1
|
Li P, Chen Y, Bai J, Yang H, He P, Zeng J. The Determination of Eight Biogenic Amines Using MSPE-UHPLC-MS/MS and Their Application in Regard to Changes in These Biogenic Amines in Traditional Chinese Dish-Pickled Swimming Crabs. Molecules 2025; 30:1353. [PMID: 40142129 PMCID: PMC11945975 DOI: 10.3390/molecules30061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025] Open
Abstract
In this study, a method for the determination of eight biogenic amines (BAs), including tyramine (Tyr), 2-phenylethylamine (2-Phe), histamine (His), tryptamine (Trp), spermidine (Spd), spermine (Spm), cadaverine (Cad), and putrescine (Put), in crab was established using ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), using a magnetic solid-phase extraction (MSPE) pretreatment, without derivatization, and the content changes in regard to these eight biogenic amines in the traditional Chinese dish, pickled swimming crabs, were investigated. The samples were purified via MSPE, using C nanofiber-coated magnetic nanoparticles (Fe3O4@C-NFs) as sorbents. The experimental variables involved in the MSPE, including the solution pH, adsorption and desorption time, adsorbent usage, and type and volume of the eluent, were investigated and optimized. Method validation indicated that the developed method showed good linearity (R2 > 0.995); the average recovery rates were 84.7% to 115%, with the intra-day and inter-day relative standard deviations (RSD, n = 6) ranging from 3.7% to 7.5% and 4.2% to 7.7%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the eight BAs were 0.1 mg/kg~1.0 mg/kg and 0.3 mg/kg~3.0 mg/kg, respectively. Finally, this method was applied to determine the changes in the eight biogenic amines in pickled swimming crabs (Portunus trituberculatus) during storage at 20 °C and 400 BAC. Among the BAs evaluated, Cad, Put, and Tyr were the predominant amines formed during storage. The final content of Cad, Put, and Tyr reached 22.9, 20.1, and 29.0 mg/100 g at 4 °C for 16 d, and 47.1, 52.3, and 72.0 mg/100 g at 20 °C for 96 h, respectively. The results from this study can be used to expand the application range of magnetic materials in biogenic amine pretreatment and to strengthen the quality control of the traditional Chinese dish, pickled swimming crabs.
Collapse
Affiliation(s)
- Peipei Li
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| | - Yu Chen
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| | - Junlu Bai
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, China;
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Pengfei He
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| | - Junjie Zeng
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| |
Collapse
|
2
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Martín I, Barbosa J, Pereira SI, Rodríguez A, Córdoba JJ, Teixeira P. Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Feito J, Araújo C, Gómez-Sala B, Contente D, Campanero C, Arbulu S, Saralegui C, Peña N, Muñoz-Atienza E, Borrero J, del Campo R, Hernández PE, Cintas LM. Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Akpınar Kankaya D, Tuncer Y. Detection of Virulence Factors, Biofilm Formation and Biogenic Amine Production in
Vancomycin‐Resistant
Lactic Acid Bacteria (
VRLAB
) Isolated From Foods of Animal Origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Technology, Gelendost Vocational School Isparta University of Applied Sciences Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
6
|
Dong C, Du X, Zhong Q, Wang J, Hu Y, Kong B, Xia X. Effects of tyrosine decarboxylase negative strains from Harbin dry sausage on the growth and tyramine production of foodborne pathogens. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Campanero C, Muñoz-Atienza E, Diep DB, Feito J, Arbulu S, del Campo R, Nes IF, Hernández PE, Herranz C, Cintas LM. Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90. PLoS One 2020; 15:e0229417. [PMID: 32134941 PMCID: PMC7058333 DOI: 10.1371/journal.pone.0229417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae infections are one of the major causes of morbility and mortality worldwide. Although vaccination and antibiotherapy constitute fundamental and complementary strategies against pneumococcal infections, they present some limitations including the increase in non-vaccine serotypes and the emergence of multidrug-resistances, respectively. Ribosomally-synthesized antimicrobial peptides (i.e. bacteriocins) produced by Lactic Acid Bacteria (LAB) may represent an alternative or complementary strategy to antibiotics for the control of pneumococal infections. We tested the antimicrobial activity of 37 bacteriocinogenic LAB, isolated from food and other sources, against clinical S. pneumoniae strains. Streptococcus infantarius subsp. infantarius LP90, isolated from Venezuelan water-buffalo milk, was selected because of its broad and strong anti-pneumococcal spectrum. The in vitro safety assessment of S. infantarius LP90 revealed that it may be considered avirulent. The analysis of a 19,539-bp cluster showed the presence of 29 putative open reading frames (ORFs), including the genes encoding 8 new class II-bacteriocins, as well as the proteins involved in their secretion, immunity and regulation. Transcriptional analyses evidenced that the induction factor (IF) structural gene, the bacteriocin/IF transporter genes, the bacteriocin structural genes and most of the bacteriocin immunity genes were transcribed. MALDI-TOF analyses of peptides purified using different multichromatographic procedures revealed that the dairy strain S. infantarius LP90 produces at least 6 bacteriocins, including infantaricin A1, a novel anti-pneumococcal two-peptide bacteriocin.
Collapse
Affiliation(s)
- Cristina Campanero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Dzung B. Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Arbulu
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ingolf F. Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Enterococci Isolated from Trout in the Bukovec Water Reservoir and Čierny Váh River in Slovakia and Their Safety Aspect. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8051438. [PMID: 31886252 PMCID: PMC6925716 DOI: 10.1155/2019/8051438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate enterococci as lactic acid bacteria and as part of Firmicutes phylum. We focused on the virulence factor, biofilm formation, and antibiotic resistance and also on lactic acid production and enterocin gene detection. Intestinal samples were taken from 50 healthy trout (3 Salmo trutta and 47 Salmo gairdneri) collected in April 2007, 2010, and 2015 from different locations at the Bukovec water reservoir and the Čierny Váh River in Slovakia. Twenty pure colonies were identified using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification system based on protein fingerprints, and then seven identified strains were also phenotyped. Based on the identification methods used, the identified enterococci (7) belong taxonomically to four different enterococcal species: Enterococcus durans, E. faecium, E. mundtii, and E. thailandicus. They were hemolysis, DNase, and gelatinase negative with acceptable enzymatic activity. They did not form biofilm and were mostly susceptible to antibiotics. All strains produced lactic acid amounting to 1.78 ± 0.33 mmol/l on average and possessed the gene for enterocin A production. This is the first study reporting more detailed properties of enterococci from trout in Slovakian wild water sources, and it produces new possibilities for studying microbiota in trout.
Collapse
|
9
|
Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019; 8:E17. [PMID: 30621071 PMCID: PMC6351943 DOI: 10.3390/foods8010017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.
Collapse
Affiliation(s)
- Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
10
|
Poveda JM, Ruiz P, Seseña S, Palop ML. Occurrence of biogenic amine-forming lactic acid bacteria during a craft brewing process. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
Among other fermentation processes, lactic acid fermentation is a valuable process which enhances the safety, nutritional and sensory properties of food. The use of starters is recommended compared to spontaneous fermentation, from a safety point of view but also to ensure a better control of product functional and sensory properties. Starters are used for dairy products, sourdough, wine, meat, sauerkraut and homemade foods and beverages from dairy or vegetal origin. Among lactic acid bacteria, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Pediococcus are the majors genera used as starters whereas Weissella is not. Weissella spp. are frequently isolated from spontaneous fermented foods and participate to the characteristics of the fermented product. They possess a large set of functional and technological properties, which can enhance safety, nutritional and sensory characteristics of food. Particularly, Weissella cibaria and Weissella confusa have been described as high producers of exo-polysaccharides, which exhibit texturizing properties. Numerous bacteriocins have been purified from Weissella hellenica strains and may be used as bio-preservative. Some Weissella strains are able to decarboxylate polymeric phenolic compounds resulting in a better bioavailability. Other Weissella strains showed resistance to low pH and bile salts and were isolated from healthy human feces, suggesting their potential as probiotics. Despite all these features, the use of Weissella spp. as commercial starters remained non-investigated. Potential biogenic amine production, antibiotic resistance pattern or infection hazard partly explains this neglecting. Besides, Weissella spp. are not recognized as GRAS (Generally Recognized As Safe). However, Weissella spp. are potential powerful starters for food fermentation as well as Lactococcus, Leuconostoc or Lactobacillus species.
Collapse
|
12
|
Modified QuEChERS combined with ultra high performance liquid chromatography tandem mass spectrometry to determine seven biogenic amines in Chinese traditional condiment soy sauce. Food Chem 2017; 229:502-508. [DOI: 10.1016/j.foodchem.2017.02.120] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 11/17/2022]
|
13
|
Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie van Leeuwenhoek 2017; 110:771-786. [DOI: 10.1007/s10482-017-0847-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
|
14
|
Araújo C, Muñoz-Atienza E, Poeta P, Igrejas G, Hernández PE, Herranz C, Cintas LM. Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss) feed and larvae: safety, DNA fingerprinting, and bacteriocinogenicity. DISEASES OF AQUATIC ORGANISMS 2016; 119:129-143. [PMID: 27137071 DOI: 10.3354/dao02992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of lactic acid bacteria (LAB) as probiotics constitutes an alternative or complementary strategy to chemotherapy and vaccination for disease control in aquaculture. The objectives of this work were (1) the in vitro safety assessment of 8 Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss, Walbaum) feed and larvae; (2) the evaluation of their genetic relatedness; (3) the study of their antimicrobial/bacteriocin activity against fish pathogens; and (4) the biochemical and genetic characterization of the bacteriocin produced by the strain displaying the greatest antimicrobial activity. Concerning the safety assessment, none of the pediococci showed antibiotic resistance nor produced hemolysin or gelatinase, degraded gastric mucin, or deconjugated bile salts. Four strains (50%) produced tyramine or putrescine, but the corresponding genes were not amplified by PCR. Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) fingerprinting allowed clustering of the pediococci into 2 well-defined groups (68% similarity). From the 8 pediococci displaying direct antimicrobial activity against at least 3 out of 9 fish pathogens, 6 strains (75%) were identified as bacteriocin producers. The bacteriocin produced by P. acidilactici L-14 was purified, and mass spectrometry and DNA sequencing revealed its identity to pediocin PA-1 (PedPA-1). Altogether, our results allowed the identification of 4 (50%) putatively safe pediococci, including 2 bacteriocinogenic strains. ERIC-PCR fingerprinting was a valuable tool for genetic profiling of P. acidilactici strains. This work reports for the first time the characterization of a PedPA-1-producing P. acidilactici strain isolated from an aquatic environment (rainbow trout larvae), which shows interesting properties related to its potential use as a probiotic in aquaculture.
Collapse
Affiliation(s)
- Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Ghomrassi H, ben Braiek O, Choiset Y, Haertlé T, Hani K, Chobert JM, Ghrairi T. Evaluation of marine bacteriocinogenic enterococci strains with inhibitory activity against fish-pathogenic Gram-negative bacteria. DISEASES OF AQUATIC ORGANISMS 2016; 118:31-43. [PMID: 26865233 DOI: 10.3354/dao02953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Use of lactic acid bacteria (LAB) as probiotics may provide an alternative to the use of antibiotics in aquaculture. LAB strains isolated from wild fish viscera and skin were evaluated for bacteriocin production and safety aspects (lack of antibiotic resistance, production of virulence factors). 16S rRNA gene sequences revealed the presence of Enterococcus faecium (13 isolates) and Lactococcus lactis (3 isolates) from fish samples. Pulsed-field gel electrophoresis analyses of the 13 enterococci isolates showed that they were all clustered, with greater than 95% similarity. However, RAPD analysis revealed significant molecular diversity between enterococci strains. Six enterococci strains were chosen and evaluated for their antibacterial activities. These strains produced a bacteriocin-like substance and exhibited a broad spectrum of inhibition against pathogenic bacteria isolated from diseased fish, including Streptococcus parauberis, Vagococcus spp., and Carnobacterium maltaromaticum, and in particular against the Gram-negative bacteria Flavobacterium frigidarium, Vibrio pectenicida, V. penaeicida, and Photobacterium damselae. The inhibition activity towards bacterial indicator strains was at a maximum when bacteria were grown at 37°C. However, bacteriocin production was observed at 15°C after 12 h of incubation. Only structural genes of enterocins A and B were detected by PCR in the 6 enterococci strains, suggesting the production of these enterocins. In addition, these strains did not harbor any virulence factors or any significant antibiotic resistance, and they tolerated bile. Our results suggest that enterococci are an important part of the bacterial flora of fish and that some strains have the potential to be used as probiotics.
Collapse
|
16
|
Guimarães CFM, Mársico ET, Monteiro MLG, Lemos M, Mano SB, Conte Junior CA. The chemical quality of frozen Vietnamese Pangasius hypophthalmus fillets. Food Sci Nutr 2015; 4:398-408. [PMID: 27247770 PMCID: PMC4867760 DOI: 10.1002/fsn3.302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to evaluate the chemical quality parameters regarding frozen Pangasius hypophthalmus specimens from Vietnam. The proximate composition, pH, ammonia, biogenic amines (BAs), total mercury (Hg), malondialdehyde (MDA), and polyphosphate were determined. The moisture, protein, lipid and ash values were between 83.83-85.59, 12.51-14.52, 1.09-1.65, and 0.76-2.38 g 100 g(-1), respectively. Fraud by excessive polyphosphate addition was detected in 30% of the samples whereas Hg above the recommended limit was observed in 50% of the samples. With regard to compounds from the degradation process, low concentrations of individual BAs and pH values were found in this study and ranged from 5.88 to 6.18, except for samples with polyphosphate >1 g 100(-1) (pH > 7.00) were observed in the present study. However, ammonia concentration indicated that a degradation process initiated in 80% of the samples (0.12-0.34 NH 3 g(-1)) and 20% of the samples (1.87-1.94 μg NH 3 g(-1)) were in an advanced deterioration process. Furthermore, MDA values (1.21-7.88 mg kg(-1)) suggested some failures, mainly during transportation and/or storage. We concluded that quality control measures must be implemented on the Pangasius production chain to improve the quality of products provided to consumers worldwide.
Collapse
Affiliation(s)
| | - Eliane Teixeira Mársico
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense 24230340 Niterói Rio de Janeiro Brazil
| | - Maria Lúcia Guerra Monteiro
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense 24230340 Niterói Rio de Janeiro Brazil
| | - Môsar Lemos
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense 24230340 Niterói Rio de Janeiro Brazil
| | - Sergio Borges Mano
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense 24230340 Niterói Rio de Janeiro Brazil
| | - Carlos Adam Conte Junior
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense 24230340 Niterói Rio de Janeiro Brazil
| |
Collapse
|
17
|
Palmeira KR, Mársico ET, Monteiro MLG, Lemos M, Conte Junior CA. Ready-to-eat products elaborated with mechanically separated fish meat from waste processing: challenges and chemical quality. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1087050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2493-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
An D, Chen Z, Zheng J, Chen S, Wang L, Huang Z, Weng L. Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem 2015; 168:1-6. [DOI: 10.1016/j.foodchem.2014.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/02/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
|
20
|
Muñoz-Atienza E, Araújo C, Magadán S, Hernández PE, Herranz C, Santos Y, Cintas LM. In vitro and in vivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. FISH & SHELLFISH IMMUNOLOGY 2014; 41:570-580. [PMID: 25451001 DOI: 10.1016/j.fsi.2014.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Turbot (Scophthalmus maximus L.) is an important commercial marine flatfish. Its production may be affected by bacterial diseases that cause severe economical losses, mainly tenacibaculosis and vibriosis, provoked by Tenacibaculum maritimum and Vibrio splendidus, respectively. An alternative or complementary strategy to chemotherapy and vaccination for the control of these diseases is the use of probiotics. In this work, we report the in vitro and in vivo potential of eight lactic acid bacteria (LAB), previously isolated from fish, seafood and fish products intended for human consumption, as turbot probiotics. Seven out of the eight LAB exerted direct antimicrobial activity against, at least, four strains of T. maritimum and V. splendidus. All LAB survived in seawater at 18 °C for 7 days, and withstood exposure to pH 3.0 and 10% (v/v) turbot bile; however, they differed in cell surface hydrophobicity (8.2-21.7%) and in their ability to adhere to turbot skin (1.2-21.7%) and intestinal (0.7-2.1%) mucus. Most of the tested strains inhibited the binding of turbot pathogens to the mucus. Leuconostoc mesenteroides subsp. cremoris SMM69 and Weissella cibaria P71 were selected based on their strong antimicrobial activity against T. maritimum and V. splendidus, good probiotic properties, and different adhesion ability to skin mucus and capacity to inhibit the adhesion of turbot pathogens to mucus. These two LAB strains were harmless when administered by bath to turbot larvae and juveniles; moreover, real-time PCR on the transcription levels of the immunity-related genes encoding IL-1β, TNF-α, lysozyme, C3, MHC-Iα and MHC-IIα in five organs (head-kidney, spleen, liver, intestine and skin) revealed the ability of these LAB to stimulate their expression in turbot juveniles, especially the non-specific immunity associated genes in mucosal tissues. Based on our results, Lc. cremoris SMM69 and W. cibaria P71 may be considered as suitable probiotic candidates for turbot farming.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Susana Magadán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), 36390 Vigo, Pontevedra, Spain
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Ysabel Santos
- Department of Microbiology and Parasitology, Faculty of Biology, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| |
Collapse
|
21
|
Ananou S, Zentar H, Martínez-Bueno M, Gálvez A, Maqueda M, Valdivia E. The impact of enterocin AS-48 on the shelf-life and safety of sardines (Sardina pilchardus) under different storage conditions. Food Microbiol 2014; 44:185-95. [PMID: 25084662 DOI: 10.1016/j.fm.2014.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/06/2014] [Accepted: 06/11/2014] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine the effect of enterocin AS-48, packaged under normal atmosphere (NA), vacuum (VP) or modified atmosphere (MAP) on the shelf life and safety of fresh sardines (Sardina pilchardus) stored at 5 °C. We studied the effect of these hurdles, alone or combined, on the relevant autochthonous bacterial populations. Total volatile basic nitrogen (TVB-N) content was used as indicative of freshness. Levels of biogenic amines cadaverine, putrescine, tyramine, and histamine were also determined. The application of AS-48 did not reduce the mesophilic, psychrotrophic, or Gram negative bacteria viable cell counts under any of the storage conditions tested. AS-48 did cause significant reductions in viable staphylococci counts, especially under VP. In sardines under NA treated with AS-48, the populations of histamine- and tyramine-forming total and lactic acid bacteria (LAB) showed no significant reductions. MAP or VP with AS-48 allowed reductions (significant at some storage times) in histamine- and tyramine-forming LAB. The TVB-N content was also reduced under normal atmosphere and, especially, in sardines stored under MAP. The most interesting results are those concerning the decrease (by several fold) in the levels of the biogenic amines cadaverine, putrescine, tyramine, and histamine determined after treatment with AS-48.
Collapse
Affiliation(s)
- S Ananou
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 19071 Granada, Spain; Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - H Zentar
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - M Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 19071 Granada, Spain; Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - A Gálvez
- Área de Microbiología, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje Las Lagunillas, Jaén, Spain
| | - M Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 19071 Granada, Spain
| | - E Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 19071 Granada, Spain; Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
22
|
Gomes MB, Pires BAD, Fracalanzza SAP, Marin VA. O risco das aminas biogênicas nos alimentos. CIENCIA & SAUDE COLETIVA 2014; 19:1123-34. [DOI: 10.1590/1413-81232014194.18672012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/18/2013] [Indexed: 11/22/2022] Open
Abstract
Aminas biogênicas são bases orgânicas de baixo peso molecular com atividade biológica, produzidas a partir da ação da enzima descarboxilase. Microrganismos utilizados na fermentação de alimentos são capazes de produzi-las. O consumo desses compostos causam graves efeitos toxicológicos, indesejáveis para a saúde humana. Embora não exista legislação específica sobre a quantidade máxima permitida de aminas em alimentos e bebidas, a presença e o acumulo destes compostos é de grande importância. O objetivo desta revisão é evidenciar a necessidade de mais estudos e discutir a presença de aminas biogênicas em alimentos variados.
Collapse
|
23
|
Pérez-Martín F, Seseña S, Izquierdo PM, Palop ML. Are Enterococcus populations present during malolactic fermentation of red wine safe? Food Microbiol 2014; 42:95-101. [PMID: 24929723 DOI: 10.1016/j.fm.2014.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 12/14/2022]
Abstract
The aim of this study was the genetic characterisation and safety evaluation of 129 Enterococcus isolates obtained from wine undergoing malolactic fermentation. Genetic characterisation by randomly amplified polymorphic DNA-PCR displayed 23 genotypes. 25 isolates representative of all genotypes were identified as Enterococcus faecium by species-specific PCR and assayed for antibiotic resistance, presence of virulence genes and aminobiogenic capacity, both in decarboxylase medium and wine. The aminobiogenic capacity in wine was analysed in presence (assay 1) and absence (assay 2) of Oenococcus oeni CECT 7621. Resistance to tetracycline, cotrimoxazol, vancomycin and teicoplanin was exhibited by 96% of the strains, but none of them harboured the assayed virulence genes. All of the strains harboured the tyrosine decarboxylase (tdc) gene, while 44% were positive for tyramine in decarboxylase medium. Only five out of 25 strains survived in wine after seven days of incubation, and when concentrations of biogenic amines in wines were determined by HPLC, only those wines in which the five surviving strains occurred contained biogenic amines. Histamine, putrescine and cadaverine were detected in wines from both assays, although concentrations were higher in assay 2. Tyramine and phenylethylamine were detected only in absence of O. oeni. This research contributes for the knowledge of safety aspects of enterococci related to winemaking.
Collapse
Affiliation(s)
- Fátima Pérez-Martín
- Department of Analytical Chemistry and Food Technology, Environmental Sciences and Biochemistry Faculty, University of Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Susana Seseña
- Department of Analytical Chemistry and Food Technology, Environmental Sciences and Biochemistry Faculty, University of Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain.
| | - Pedro Miguel Izquierdo
- Institute of Vine and Wine of Castilla-La Mancha, Crta. Toledo-Albacete, s/n, 13700 Tomelloso, Ciudad Real, Spain; Scientific and Technologic Park of Albacete, Paseo de la Innovación 1, 02006 Albacete, Spain
| | - María Llanos Palop
- Department of Analytical Chemistry and Food Technology, Environmental Sciences and Biochemistry Faculty, University of Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
24
|
Migaw S, Ghrairi T, Belguesmia Y, Choiset Y, Berjeaud JM, Chobert JM, Hani K, Haertlé T. Diversity of bacteriocinogenic lactic acid bacteria isolated from Mediterranean fish viscera. World J Microbiol Biotechnol 2013; 30:1207-17. [PMID: 24189971 DOI: 10.1007/s11274-013-1535-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.
Collapse
Affiliation(s)
- Sarra Migaw
- Département de Biochimie, Faculté de Médecine Ibn El Jazzar, Unité de Recherche U12-ES03, 4002, Sousse, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Sci 2013; 95:272-80. [DOI: 10.1016/j.meatsci.2013.05.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022]
|
26
|
Gútiez L, Gómez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Int J Food Microbiol 2013; 166:93-101. [DOI: 10.1016/j.ijfoodmicro.2013.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
|
27
|
Liu F, Du L, Xu W, Wang D, Zhang M, Zhu Y, Xu W. Production of tyramine by Enterococcus faecalis strains in water-boiled salted duck. J Food Prot 2013; 76:854-9. [PMID: 23643128 DOI: 10.4315/0362-028x.jfp-12-487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential to produce biogenic amines was investigated with 15 Lactococcus lactis and 15 Enterococcus faecalis strains isolated from water-boiled salted duck. The production of biogenic amines from the isolated strains grown in de Man Rogosa Sharpe broth containing precursor amino acids was determined by thin-layer chromatography and high-performance liquid chromatography. None of the L. lactis strains produced any biogenic amines, whereas 12 strains of E. faecalis produced tyramine and b -phenylethylamine. PCR assays were used to detect the presence of tyrosine decarboxylase genes in all of the isolated strains. Only the 12 biogenic amine-producing Enterococcus strains had a 924-bp fragment characteristic for the tyrosine decarboxylase gene. The comparison of the amplified partial tyrDC gene sequences of the 12 positive Enterococcus strains revealed 99% similarity within the same species. The tyramine production of the sterilized water-boiled salted duck inoculated with E. faecalis R612Z1 increased significantly during storage. This study reveals that the isolated E. faecalis strains can produce tyramine and β-phenylethylamine in the medium; however, they can only produce tyramine in water-boiled salted duck.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, del Campo R, Hernández PE, Herranz C, Cintas LM. Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 2013; 13:15. [PMID: 23347637 PMCID: PMC3574848 DOI: 10.1186/1471-2180-13-15] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/18/2012] [Indexed: 01/07/2023] Open
Abstract
Background The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food. Results These LAB displayed a broad antimicrobial/bacteriocin activity against the main Gram-positive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured lnu(A) conferring resistance to lincosamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities. Conclusions To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and lnu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB intended for use as probiotics in aquaculture.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP) Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Visciano P, Schirone M, Tofalo R, Suzzi G. Biogenic amines in raw and processed seafood. Front Microbiol 2012; 3:188. [PMID: 22675321 PMCID: PMC3366335 DOI: 10.3389/fmicb.2012.00188] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/09/2012] [Indexed: 11/15/2022] Open
Abstract
The presence of biogenic amines (BAs) in raw and processed seafood, associated with either time/temperature conditions or food technologies is discussed in the present paper from a safety and prevention point of view. In particular, storage temperature, handling practices, presence of microbial populations with decarboxylase activity and availability of free amino acids are considered the most important factors affecting the production of BAs in raw seafood. On the other hand, some food technological treatments such as salting, ripening, fermentation, or marination can increase the levels of BAs in processed seafood. The consumption of high amount of BAs, above all histamine, can result in food borne poisoning which is a worldwide problem. The European Regulation established as maximum limits for histamine, in fishery products from fish species associated with high histidine amounts, values ranging from 100 to 200 mg/kg, while for products which have undergone enzyme maturation treatment in brine, the aforementioned limits rise to 200 and 400 mg/kg. Preventive measures and emerging methods aiming at controlling the production of BAs are also reported for potential application in seafood industries.
Collapse
Affiliation(s)
- Pierina Visciano
- Department of Food Science, University of Teramo, Mosciano Sant’AngeloTeramo, Italy
| | - Maria Schirone
- Department of Food Science, University of Teramo, Mosciano Sant’AngeloTeramo, Italy
| | - Rosanna Tofalo
- Department of Food Science, University of Teramo, Mosciano Sant’AngeloTeramo, Italy
| | - Giovanna Suzzi
- Department of Food Science, University of Teramo, Mosciano Sant’AngeloTeramo, Italy
| |
Collapse
|
30
|
Ladero V, Fernández M, Calles-Enríquez M, Sánchez-Llana E, Cañedo E, Martín MC, Alvarez MA. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 2011; 30:132-8. [PMID: 22265293 DOI: 10.1016/j.fm.2011.12.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/29/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Biogenic amines (BA) are toxic nitrogenous compounds that can be accumulated in foods via the microbial decarboxylation of certain amino acids. Lactic acid bacteria (LAB) strains belonging to different species and genera have been described as BA producers and are mainly responsible for their synthesis in fermented foods. It is generally accepted that the capacity to produced BAs is strain-dependent. However, the large number of enterococci identified as BA producers suggests that the aminogenic trait may be a species-level characteristic. Enterococcus faecalis, Enterococcus faecium and Enterococcus durans strains of different origin were analysed to determine their capacity to produce tyramine and putrescine. The presence of the genes responsible for this and the identity of their flanking regions were checked by PCR. The results suggest that tyramine biosynthesis is a species-level characteristic in E. faecalis, E. faecium and E. durans. Putrescine synthesis was found to be a species-level trait of E. faecalis, with production occurring via the agmatine deamination pathway. Some E. faecium strains of human origin also produced putrescine; this trait was probably acquired via horizontal gene transfer.
Collapse
Affiliation(s)
- Victor Ladero
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Crta. de Infiesto s/n, Apdo. de Correos 85, 33300 Villaviciosa, Asturias, Spain
| | | | | | | | | | | | | |
Collapse
|