1
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
2
|
Zhai Y, Wang Y, Wang B, Niu L, Xiang Q, Bai Y. Sublethal injury and recovery of Escherichia coli O157:H7 after dielectric barrier discharge plasma treatment. Arch Microbiol 2024; 206:465. [PMID: 39540944 DOI: 10.1007/s00203-024-04193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Dielectric barrier discharge (DBD) plasma can be used to control food spoilage and food pathogens. However, DBD plasma may induce sublethal injury in microorganisms, constituting a considerable risk to food safety. This research was designed to investigate the sublethal injury and recovery of Escherichia coli O157:H7 after DBD plasma treatment. The results indicated that the sublethal injury ratios of cells rose along with the augmentation of treatment time and input power of DBD plasma under mild treatment conditions, whereas injury accumulation ultimately culminated in cell death. The highest sublethal ratio of 99.3% was obtained after DBD plasma treatment at 18 W for 40 s. When solutions such as phosphate buffered saline (PBS), peptone water, glucose solution, and tryptic soy broth (TSB) were used for cell recovery, TSB was proven to be the most efficacious, facilitating the completion of recovery within 2 h. The repair ratio of injured cells increased as the recovery pH (3.0-7.0) and temperature (4-37 ºC) increased. Moreover, Mg2+ and Zn2+ were demonstrated to be necessary for the recovery process, while Ca2+ presented a weak effect. Understanding the sublethal injury of bacteria resulting from DBD plasma treatment and their repair conditions can provide useful insight into avoiding the occurrence of sublethal injury as well as inhibiting the occurrence of recovery during food processing and storage.
Collapse
Affiliation(s)
- Yafei Zhai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yuhao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bohua Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Zhou B, Zhao H, Yang X, Cheng JH. Versatile dielectric barrier discharge cold plasma for safety and quality control in fruits and vegetables products: Principles, configurations and applications. Food Res Int 2024; 196:115117. [PMID: 39614520 DOI: 10.1016/j.foodres.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
It is well-known that fresh fruits and vegetables and their products are particularly susceptible to microbial contaminations. Seeking safer and more effective methods and technologies to extend the shelf life of these foods and ensure their safety is obviously important. This review comprehensively discusses the applications of versatile dielectric barrier discharge (DBD) cold plasma technology in the safety control and shelf-life extension of fruits and vegetables. The effectiveness of DBD cold plasma in microbial purification, the capacity for pesticide residue degradation, and the influence on the sensory and nutritional attributes of fruits and vegetables products are detailly reported. Additionally, the review discusses the challenges of scaling DBD from experimental setups to industrial applications, including technical hurdles, commercial feasibility, and the need for rigorous safety evaluations and monitoring protocols. This review aims to provide recommendations for the ongoing development of food safety and quality measures in the fresh fruits and vegetables and their processing products.
Collapse
Affiliation(s)
- Bosheng Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; ChemPartner PharmaTech Co., Ltd, Jiangmen 529081, China
| | - Xiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
4
|
Kim YE, Myung GE, Jeon YJ, Min SC. Integrated in-package treatment of hydrogen peroxide and cold plasma for microbial inactivation of cabbage slices. Food Sci Biotechnol 2024; 33:1633-1640. [PMID: 38623427 PMCID: PMC11016018 DOI: 10.1007/s10068-024-01536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 04/17/2024] Open
Abstract
The efficacy of an in-package microbial inactivation method, combining H2O2 and atmospheric dielectric barrier discharge cold plasma (ADCP) treatments (H2O2-ADCP), in reducing contamination of Brassica oleracea (cabbage) slices was investigated. Cabbage slices were placed in a polyethylene terephthalate container with a H2O2-soaked polypropylene pad attached to the inside of the lid, followed by subjecting the closed container to ADCP treatment. The H2O2-ADCP treatment inactivated Escherichia coli O157:H7 and Listeria monocytogenes, resulting in reductions of 1.8 and 2.0 log CFU/g, respectively, which were greater than the sum of the inactivation effects observed with each individual treatment. The combined treatment decreased the count of Bacillus cereus spores and indigenous bacteria by 1.0 log spores/g and 1.3 log CFU/g, respectively. Moreover, the in-package method did not alter the moisture content or texture of cabbage slices. These results demonstrate the potential of H2O2-ADCP as a microbial decontamination method for packaged cabbage slices.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Ga Eun Myung
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Ye Jeong Jeon
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
5
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
6
|
Özdemir E, Başaran P, Kartal S, Akan T. Cold plasma application to fresh green leafy vegetables: Impact on microbiology and product quality. Compr Rev Food Sci Food Saf 2023; 22:4484-4515. [PMID: 37661766 DOI: 10.1111/1541-4337.13231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Fresh green leafy vegetables (FGLVs) are consumed either garden-fresh or by going through very few simple processing steps. For this reason, foodborne diseases that come with the consumption of fresh products in many countries have prioritized the development of new and reliable technologies to reduce food-related epidemics. Cold plasma (CP) is considered one of the sustainable and green processing approaches that inactivate target microorganisms without causing a significant temperature increase during processing. This review presents an overview of recent developments regarding the commercialization potential of CP-treated FGLVs, focusing on specific areas such as microbial inactivation and the influence of CP on product quality. The effect of CP differs according to the power of the plasma, frequency, gas flow rate, application time, ionizing gases composition, the distance between the electrodes and pressure, as well as the characteristics of the product. As well as microbial decontamination, CP offers significant potential for increasing the shelf life of perishable and short-shelf-life products. In addition, organizations actively involved in CP research and development and patent applications (2016-2022) have also been analyzed.
Collapse
Affiliation(s)
- Emel Özdemir
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Pervin Başaran
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sehban Kartal
- Department of Physics, Istanbul University, Istanbul, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
7
|
Mohseni P, Ghorbani A, Fariborzi N. Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Front Vet Sci 2023; 10:1240596. [PMID: 37720476 PMCID: PMC10502341 DOI: 10.3389/fvets.2023.1240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Cold plasma therapy is a novel approach that has shown significant promise in treating bacterial infections in veterinary medicine. Cold plasma possesses the potential to eliminate various bacteria, including those that are resistant to antibiotics, which renders it a desirable substitute for traditional antibiotics. Furthermore, it can enhance the immune system and facilitate the process of wound healing. However, there are some challenges associated with the use of cold plasma in veterinary medicine, such as achieving consistent and uniform exposure to the affected area, determining optimal treatment conditions, and evaluating the long-term impact on animal health. This paper explores the potential of cold plasma therapy in veterinary medicine for managing bacterial diseases, including respiratory infections, skin infections, and wound infections such as Clostridium botulinum, Clostridium perfringens, Bacillus cereus, and Bacillus subtilis. It also shows the opportunities and challenges associated with its use. In conclusion, the paper highlights the promising potential of utilizing cold plasma in veterinary medicine. However, to gain a comprehensive understanding of its benefits and limitations, further research is required. Future studies should concentrate on refining treatment protocols and assessing the long-term effects of cold plasma therapy on bacterial infections and the overall health of animals.
Collapse
Affiliation(s)
- Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Niloofar Fariborzi
- Department of Biology and Control of Diseases Vector, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Wei W, Yang S, Yang F, Hu X, Wang Y, Guo W, Yang B, Xiao X, Zhu L. Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish. Foods 2023; 12:2550. [PMID: 37444288 DOI: 10.3390/foods12132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The hazard of nitrite caused by microorganisms is the main food safety problem in the pickle production. To seek a method to control the nitrite hazards of pickles by regulating microbial community without additional substances, we focused on cold plasma because Gram-negative and Gram-positive bacteria have different degrees of sensitivity to the sterilization of cold plasma. Using radish pickles as the experimental object, based on colony counting, dynamic monitoring of pH and nitrite, qPCR and high-throughput sequencing, it was found that when the raw material was treated with dielectric barrier discharge (DBD) cold plasma at 40 kV for 60 s, Gram-negative bacteria with the potential to produce nitrite were preferentially sterilized. Meanwhile, Gram-positive bacteria dominated by the lactic acid bacteria were retained to accelerate the acid production rate, initiate the self-degradation of nitrite in advance and significantly reduce the peak value and accumulation of nitrite during the fermentation process of pickled radish. This study preliminarily verified that DBD cold plasma can inhibit the nitrite generation and accelerate the self-degradation of nitrite by regulating the structure and abundance of microbial community in radish pickles, which provides an important reference for the control of nitrite hazards in the fermentation process of pickles without additives.
Collapse
Affiliation(s)
- Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shujing Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenjun Guo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Biyue Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Marco Tobías M, Åhlén M, Cheung O, Bucknall DG, McCoustra MRS, Yiu HHP. Plasma degradation of contaminated PPE: an energy-efficient method to treat contaminated plastic waste. NPJ MATERIALS DEGRADATION 2023; 7:33. [PMID: 37096160 PMCID: PMC10115383 DOI: 10.1038/s41529-023-00350-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The use of PPE has drastically increased because of the SARS-CoV-2 (COVID-19) pandemic as disposable surgical face masks made from non-biodegradable polypropylene (PP) polymers have generated a significant amount of waste. In this work, a low-power plasma method has been used to degrade surgical masks. Several analytical techniques (gravimetric analysis, scanning electron microscopy (SEM), attenuated total reflection-infra-red spectroscopy (ATR-IR), x-ray photoelectron spectroscopy (XPS), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and wide-angle x-ray scattering (WAXS)) were used to evaluate the effects of plasma irradiation on mask samples. After 4 h of irradiation, an overall mass loss of 63 ± 8%, through oxidation followed by fragmentation, was observed on the non-woven 3-ply surgical mask, which is 20 times faster than degrading a bulk PP sample. Individual components of the mask also showed different degradation rates. Air plasma clearly represents an energy-efficient tool for treating contaminated PPE in an environmentally friendly approach.
Collapse
Affiliation(s)
- Mariano Marco Tobías
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Michelle Åhlén
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden
| | - Ocean Cheung
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden
| | - David G. Bucknall
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Martin R. S. McCoustra
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Humphrey H. P. Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| |
Collapse
|
10
|
Farooq S, Dar AH, Dash KK, Srivastava S, Pandey VK, Ayoub WS, Pandiselvam R, Manzoor S, Kaur M. Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Sci Biotechnol 2023; 32:621-638. [PMID: 37009036 PMCID: PMC10050620 DOI: 10.1007/s10068-023-01266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Cold plasma processing is a nonthermal approach that maintains food quality while minimizing the effects of heat on its nutritious qualities. Utilizing activated, highly reactive gaseous molecules, cold plasma processing technique inactivates contaminating microorganisms in food and packaging materials. Pesticides and enzymes that are linked to quality degradation are currently the most critical issues in the fresh produce industry. Using cold plasma causes pesticides and enzymes to degrade, which is associated with quality deterioration. The product surface characteristics and processing variables, such as environmental factors, processing parameters, and intrinsic factors, need to be optimized to obtain higher cold plasma efficiency. The purpose of this review is to analyse the impact of cold plasma processing on qualitative characteristics of food products and to demonstrate the effect of cold plasma on preventing microbiological concerns while also improving the quality of minimally processed products.
Collapse
Affiliation(s)
- Salma Farooq
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| | - Shivangi Srivastava
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh India
| | - Vinay Kumar Pandey
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh India
| | - Wani Suhana Ayoub
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala 671124 India
| | - Sobiya Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Mandeep Kaur
- Amity Institute of Food Technology Department, Amity University, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
11
|
Ashrafudoulla M, Ulrich MSI, Toushik SH, Nahar S, Roy PK, Mizan FR, Park SH, Ha SD. Challenges and opportunities of non-conventional technologies concerning food safety. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Mevo S. I. Ulrich
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Furkanur Rahaman Mizan
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
12
|
Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Fu J, Xu Y, Arts EJ, Bai Z, Chen Z, Zheng Y. Viral disinfection using nonthermal plasma: A critical review and perspectives on the plasma-catalysis system. CHEMOSPHERE 2022; 309:136655. [PMID: 36191766 DOI: 10.1016/j.chemosphere.2022.136655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The transmission of viral infections via aerosol has become a serious threat to public health. This has produced an ever-increasing demand for effective forms of viral inactivation technology/processes. Plasma technology is rising in popularity and gaining interest for viral disinfection use. Due to its highly effectively disinfection and flexible operation, non-thermal plasma (NTP) is a promising technology in decontaminating bacteria or virus from air or surfaces. This review discusses the fundamentals of non-thermal plasma and the disinfection mechanisms of the biocidal agents produced in plasma, including ultraviolet (UV) photons, reactive oxygen species, and reactive nitrogen species. Perspectives on the role of catalysts and its potential applications in cold plasma disinfection are discussed.
Collapse
Affiliation(s)
- Jile Fu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing, Henan Normal University, Xinxiang, 453007, China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Yiyi Xu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Eric J Arts
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing, Henan Normal University, Xinxiang, 453007, China.
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| |
Collapse
|
14
|
Kaur R, Kaur L, Gupta TB, Singh J, Bronlund J. Multitarget preservation technologies for chemical-free sustainable meat processing. J Food Sci 2022; 87:4312-4328. [PMID: 36120824 PMCID: PMC9825855 DOI: 10.1111/1750-3841.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Due to the growing consumer demand for safe and naturally processed meats, the meat industry is seeking novel methods to produce safe-to-consume meat products without affecting their sensory appeal. The green technologies can maintain the sensory and nutritive characteristics and ensure the microbial safety of processed meats and, therefore, can help to reduce the use of chemical preservatives in meat products. The use of chemical additives, especially nitrites in processed meat products, has become controversial because they may form carcinogenic N-nitrosamines, a few of which are suspected as cancer precursors. Thus, the objective of reducing or eliminating nitrite is of great interest to meat researchers and industries. This review, for the first time, discusses the influence of processing technologies such as microwave, irradiation, high-pressure thermal processing (HPTP) and multitarget preservation technology on the quality characteristics of processed meats, with a focus on their sensory quality. These emerging technologies can help in the alleviation of ingoing nitrite or formed nitrosamine contents in meat products. The multitarget preservation technology is an innovative way to enhance the shelf life of meat products through the combined use of different technologies/natural additives. The challenges and opportunities associated with the use of these technologies for processing meat are also reviewed.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Lovedeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Jaspreet Singh
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - John Bronlund
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
15
|
Wang J, Fu T, Sang X, Liu Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int J Food Microbiol 2022; 375:109738. [DOI: 10.1016/j.ijfoodmicro.2022.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
16
|
Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55321-55335. [PMID: 35661305 PMCID: PMC9165927 DOI: 10.1007/s11356-022-21160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 05/06/2023]
Abstract
Nowadays, in parallel to the appearance of the COVID-19 virus, the risk of viruses in water increases leading to the necessity of developing novel disinfection methods. This review focuses on the route of virus contamination in water and introduces non-thermal plasma technology as a promising method for the inactivation of viruses. Effects of essential parameters affecting the non-thermal discharge for viral inactivation have been exposed. The review has also illustrated a critical discussion of this technology with other advanced oxidation processes. Additionally, the inactivation mechanisms have also been detailed based on reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Mohamed Majdi Cherif
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hamza Kenfoud
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology, Giza, 12588, Egypt
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Naoufel Ben Hamadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia.
| | | |
Collapse
|
17
|
Emerging Trends for Nonthermal Decontamination of Raw and Processed Meat: Ozonation, High-Hydrostatic Pressure and Cold Plasma. Foods 2022; 11:foods11152173. [PMID: 35892759 PMCID: PMC9330470 DOI: 10.3390/foods11152173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Meat may contain natural, spoilage, and pathogenic microorganisms based on the origin and characteristics of its dietary matrix. Several decontamination substances are used during or after meat processing, which include chlorine, organic acids, inorganic phosphates, benzoates, propionates, bacteriocins, or oxidizers. Unfortunately, traditional decontamination methods are often problematic because of their adverse impact on the quality of the raw carcass or processed meat. The extended shelf-life of foods is a response to the pandemic trend, whereby consumers are more likely to choose durable products that can be stored for a longer period between visits to food stores. This includes changing purchasing habits from “just in time” products “for now” to “just in case” products, a trend that will not fade away with the end of the pandemic. To address these concerns, novel carcass-decontamination technologies, such as ozone, high-pressure processing and cold atmospheric plasma, together with active and clean label ingredients, have been investigated for their potential applications in the meat industry. Processing parameters, such as exposure time and processing intensity have been evaluated for each type of matrix to achieve the maximum reduction of spoilage microorganism counts without affecting the physicochemical, organoleptic, and functional characteristics of the meat products. Furthermore, combined impact (hurdle concept) was evaluated to enhance the understanding of decontamination efficiency without undesirable changes in the meat products. Most of these technologies are beneficial as they are cost-effective, chemical-free, eco-friendly, easy to use, and can treat foods in sealed packages, preventing the product from post-process contamination. Interestingly, their synergistic combination with other hurdle approaches can help to substitute the use of chemical food preservatives, which is an aspect that is currently quite desirable in the majority of consumers. Nonetheless, some of these techniques are difficult to store, requiring a large capital investment for their installation, while a lack of certification for industrial utilization is also problematic. In addition, most of them suffer from a lack of sufficient data regarding their mode of action for inactivating microorganisms and extending shelf-life stability, necessitating a need for further research in this area.
Collapse
|
18
|
Lee J, Park SK, Korber D, Baik OD. Optimization of Atmospheric Cold Plasma Treatment with Different Gases for Reduction of Escherichia coli in Wheat Flour. J Microbiol Biotechnol 2022; 32:768-775. [PMID: 35484965 PMCID: PMC9628904 DOI: 10.4014/jmb.2203.03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
In this study we aimed to derive the response surface models for Escherichia coli reduction in wheat flour using atmospheric cold plasma (ACP) with three types of gas. The jet-type atmospheric cold plasma wand system was used with a 30 W power supply, and three gases (argon, air, and nitrogen) were applied as the treatment gas. The operating parameters for process optimization considered were wheat flour mass (g), treatment time (min), and gas flow rate (L/min). The wheat flour samples were artificially contaminated with E. coli at a concentration of 9.25 ± 0.74 log CFU/g. ACP treatments with argon, air, and nitrogen resulted in 2.66, 4.21, and 5.55 log CFU/g reduction of E. coli, respectively, in wheat flour under optimized conditions. The optimized conditions to reduce E. coli were 0.5 g of the flour mass, 15 min of treatment time, and 0.20 L/min of nitrogen gas flow rate, and the predicted highest reduction level from modeling was 5.63 log CFU/g.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Seul-Ki Park
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Darren Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Oon-Doo Baik
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
19
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
20
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Cold plasma-activated hydrogen peroxide aerosols inactivate Salmonella Typhimurium and Listeria innocua on smooth surfaces and stem scars of tomatoes: Modeling effects of hydrogen peroxide concentration, treatment time and dwell time. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
23
|
Fu T, Liu Y, Wang J. Salmonella enteritidis and Listeria monocytogenes: inactivation effect and aerobic respiratory limitation of cold plasma treatment. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
25
|
Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes (Basel) 2022. [DOI: 10.3390/pr10030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transformation of our linear “take-make-waste” system to a cyclic flow of materials and energy is a priority task for society, but the circular use of waste streams from one industry/sector as a material input for another must be completely safe. The need for new advanced technologies and methods ensuring both microbiological safety and the removal of potential chemical residues in used materials and products is urgent. Non-thermal atmospheric plasma (cold atmospheric plasma—CAP) has recently attracted great research interest as an alternative for operative solutions of problems related to safety and quality control. CAP is a powerful tool for the inactivation of different hazardous microorganisms and viruses, and the effective decontamination of surfaces and liquids has been demonstrated. Additionally, the plasma’s active components are strong oxidizers and their synergetic effect can lead to the degradation of toxic chemical compounds such as phenols and azo-dyes.
Collapse
|
26
|
Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
|
28
|
Application of dielectric barrier discharge plasma for the reduction of non-pathogenic Escherichia coli and E. coli O157:H7 and the quality stability of fresh oysters (Crassostrea gigas). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Kim YE, Min SC. Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
33
|
Lee YJ, Yoon KS. Inactivating effect of dielectric barrier discharge plasma on
Escherichia coli
O157
:
H7
and
Staphylococcus aureus
in various dried products. J Food Saf 2021. [DOI: 10.1111/jfs.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yun Jin Lee
- Department of Food and Nutrition Kyung Hee University Seoul Republic of Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
34
|
Mao L, Mhaske P, Zing X, Kasapis S, Majzoobi M, Farahnaky A. Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Aman Mohammadi M, Ahangari H, Zabihzadeh Khajavi M, Yousefi M, Scholtz V, Hosseini SM. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J Food Saf 2021. [DOI: 10.1111/jfs.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Zabihzadeh Khajavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Vladimír Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Huang H, Xiong G, Shi L, Wu W, Li X, Qiao Y, Liao L, Ding A, Wang L. Application of HVEF treatment in bacteriostasis against Acinetobacter radioresistens. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Lee ES, Jeon YJ, Min SC. Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. Foods 2021; 10:1214. [PMID: 34072139 PMCID: PMC8226900 DOI: 10.3390/foods10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Microbiological safety of ready-to-eat foods is paramount for consumer acceptability. The effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on the microbiological safety and quality of model chicken salad (CS) were investigated in this study. CS, packaged in a commercial polyethylene terephthalate container, was treated with ADCP at 24 kV for 2 min. The inactivation of indigenous mesophilic bacteria, Salmonella, and Tulane virus in CS; growth of indigenous mesophilic bacteria and Salmonella in CS; and quality of CS during storage at 4 °C were then investigated. ADCP inactivated indigenous mesophilic bacteria, Salmonella, and Tulane virus by 1.2 ± 0.3 log CFU/g, 1.0-1.5 ± 0.2 log CFU/g, and 1.0 ± 0.1 log PFU/g, respectively. Furthermore, it effectively retarded the growth of the microorganisms, while not significantly affecting the color of chicken, romaine lettuce, and carrot, and the antioxidant capacity of all vegetables throughout storage at the tested temperatures (p > 0.05). The color, smell, and appearance of all vegetables evaluated on day 0 were not significantly different in the sensory test, regardless of the treatment (p > 0.05). Collectively, ADCP treatment effectively decontaminates packaged CS without altering its quality-related properties.
Collapse
Affiliation(s)
| | | | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Korea; (E.S.L.); (Y.J.J.)
| |
Collapse
|
38
|
El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021; 141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.
Collapse
Affiliation(s)
- Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Phillip Thomas
- Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | | | | | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
39
|
Cold plasma decontamination of stainless steel food processing surfaces assessed using an industrial disinfection protocol. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Chitrakar B, Zhang M, Bhandari B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021; 125:108010. [PMID: 33679006 PMCID: PMC7914018 DOI: 10.1016/j.foodcont.2021.108010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a contagious disease caused by a novel corona virus (SARS-CoV-2). No medical intervention has yet succeeded, though vaccine success is expected soon. However, it may take months or years to reach the vaccine to the whole population of the world. Therefore, the technological preparedness is worth to discuss for the smooth running of food processing activities. We have explained the impact of the COVID-19 pandemic on the food supply chain (FSC) and then discussed the technological interventions to overcome these impacts. The novel and smart technologies during food processing to minimize human-to-human and human-to-food contact were compiled. The potential virus-decontamination technologies were also discussed. Finally, we concluded that these technologies would make food processing activities smarter, which would ultimately help to run the FSC smoothly during COVID-19 pandemic.
Collapse
Affiliation(s)
- Bimal Chitrakar
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
41
|
Bigi F, Haghighi H, Quartieri A, De Leo R, Pulvirenti A. Impact of low‐dose gaseous ozone treatment to reduce the growth of in vitro broth cultures of foodborne pathogenic/spoilage bacteria in a food storage cold chamber. J Food Saf 2021. [DOI: 10.1111/jfs.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Bigi
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Hossein Haghighi
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Andrea Quartieri
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Riccardo De Leo
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Andrea Pulvirenti
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
- Interdepartmental Research Centre BIOGEST‐SITEIA University of Modena and Reggio Emilia Reggio Emilia Italy
| |
Collapse
|
42
|
Filipić A, Dobnik D, Tušek Žnidarič M, Žegura B, Štern A, Primc G, Mozetič M, Ravnikar M, Žel J, Gutierrez Aguirre I. Inactivation of Pepper Mild Mottle Virus in Water by Cold Atmospheric Plasma. Front Microbiol 2021; 12:618209. [PMID: 33584622 PMCID: PMC7877120 DOI: 10.3389/fmicb.2021.618209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
43
|
Ceylan Z, Ocak E, Uçar Y, Karakus K, Cetinkaya T. An overview of food safety and COVID-19 infection. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237532 DOI: 10.1016/b978-0-323-85780-2.00004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Avian influenzas, Ebola, Nipah, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is an RNA virus covered by a lipid bilayer, are directly affecting people worldwide. On the other hand, in addition to the main spread source (human contact) of SARS-CoV-2, consumers have started to think about whether foods are dangerous in terms of SARS-CoV-2 spread. The consumption of wild animals as well as the possible contamination of SARS-CoV-2 in fresh and frozen foods have caused concern and increased awareness among consumers. A heating process >70°C is being suggested to eliminate viral contamination risk. Cutting tools, slicing machines, and food-contact surfaces including stainless steel, aluminum, or glass must be regularly sanitized. The sous vide cooking method, which is based on cooking under vacuum and with pH treatments in the range of 3 and 10, could be advised in this risky period for decreasing contamination risk in food. Also, recent studies have shown that nanotechnology applications such as nanoparticles could be used to combat the SARS-CoV-2 spread, which is 50–200 nm in size. Another suggested technique is cold plasma technology that could damage the protein structure of the virus. Besides these techniques, it is important to boost the immune system. In this regard, recent researches have revealed the importance of honey consumption (1 g/kg per person/day), intake of vitamins, minerals like selenium, and ω-3 fatty acids.
Collapse
|
44
|
Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2020; 337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Ghent, Belgium
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
45
|
Shin M, Kim S, Kang D. Application of ohmic heating for the inactivation of microbiological hazards in food products. J Food Saf 2020. [DOI: 10.1111/jfs.12787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Sang‐Soon Kim
- Department of Food Engineering Dankook University Cheonan Chungnam Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
46
|
Pexara A, Govaris A. Foodborne Viruses and Innovative Non-Thermal Food-Processing Technologies. Foods 2020; 9:E1520. [PMID: 33113926 PMCID: PMC7690672 DOI: 10.3390/foods9111520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, several foodborne viruses' outbreaks have been recorded worldwide. Μost of the foodborne viruses have a low infection dose, are stable and can persist and survive in foods for a long time without loss of infectivity. The most important foodborne viruses are: human norovirus (HuNoV), human rotavirus (HRV), hepatitis A virus (HAV), hepatitis E virus (HEV), human astrovirus (HAstV), Aichi virus (AiV), sapovirus (SaV), human adenovirus (HAdV) and enterovirus (EV). In recent years, innovative non-thermal food-processing technologies including high-pressure processing (HPP), cold plasma (CP), ultraviolet light (UV), irradiation and pulsed electric field (PEF) for improving the quality and safety of foods, including foods of animal origin, have been under research. This review presents the recent data on foodborne viruses and reviews the innovative non-thermal technologies for the control of the foodborne viruses in foods.
Collapse
Affiliation(s)
- Andreana Pexara
- Laboratory of Hygiene of Foods of Animal Origin, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Street, 43100 Karditsa, Greece;
| | | |
Collapse
|
47
|
Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020; 9:foods9101435. [PMID: 33050551 PMCID: PMC7599535 DOI: 10.3390/foods9101435] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Cold plasma (CP) is generated when an electrical energy source is applied to a gas, resulting in the production of several reactive species such as ultraviolet photons, charged particles, radicals and other reactive nitrogen, oxygen, and hydrogen species. CP is a novel, non-thermal technology that has shown great potential for food decontamination and has also generated a lot of interest recently for a wide variety of food processing applications. This review discusses the potential use of CP in mainstream food applications to ensure food safety. The review focuses on the design elements of cold plasma technology, mode of action of CP, and types of CP technologies applicable to food applications. The applications of CP by the food industry have been demonstrated for food decontamination, pesticide residue removal, enzyme inactivation, toxin removal, and food packaging modifications. Particularly for food processing, CP is effective against major foodborne pathogenic micro-organisms such as Listeria monocytogenes and Salmonella Typhimurium, Tulane virus in romaine lettuce, Escherichia coli O157:H7, Campylobacter jejuni, and Salmonella spp. in meat and meat products, and fruits and vegetables. However, some limitations such as lipid oxidation in fish, degradation of the oligosaccharides in the juice have been reported with the use of CP, and for these reasons, further research is needed to mitigate these negative effects. Furthermore, more research is needed to maximize its potential.
Collapse
|
48
|
Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article evaluates the effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on microbial inactivation, nitrate and nitrite contents, oral toxicity, and storage quality of protein-coated boiled chicken breast cubes (CBCs). ADCP treatment at 24 kV for 3 min inactivated natural mesophilic aerobic bacteria, Salmonella, and Tulane virus in CBCs by 0.7 ± 0.2, 1.4 ± 0.1 log CFU/cube, and 1.1 ± 0.2 log PFU/cube, respectively. ADCP treatment did not affect the nitrite content of CBCs (p > 0.05). Furthermore, the hematological and blood biochemical parameters from toxicity tests indicated the toxicological safety of ADCP-treated CBCs. Microbial counts of natural bacteria and Salmonella in ADCP-treated CBCs were lower than the ADCP-untreated CBCs by 0.7–0.9 and 1.4–1.7 log CFU/cube, respectively, throughout post-treatment storage at 4 °C for 21 d. ADCP treatment did not alter the pH, color, total volatile basic nitrogen, lipid oxidation, and tenderness of CBCs during storage at 4 and 24 °C, and did not change the sensory properties of CBCs following a 3 d storage period at 4 °C (p > 0.05). Thus, ADCP treatment has the potential to be applied as a method to increase the microbiological safety of packaged ready-to-eat chicken products, leading to overall toxicological safety.
Collapse
|
49
|
Roh SH, Oh YJ, Lee SY, Kang JH, Min SC. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Song Y, Fan X. Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella Typhimurium and Listeria innocua on grape tomatoes, apples, cantaloupe and romaine lettuce. Food Microbiol 2020; 87:103391. [PMID: 31948632 DOI: 10.1016/j.fm.2019.103391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
In the present study, we investigated whether cold plasma activation affected the efficacy of aerosolized hydrogen peroxide against S. Typhimurium and L. innocua. Stem scars and smooth surfaces of grape tomatoes, surfaces of Granny Smith apples and Romaine lettuce (both midrib and upper leaves) and cantaloupe rinds were inoculated with two-strain cocktails of S. Typhimurium and 3-strain cocktails of L. innocua. The inoculated samples were treated with 7.8% aerosolized H2O2 with and without cold plasma for various times. For all fresh produce items and surfaces, cold plasma significantly (P < 0.05) improved the efficacy of aerosolized H2O2 against Salmonella and L. innocua. Without cold plasma activation, H2O2 aerosols only reduced populations of Salmonella by 1.54-3.17 log CFU/piece while H2O2 with cold plasma achieved 2.35-5.50 log CFU/piece reductions of Salmonella. L. innocua was more sensitive to the cold plasma-activated H2O2 than Salmonella. Cold plasma activated H2O2 aerosols reduced Listeria populations by more than 5 log CFU/piece on all types and surfaces of fresh produce except for the tomato stem scar area. Without cold plasma, the reductions by H2O2 were only 1.35-3.77 log CFU/piece. Overall, our results demonstrated that cold plasma activation significantly enhanced the efficacy of H2O2 mist against bacteria on fresh produce.
Collapse
Affiliation(s)
- Yuanyuan Song
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| |
Collapse
|