyramidal and thalamic relay neurons. Furthermore, this study demonstrated that the increased tonic current in DGGCs was dependent on the δ subunit-containing GABAARs by using transgenic δ subunit knockout mice. In conclusion, the δ subunit specific GABAAR is the key element that increased acute tonic inhibition in DGGCs of mice after prolonged ISO exposure, which may be one of the mechanisms of ISO neurotoxicity to the developing brain.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Department of Anesthesiology, Tianjin Central Hospital for Gynecology and Obstetrics, Tianjin, China
| | - Xiaodan Chen
- Department of Anesthesiology, Tianjin Central Hospital for Gynecology and Obstetrics, Tianjin, China
| | - Zheng Liu
- Department of Anesthesiology, Tianjin Central Hospital for Gynecology and Obstetrics, Tianjin, China
| | - Ran Ding
- Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Xu
- Department of Anesthesiology, Tianjin Hospital, Tianjin, China
| |
Collapse
|
5
|
Zhong Y, Wang S, Yin Y, Yu J, Liu Y, Gao H. Dexmedetomidine suppresses hippocampal astrocyte pyroptosis in cerebral hypoxic-ischemic neonatal rats by upregulating microRNA-148a-3p to inactivate the STAT/JMJD3 axis. Int Immunopharmacol 2023; 121:110440. [PMID: 37327511 DOI: 10.1016/j.intimp.2023.110440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Dexmedetomidine (DEX), a selective α2-adrenoceptor agonist, is an anesthetic and sedative agent and has been reported to confer neuroprotective effects after cerebral hypoxic ischemia (CHI). This study was undertaken to elucidate the mechanisms by which microRNA (miR)-148a-3p is involved in the neuroprotective effect of DEX on hypoxic-ischemic brain damage in neonatal rats. METHODS Neonatal rats were exposed to CHI conditions, a miR-148a-3p inhibitor, and DEX. Hippocampal astrocytes were isolated to construct an oxygen-glucose deprivation (OGD) model. qRT-PCR and western blot were utilized to inspect miR-148a-3p, STAT1, STAT3, JMJD3, cleaved-Caspase-1, ASC, NLRP3, GSDMD, and GSDMD-N expression in rats and astrocytes. TUNEL staining was employed to measure astrocyte apoptosis rate, immunofluorescence to inspect cleaved-Caspase-1 and ASC levels, and ELISA to determine IL-1β and IL-18 expression. The target genes of miR-148a-3p were predicted using online software and verified by a dual-luciferase reporter gene assay. RESULTS A prominent increase in astrocyte apoptosis rate and the expression of pyroptosis- and inflammation-related factors were found in rats with CHI and OGD-treated astrocytes. DEX suppressed astrocyte apoptosis rate and decreased expression of pyroptosis- and inflammation-related factors. Knockdown of miR-148a-3p facilitated astrocyte pyroptosis, indicating that DEX exerted its protective effect by upregulating miR-148a-3p. miR-148a-3p negatively mediated STAT to inactivate JMJD3. Overexpression of STAT1 and STAT3 facilitated pyroptosis in astrocytes, which was negated by the overexpression of miR-148a-3p. CONCLUSION DEX inhibited hippocampal astrocyte pyroptosis by upregulating miR-148a-3p to inactivate the STAT/JMJD3 axis, thereby alleviating cerebral damage in neonatal rats with CHI.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Shengzhao Wang
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yongqiang Yin
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jialu Yu
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yang Liu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Hong Gao
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou 558000, PR China.
| |
Collapse
|
6
|
Dexmedetomidine: An Alternative to Pain Treatment in Neonatology. CHILDREN 2023; 10:children10030454. [PMID: 36980013 PMCID: PMC10047358 DOI: 10.3390/children10030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Infants might be exposed to pain during their admissions in the neonatal intensive care unit [NICU], both from their underlying conditions and several invasive procedures required during their stay. Considering the particularities of this population, recognition and adequate management of pain continues to be a challenge for neonatologists and investigators. Diverse therapies are available for treatment, including non-pharmacological pain management measures and pharmacological agents (sucrose, opioids, midazolam, acetaminophen, topical agents…) and research continues. In recent years one of the most promising drugs for analgesia has been dexmedetomidine, an alpha-2 adrenergic receptor agonist. It has shown a promising efficacy and safety profile as it produces anxiolysis, sedation and analgesia without respiratory depression. Moreover, studies have shown a neuroprotective role in animal models which could be beneficial to neonatal population, especially in preterm newborns. Side effects of this therapy are mainly cardiovascular, but in most studies published, those were not severe and did not require specific therapeutic measures for their resolution. The main objective of this article is to summarize the existing literature on neonatal pain management strategies available and review the efficacy of dexmedetomidine as a new therapy with increasing use in the NICU.
Collapse
|
7
|
Zhao J, Wang WB, Ding H, Fu HJ, Jiang YA. Prevention of Dexmedetomidine on Postoperative Delirium and Early Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Thoracoscopic Lobectomy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5263021. [PMID: 36276865 PMCID: PMC9586721 DOI: 10.1155/2022/5263021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the effect of dexmedetomidine on postoperative cognitive function and delirium in elderly patients undergoing thoracoscopic lobectomy. Methods 109 elderly patients (age is more than 65 years) who underwent thoracoscopic lobectomy in our hospital from June 2020 to Feb 2022 were randomly divided into the dexmedetomidine (DEX) group (n = 54) and the control group (n = 55). The patients in the experimental group were given dexmedetomidine by intravenous pump, intravenous pump 0.5 μg/kg within 10 minutes, and maintained the speed of 0.5 μg/(kg. h) to 30 min before the operation was ended. The control group was given the same amount of normal saline. Delirium assessment-severity (CAM-S) assessment and Mini-Cog were used to assess the severity levels of POD and POCD 24 h before, 6 hours after, one day after the operation, three days after the operation, and 1 week after the operation. Serum TNF-αα and NSE levels were assessed by using enzyme-linked immunosorbent assay. NRS pain marks were assessed in the DEX group at postanesthesia care unit (PACU) and 24 postoperation. Surgical pierhysmographic index (SPI) evaluation was performed at five time points. Results The Mini-Cog scores in the DEX group were markedly enhanced compared with those in the saline group 6 and 24 hours after the operation. The SPI values in the DEX group were markedly reduced within 2 min after intubation and at surgical sutures. Moreover, the CAM scores in the DEX group were markedly reduced 24 hours after the operation. Tumor necrosis factor-α (TNF-α) and neuron-specific enolase (NSE) levels were significantly decreased in the DEX group at T1∼T3. Conclusion The use of dexmedetomidine in the thoracoscopic lobectomy in elderly patients could reduce the occurrence and severity of postoperative cognitive dysfunction and delirium.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Wei-Bo Wang
- Department of Anesthesiology, Shaanxi Provincial Pucheng Country Hospital, Weinan 715500, Shaanxi, China
| | - Hui Ding
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Hua-Jun Fu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Yan-An Jiang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| |
Collapse
|
8
|
Yang Z, Tong Y, Brant JO, Li N, Ju LS, Morey TE, Gravenstein N, Setlow B, Zhang J, Martynyuk AE. Dexmedetomidine Diminishes, but Does Not Prevent, Developmental Effects of Sevoflurane in Neonatal Rats. Anesth Analg 2022; 135:877-887. [PMID: 35759382 PMCID: PMC9481710 DOI: 10.1213/ane.0000000000006125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sevoflurane (SEVO) increases neuronal excitation in neonatal rodent brains through alteration of gamma aminobutyric acid (GABA)(A) receptor signaling and increases corticosterone release. These actions may contribute to mechanisms that initiate the anesthetic's long-term neuroendocrine and neurobehavioral effects. Dexmedetomidine (DEX), a non-GABAergic α2-adrenergic receptor agonist, is likely to counteract SEVO-induced neuronal excitation. We investigated how DEX pretreatment may alter the neurodevelopmental effects induced by SEVO in neonatal rats. METHODS Postnatal day (P) 5 Sprague-Dawley male rats received DEX (25 µg/kg, intraperitoneal) or vehicle before exposure to 2.1% SEVO for 6 hours (the DEX + SEVO and SEVO groups, respectively). Rats in the DEX-only group received DEX without exposure to SEVO. A subcohort of P5 rats was used for electroencephalographic and serum corticosterone measurements. The remaining rats were sequentially evaluated in the elevated plus maze on P80, prepulse inhibition of the acoustic startle response on P90, Morris water maze (MWM) starting on P100, and for corticosterone responses to physical restraint for 30 minutes on P120, followed by assessment of epigenomic DNA methylation patterns in the hippocampus. RESULTS Acutely, DEX depressed SEVO-induced electroencephalogram-detectable seizure-like activity (mean ± SEM, SEVO versus DEX + SEVO, 33.1 ± 5.3 vs 3.9 ± 5.3 seconds, P < .001), but it exacerbated corticosterone release (SEVO versus DEX + SEVO, 169.935 ± 20.995 versus 280.853 ± 40.963 ng/mL, P = .043). DEX diminished, but did not fully abolish, SEVO-induced corticosterone responses to restraint (control: 11625.230 ± 877.513, SEVO: 19363.555 ± 751.325, DEX + SEVO: 15012.216 ± 901.706, DEX-only: 12497.051 ± 999.816; F[3,31] = 16.878, P < .001) and behavioral deficiencies (time spent in the target quadrant of the MWM: control: 31.283% ± 1.722%, SEVO: 21.888% ± 2.187%, DEX + SEVO: 28.617% ± 1.501%, DEX-only: 31.339% ± 3.087%; F[3,67] = 3.944, P = .012) in adulthood. Of the 391 differentially methylated genes in the SEVO group, 303 genes in the DEX + SEVO group had DNA methylation patterns that were not different from those in the control group (ie, they were normal). DEX alone did not cause acute or long-term functional abnormalities. CONCLUSIONS This study suggests that the ability of DEX to depress SEVO-induced neuronal excitation, despite increasing corticosterone release, is sufficient to weaken mechanisms leading to long-term neuroendocrine/neurobehavioral abnormalities. DEX may prevent changes in DNA methylation in the majority of genes affected by SEVO, epigenetic modifications that could predict abnormalities in a wide range of functions.
Collapse
Affiliation(s)
- Zhengbo Yang
- From the Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Yuanyuan Tong
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | | | - Ningtao Li
- From the Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Florida
| | - Jiaqiang Zhang
- From the Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute
| |
Collapse
|
9
|
Zhou XH, Zhang CC, Wang L, Jin SL. Remimazolam induced cognitive dysfunction in mice via glutamate excitotoxicity. Transl Neurosci 2022; 13:104-115. [PMID: 35734308 PMCID: PMC9164290 DOI: 10.1515/tnsci-2022-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Several lines of evidence demonstrated the role of anesthetic drugs in cognitive functions. Some anesthetic agents have been confirmed to be associated with long-term spatial memory and learning in aged animal models. Methods C57BL/6 mice were divided into four different groups based on different concentrations of remimazolam treatments. Behavioral phenotype was observed by open field, rota rod, Morris water maze, and elevated plus maze test. Western blot was performed to see the expression pattern of different proteins. Confocal microscopy images were taken for neuronal and glial cells to see the effect of remimazolam on CNS cells. Results We showed that remimazolam, a new anesthetic drug, impaired cognitive behavior. Repetitive doses of remimazolam have been found to induce neuronal loss with a significant change in morphology. Here, we showed that a higher concentration of remimazolam had a significant effect on CNS cell activation. We showed that remimazolam caused memory dysfunction by inducing neuronal apoptosis via glutamate excitotoxicity. It also exhibited amyloid β plaque in the brain via abnormal phosphorylation of tau protein. Remimazolam-mediated regulation of glial cells in mouse cortex was observed and robust activation of astrocytes and microglial cells was found. Finally, we assessed the behavioral phenotype of mice and found that treatment with remimazolam induced significant behavioral changes and memory dysfunction. Conclusions This study provides insight into the mechanism of anesthetic drug-induced memory deficits and may help improve the therapeutic effects of anesthesia agents in clinical applications.
Collapse
Affiliation(s)
- Xin-hua Zhou
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 201900, China
| | - Cheng-cheng Zhang
- Department of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai 200433, China
| | - Ling Wang
- Department of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai 200433, China
| | - Shan-liang Jin
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 201900, China
| |
Collapse
|
10
|
Liu J, Li L, Xie P, Zhao X, Shi D, Zhang Y, Pan C, Li T. Sevoflurane induced neurotoxicity in neonatal mice links to a GSK3β/Drp1-dependent mitochondrial fission and apoptosis. Free Radic Biol Med 2022; 181:72-81. [PMID: 35122996 DOI: 10.1016/j.freeradbiomed.2022.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Mitochondria damage and apoptosis were found associated with sevoflurane induced neurotoxicity in developing brains of rodent and neuro cell lines. The detailed upstream mechanism remains unclear. This study explored whether sevoflurane induces neurotoxicity by activating a GSK3β (glycogen synthase kinase 3β)/Drp1 (dynamin-related protein-1)-dependent mitochondrial fission and apoptosis. Our results showed that sevoflurane exposure promoted mitochondria fission in hippocampus of neonatal mice, resulted in a prolonged escape latency from P32 (32-day-postnatal) to P35, and decreased platform crossing times on P36 as compared to the control treatment. Additionally, sevoflurane upregulated GSK3β stability and activation, promoted phosphorylation of Drp1 at Ser616 along with its translocation to mitochondria and resulted in increasing cytochrome c and cleaved casepase-3 in hippocampus of neonatal mice and in human SK-N-SH cells. Simultaneously, sevoflurane promoted the interaction between Drp1 and GSK3β. Furthermore, GSK3β activated phosphorylation of Drp1 at Ser616, induced mitochondrial fission, loss of mitochondrial membrane potential (MMP) and apoptosis in SK-N-SH cells, which was attenuated by TDZD-8, an inhibitor of GSK3β. In conclusion, sevoflurane induced neurotoxicity links to a GSK3β/Drp1 dependent mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Jinsheng Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ping Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Xiaoyan Zhao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dongjing Shi
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- College of Life Science, Peking University, Beijing, China
| | - Chuxiong Pan
- Department of Anesthesiology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Chen L, Tang T, Zheng X, Xiong Y. Protective Effects of Dexmedetomidine on Hippocampal Neurons in Rats Anesthetized with Sevoflurane. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore effects of dexmedetomidine (Dex) on cognitive function and hippocampal neuronal apoptosis in rats anesthetized with sevoflurane (Sevo), and regulation of brain-derived neurotrophic factor (BDNF) and its downstream signaling. 30 Sprague-Dawley (SD) rats were randomly divided
into control group inhaled 29% concentration oxygen), Sevo group (2 L/min oxygen flow +1.5% Sevo), Dex+Sevo group (after injection of 20 μg/kg Dex, treated with 2L/min oxygen flow+1.5% Sevo). Haematoxylin and eosin (HE) staining and Nissl’s staining were adopted to detect morphological
and functional changes in hippocampus of rats. Apoptosis was detected by immunofluorescence, BDNF expression was detected by immunohistochemistry. Reverse transcription PCR (RT-PCR) was conducted to detect mRNA expression of key proteins in downstream signaling of BDNF. The results showed
that Sevo induced apoptosis of hippocampus neurons, while Dex improved Sevo induced apoptosis. In contrast to the control, the positive expression of BDNF in hippocampus of Sevo group was notably decreased (P < 0.05), and that of Dex+Sevo group was notably higher in contrast to Sevo
group (P < 0.05). Signaling pathways of MAPK, PI3K-Akt, and Ras were predicted by String software as the downstream pathways of BDNF. RT-PCR results showed that these 3 signaling pathways were involved in Dex improving Sevo-induced cognitive impairment and hippocampal neuron apoptosis.
In conclusion, Dex could improve cognitive dysfunction and hippocampal neuron apoptosis in rats induced by Sevo, and the mechanism was related to upregulation of BDNF expression and activation of pathways of MAPK, PI3K-Akt, and Ras.
Collapse
Affiliation(s)
- Li Chen
- Department of Anesthesiology, Dalian Youyi Hospital, Dalian, 116001, China
| | - Tao Tang
- Department of Anesthesiology, Dalian Youyi Hospital, Dalian, 116001, China
| | - Xin Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ying Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| |
Collapse
|
12
|
Li G, Wang Y, Cao F, Wang D, Zhou L, Jin Y. Sevoflurane Promotes Neurodegeneration Through Inflammasome Formation in APP/PS1 Mice. Front Neurosci 2021; 15:647136. [PMID: 34924922 PMCID: PMC8678053 DOI: 10.3389/fnins.2021.647136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Sevoflurane (SEVO) is a highly fluorinated methyl isopropyl ether used as an inhalational anesthetic for general anesthesia. Previous studies have shown that SEVO may induce impaired memory and recognition ability and may be associated with neurodegenerative disease, e.g., Alzheimer’s disease (AD). However, the underlying mechanism remains unknown. Here, we used a mouse AD model, APP/PS1, to study the effects of SEVO on neurodegeneration occurring in AD. We found that SEVO exposure significantly impaired the spatial reference memory, sensorimotor, and cognitive function of the mice. Mechanistically, we found that SEVO induced formation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and its downstream caspase 1-mediated production of IL-1β and IL-18, which subsequently deactivated brain-derived neurotrophic factor (BDNF) to promote neurodegeneration. Together, these data suggest that NLRP3 inflammasome is essential for SEVO-induced AD.
Collapse
Affiliation(s)
- Guohua Li
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Fang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Dawei Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Limin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yanwu Jin
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Chen G, Yang J, Chen Q, Liu D. Ultrasonic Image Restoration Algorithm for Prevention of Nervous Disorders during the Recovery Period of Patients Receiving Sevoflurane Anesthesia. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6124346. [PMID: 34630990 PMCID: PMC8500753 DOI: 10.1155/2021/6124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
In this article, dexmedetomidine (Dex) was used to prevent neurological disorders in patients anesthetized with sevoflurane and the effect was analyzed using ultrasound images based on the restoration algorithm of the linear system model. Children injected with Dex were in the experimental group, while children injected with normal saline were in the control group. The mean arterial pressure (MAP), arterial oxygen saturation (SpO2), heart rate (HR), Pediatric anesthesia agitation scale (PAED) score, Face, Legs, Activity, Cry, Consolability (FLACC) score, and adverse drug event (ADE) in the two groups were compared before the injection (T1), at 5 min (T2), 10 min (T3), and 20 min (T4) after the injection, and when the patient came to himself (T5). It was found that in contrast with the control group, the MAP in the experimental group at T2, T3, and T4 periods was lower, while it was higher at T5 period and its HR at T2, T3, T4, and T5 periods was higher (P < 0.05); the PAED and FLACC scores were lower (P < 0.05), and the incidence of ADE (10.53%) was lower than that in the control group (31.58%) (P < 0.05). However, SpO2 at different periods showed no obvious differences between the two groups (P > 0.05). In conclusion, the restoration algorithm-based ultrasound images had high quality, and they demonstrated good application value in evaluating the effect of Dex to prevent neurological disorders in patients anesthetized by sevoflurane.
Collapse
Affiliation(s)
- Gong Chen
- Department of Anesthesia Operation, Maternal and Child Health Care Hospital of Hunan, Changsha,410008, Hunan, China
| | - Jinquan Yang
- Department of Anesthesia Operation, Maternal and Child Health Care Hospital of Hunan, Changsha,410008, Hunan, China
| | - Qin Chen
- Department of Anesthesia Operation, Maternal and Child Health Care Hospital of Hunan, Changsha,410008, Hunan, China
| | - Damin Liu
- Department of Anesthesia Operation, Maternal and Child Health Care Hospital of Hunan, Changsha,410008, Hunan, China
| |
Collapse
|
14
|
Liu YB, Liu WF, Chen WC, Li W, Lin YL, Xu CJ, He HF. Dexmedetomidine alleviates traumatic spinal cord injury in rats via inhibiting apoptosis induced by endoplasmic reticulum stress. Neurol Res 2021; 44:275-284. [PMID: 34533101 DOI: 10.1080/01616412.2021.1979750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the protective effect of dexmedetomidine (Dex) on traumatic spinal cord injury (TSCI) and to evaluate the involvement of inhibition of endoplasmic reticulum (ER) stress response in the potential mechanism. METHOD Sprague-Dawley rats were randomly divided into five groups. The hind limb locomotor function of rats was evaluated at 1, 3 and 7 days after the operation. At 7 days after the operation, spinal cord specimens were obtained for hematoxylin and eosin (H&E), Nissl and TUNEL staining, as well as immunofluorescence and Western blot analyses to detect the level of apoptosis and the levels of proteins related to ER stress. RESULTS 7 days after the operation, Dex treatment promoted the recovery and also inhibited apoptosis of neurons in the spinal cord. Additionally, Dexinhibited the expression of proteins related to ER stress response after spinal cord injury. CONCLUSIONS Dex improves the neurological function of rats with TSCI and reduces apoptosis of spinal cord neurons. The potential mechanism is related to the inhibition of the ER stress response.
Collapse
Affiliation(s)
- Yi-Bin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei Li
- Department of ICU, Wuhan Third Hospital, Wuhan University, Wuhan, China**
| | - Yan-Ling Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chong-Jun Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
15
|
Jiang PP, Guo YX, Yang XL, Xu J, Wang D. Effects of different remifentanil target concentrations on MAC BAR of sevoflurane in patients with liver dysfunction under carbon dioxide pneumoperitoneum stimulus: A randomized controlled trial. J Clin Pharm Ther 2021; 46:1776-1783. [PMID: 34514614 DOI: 10.1111/jcpt.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Remifentanil can effectively decrease the sevoflurane concentration to block sympathetic adrenergic response to CO2 pneumoperitoneum stimulus,and liver dysfunction will significantly reduce the MACBAR (minimum alveolar concentration for blocking adrenergic response) of sevoflurane. However, the effects of different remifentanil concentrations on the MACBAR of sevoflurane in patients with liver dysfunction are unclear. The aim of this study was to observe the effects of different remifentanil concentrations by intravenous target-controlled infusion on the MACBAR of sevoflurane in patients with grade B liver dysfunction under carbon dioxide pneumoperitoneum stimulus. METHODS Seventy-five patients with grade B liver dysfunction undergoing elective laparoscopic surgery were selected, and randomly divided into three groups with remifentanil plasma target concentrations of 0 (group R0 ), 1 (group R1 ) and 2 (group R2 ) ng/ml. Anaesthesia was induced by intravenous injection of propofol 2-3 mg/kg, remifentanil 2 μg/kg and cisatracurium 0.15 mg/kg. All groups were inhaled different concentrations of sevoflurane. The determination of sevoflurane MACBAR in each group was used a method of sequential-allocation technique, and venous blood samples were taken before and after the creation of carbon dioxide pneumoperitoneum to determine plasma adrenaline and noradrenaline concentrations. RESULTS AND DISCUSSIONS The MACBAR of sevoflurane in groups R0 , R1 and R2 was 4.83%, 3.00% and 2.10%, respectively. The MACBAR of sevoflurane was significantly difference among the three groups. When a similar effect of MACBAR had achieved in each group, no significant differences were found in the changes of plasma adrenaline and noradrenaline concentrations before and after the creation of pneumoperitoneum. What is new and conclusion Target-controlled infusion of different concentrations of remifentanil can reduce sevoflurane MACBAR during pneumoperitoneum stimulation in patients with liver dysfunction in some degree. However, the changes of plasma adrenaline and noradrenaline concentrations are consistent in the three groups when patient's stress response was inhibited at the same degree.
Collapse
Affiliation(s)
- Ping-Ping Jiang
- Department of Anesthesia, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan-Xia Guo
- Department of Anesthesia, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Lin Yang
- Department of Anesthesia, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Juan Xu
- Department of Anesthesia, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dan Wang
- Department of Anesthesia, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
16
|
Wei W, Sun Z, He S, Zhang W, Chen S. Protective role of dexmedetomidine against sevoflurane-induced postoperative cognitive dysfunction via the microRNA-129/TLR4 axis. J Clin Neurosci 2021; 92:89-97. [PMID: 34509269 DOI: 10.1016/j.jocn.2021.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
The involvement of Dexmedetomidine (Dex) has been indicated in postoperative cognitive dysfunction (POCD), while the mechanism is not well characterized. This study estimated the mechanism of Dex in POCD. Rats were anesthetized with sevoflurane (SEV) to evoke POCD and then subjected to Morris water maze test to detect the cognitive and behavioral function. Then, the damage of hippocampus and cortex, and apoptosis and activity of neurons were examined. Microarray analysis was performed to screen out the differentially expressed microRNAs (miRs) in rats after Dex treatment. The cognitive and behavioral functions and neuronal activity of rats were detected after miR-129 antagomir injection. The target of miR-129 was predicted. The levels of TLR4 and NF-κB p65 in hippocampus and cortex were measured. Dex treatment alleviated SEV-induced behavior and cognitive impairments in rats, promoted neuronal activity and hindered neuronal apoptosis. After treatment with Dex, miR-129 expression was elevated in brain tissues, and the neuroprotection of Dex on POCD rats was partially annulled after injection of miR-129 antagomir. Furthermore, miR-129 targeted TLR4 and prevented the phosphorylation of NF-κB p65. In summary, Dex ameliorated SEV-induced POCD by elevating miR-129 and inhibiting TLR4 and NF-κB p65 phosphorylation. This study may shed new lights on POCD treatment.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| |
Collapse
|
17
|
Fan XY, Shi G, Zhao P. Neonatal Sevoflurane Exposure Impairs Learning and Memory by the Hypermethylation of Hippocampal Synaptic Genes. Mol Neurobiol 2021; 58:895-904. [PMID: 33052583 DOI: 10.1007/s12035-020-02161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Sevoflurane anesthesia is widely used in pediatric patients. Clinical studies report memory impairment in those exposed to general anesthesia early in life. DNA methylation is essential for the modulation of synaptic plasticity through regulating the transcription of synaptic genes. Therefore, we tested whether neonatal sevoflurane exposure affects learning and memory underlying the hippocampal DNA methylation of synaptic genes. Male Sprague-Dawley rats were exposed to 3% sevoflurane or air for 2 h daily from postnatal day 7 (P7) to P9. 5-aza-2-deoxycytidine (5-AZA), an inhibitor of DNA methyltransferases (DNMTs), was intraperitoneally injected 30 min before sevoflurane or air exposure on P7-9. The rats were euthanized 6, 12, 24 h, and 28 days after the last sevoflurane exposure, followed by the determination of global and gene-specific DNA methylation. The expression of synaptic proteins and synaptic density and the transcription of Dnmts and ten eleven translocations (Tets) in the hippocampus were measured. The ability of learning and memory was assessed using Morris water maze, novel object recognition, and intruder tests. Repeated neonatal sevoflurane exposure impaired cognitive, social, and spatial memory. The memory impairment was associated with the increased Dnmt1, Dnmt3a, and 5-methylcytosine level and the decreased Tet1 and 5-hydromethylcytosine level. Sevoflurane subsequently induced hypermethylation of Shank2, Psd95, Syn1, and Syp gene and down-regulated the expression of synaptic proteins, which finally led to the decrease of synaptic density in a time-dependent manner. Notably, 5-AZA pretreatment ameliorated learning and memory in sevoflurane-treated rats. In conclusion, neonatal exposure to sevoflurane can impair learning and memory through DNA methylation of synaptic genes.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Guang Shi
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
18
|
Guo Y, Wang D, Yang X, Jiang P, Xu J, Zhang G. Effects of different sufentanil target concentrations on the MAC BAR of sevoflurane in patients with carbon dioxide pneumoperitoneum stimulus. BMC Anesthesiol 2020; 20:239. [PMID: 32957929 PMCID: PMC7504852 DOI: 10.1186/s12871-020-01160-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to observe the effects of different target controlled plasma sufentanil concentrations on the minimum alveolar concentration (MAC) of sevoflurane for blocking adrenergic response (BAR) in patients undergoing laparoscopic cholecystectomy with carbon dioxide pneumoperitoneum stimulation. METHODS Eighty-five patients undergoing laparoscopic cholecystectomy, aged 30-65 years, with American Society of Anesthesiologists physical status I-II, were enrolled in this study. All the patients were randomly divided into 5 groups (S0, S1, S2, S3, S4) with different sufentanil plasma target concentration (0.0, 0.1, 0.3, 0.5, 0.7 ng ml- 1). Anesthesia was induced by inhalation of 8% sevoflurane in 100% oxygen, and 0.6 mg kg- 1 of rocuronium was intravenously injected to facilitate the insertion of a laryngeal mask airway. The end-tidal sevoflurane concentration and sufentanil plasma target concentration were adjusted according to respective preset value in each group. The hemodynamic response to pneumoperitoneum stimulus was observed after the end-tidal sevoflurane concentration had been maintained stable at least for 15 min. The MACBAR of sevoflurane was measured by a sequential method. Meanwhile, epinephrine (E) and norepinephrine (NE) concentrations in the blood were also determined before and after pneumoperitoneum stimulus in each group. RESULTS When the method of independent paired reversals was used, the MACBAR of sevoflurane in groups S0, S1, S2, S3, S4 was 5.333% (confidence interval [CI] 95%: 5.197-5.469%), 4.533% (95% CI: 4.451-4.616%), 2.861% (95% CI: 2.752-2.981%), 2.233% (95% CI: 2.142-2.324%) and 2.139% (95% CI: 2.057-2.219%), respectively. Meanwhile, when the isotonic regression analysis was used, the MACBAR of sevoflurane in groups S0, S1, S2, S3, S4 was 5.329% (95% CI: 5.321-5.343%), 4.557% (95% CI: 4.552-4.568%), 2.900% (95% CI: 2.894-2.911%), 2.216% (95% CI: 2.173-2.223%) and 2.171% (95% CI: 2.165-2.183%), respectively. The MACBAR was not significantly different between groups S3 and S4 when using 0.5 and 0.7 ng ml- 1 of sufentanil plasma target concentrations. No significant difference was found in the change of E or NE concentration between before and after pneumoperitoneum stimulation in each group. CONCLUSIONS The MACBAR of sevoflurane can be decreased with increasing sufentanil plasma target concentrations. A ceiling effect of the decrease occurred at a sufentanil plasma target concentration of 0.5 ng ml- 1. When the sympathetic adrenergic response was inhibited in half of the patients to pneumoperitoneum stimulation in each group, the changes of E and NE concentrations showed no significant differences. TRIAL REGISTRATION The study was registered at http://www.chictr.org.cn ( ChiCTR1800015819 , 23, April, 2018).
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Anaesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Dan Wang
- Department of Anaesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xiaolin Yang
- Department of Anaesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Pingping Jiang
- Department of Anaesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Juan Xu
- Department of Anaesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Guoyuan Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| |
Collapse
|
19
|
Zhang XP, Liu YR, Chai M, Yang HT, Wang G, Han M, Li DB. High‑fat treatment prevents postoperative cognitive dysfunction in a hyperlipidemia model by protecting the blood‑brain barrier via Mfsd2a‑related signaling. Mol Med Rep 2019; 20:4226-4234. [PMID: 31545471 PMCID: PMC6797931 DOI: 10.3892/mmr.2019.10675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/12/2019] [Indexed: 12/04/2022] Open
Abstract
Damage to the blood-brain barrier (BBB) resulting from systemic inflammation caused by surgical trauma is associated with cognitive dysfunction, and individuals with hyperlipidemia are more sensitive to such impairment. The present study was designed to ascertain whether dexmedetomidine (Dex) treatment could reduce the incidence of cognitive dysfunction following surgery in a hyperlipidemia model. Hyperlipidemia was induced in Sprague-Dawley rats (male, 6–7 months old) by consuming a high-fat diet, and rats were divided into three groups (n=10 each) and underwent: exploratory laparotomy to introduce surgical trauma (surgery group), laparotomy and Dex treatment (surgery+Dex group), or sham surgery (sham group). Learning, memory and exploration behavior were assessed using the Morris water maze. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, were determined by enzyme-linked immunosorbent assay. BBB permeability was assessed by Evans blue staining. Relative major facilitator superfamily domain-containing protein 2 (Mfsd2a) mRNA expression was determined by quantitative PCR. In the Morris water maze test, the time and distance ratio for the surgery group was significantly lower than those of the sham and surgery+Dex groups (P<0.05). In addition, the TNF-α concentrations in the sham and surgery+Dex groups were lower than that in the surgery group (P<0.05 on days 1 and 3). Evans Blue staining was increased in the surgery group on day 1 (P<0.01). Mfsd2a mRNA expression was higher in the sham and surgery+Dex groups compared with that noted in the surgery group (P<0.05). In conclusion, Dex treatment decreased the incidence of cognitive dysfunction following surgical trauma in a hyperlipidemia rat model. We demonstrated that Dex stabilized BBB integrity through increased Mfsd2a gene expression.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu-Ru Liu
- Department of Anesthesiology, Xilingol League Hospital, Inner Mongolia Autonomous Region, Chifeng, Xilinhot 026000, P.R. China
| | - Mei Chai
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hai-Tao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Guan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mei Han
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dong-Bai Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|