1
|
Maojin T, Zheng Z, Ying H, Yanyan H, Liang Z. Bacterial Spore Inactivation Technology in Solid Foods: A Review. J Food Prot 2025; 88:100479. [PMID: 40081811 DOI: 10.1016/j.jfp.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In response to physiological stress, some bacterial strains have the ability to produce spores that are able to resist conventional food heating processes and even more extreme environmental factors. Dormant spores can germinate and return to their vegetative state during food preservation, leading to food spoilage, or safety issues that pose a risk to human health. Thus, spore inactivation technology is gaining more and more attention. Several techniques have been used in liquid foods to efficiently inactivate spores, including novel thermal and nonthermal treatments. However, solid foods have unique characteristics that make it challenging to achieve the same spore inactivation effect as in previous liquid food studies. Therefore, exploring the effectiveness of spore inactivation techniques in solid foods is of great significance, and clarifying the mechanism for deactivating spore through related techniques is informative in enhancing the effectiveness of spore deactivation in solid foods. This article reviews the practical applications of spore inactivation technology in solid foods.
Collapse
Affiliation(s)
- Tian Maojin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhou Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Hu Ying
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Han Yanyan
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Zhou Liang
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China.
| |
Collapse
|
2
|
Heckler C, do Prado-Silva L, Santana MFSE, Sant'Ana AS. Foodborne spore-forming bacteria: Challenges and opportunities for their control through the food production chain. ADVANCES IN FOOD AND NUTRITION RESEARCH 2025; 113:563-635. [PMID: 40023568 DOI: 10.1016/bs.afnr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Foodborne spore-forming bacteria represent a significant challenge within the food production chain due to their widespread occurrence and resistance to various processing methods. In addition to their role in food spoilage, these bacteria exhibit pathogenic properties, posing risks to public health. A comprehensive understanding of the impact of unit operations along the food production continuum, from farm or field to fork, is essential for ensuring both the safety and quality of food products. This chapter explores the factors influencing the growth, inactivation, and persistence of these bacteria, as well as the challenges and opportunities for their control. The discussion encompasses preventive measures, control strategies at the farm and field levels, and processing operations, including both thermal and non-thermal methods. Post-processing controls, such as storage and distribution practices, are also addressed. Furthermore, consumer behavior, education, and lessons learned from past outbreaks and product recalls contribute to a broader understanding of how to manage spore-forming bacteria within the food production chain. By assessing and quantifying the effects of each processing step, it becomes possible to implement effective control measures, thereby ensuring microbiological safety and enhancing the quality of food products.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Leonardo do Prado-Silva
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Li Y, Huang X, Yang Y, Mulati A, Hong J, Wang J. The Effects of Cold-Plasma Technology on the Quality Properties of Fresh-Cut Produce: A Review. Foods 2025; 14:149. [PMID: 39856816 PMCID: PMC11764547 DOI: 10.3390/foods14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
With improving economic conditions, consumer demand for fresh-cut produce is rising. The development of the fresh-cut industry has been hindered by pathogenic contamination and quality deterioration. Scientific communities have developed novel preservation technologies for fresh-cut produce. As an innovative non-thermal processing method, cold plasma effectively preserves the nutritional value and inactivates pathogens in fresh-cut produce. This review delineates the principles of cold-plasma generation and concludes with the primary factors influencing its efficacy. These factors include the specifications and parameters of the equipment utilized, the properties of the conductive gas utilized, the method of treatment, and the intrinsic properties of a sample subjected to treatment. Furthermore, this review delineates various scenarios for cold-plasma applications. This review focuses on its effects on enzymatic activities (including peroxidase, polyphenol oxidase, and pectin methylesterase), pathogenic microorganisms, and nutritional value. This review concludes with the potential application of cold-plasma technology in the processing of fresh-cut products. This study proposes advancing plasma technology in fresh-cut produce processing by (1) optimizing cold-plasma parameters for diverse fruit and vegetable varieties and (2) scaling up to facilitate industrial application.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiayi Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.L.); (X.H.); (Y.Y.); (A.M.); (J.H.)
| |
Collapse
|
4
|
Leishangthem C, Mujumdar AS, Xiao HW, Sutar PP. Intrinsic and extrinsic factors influencing Bacillus cereus spore inactivation in spices and herbs: Thermal and non-thermal sterilization approaches. Compr Rev Food Sci Food Saf 2025; 24:e70056. [PMID: 39676487 DOI: 10.1111/1541-4337.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 12/17/2024]
Abstract
The presence of Bacillus cereus in spices and herbs has posed a detrimental effect on food safety. The absence of thorough testing, comprehensive reporting, and vigilant surveillance of the illness has resulted in a significant underestimation of the true prevalence of foodborne illness caused by B. cereus. B. cereus spores are resistant to thermal processing (superheated steam, microwave, radiofrequency, infrared) that remains a significant challenge for the spice industry. Non-thermal techniques, such as cold plasma, gamma irradiation, and electron beam irradiation, have gained significant interest for their ability to inactivate B. cereus spores. However, these technologies are constrained by inherent limitations. The composition of B. cereus spores, including dipicolinic acid, divalent cations, and low water content in the core, contributes significantly to their resistance properties. This review delves into the different factors that impact B. cereus spores in spices and herbs during sterilization, considering both intrinsic and extrinsic factors. This review also discussed the various techniques for inactivating B. cereus spores from spices and highlighted their effectiveness and constraints. It also provides valuable insights for enhancing sterilization strategies in the spices and herbs industry.
Collapse
Affiliation(s)
- Chinglen Leishangthem
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - A S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - P P Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
5
|
Ding H, Wang T, Zhang Y, Guo C, Shi K, Kurtovic I, Yuan Y, Yue T. Efficacy, kinetics, inactivation mechanism and application of cold plasma in inactivating Alicyclobacillus acidoterrestris spores. Int J Food Microbiol 2024; 423:110830. [PMID: 39047618 DOI: 10.1016/j.ijfoodmicro.2024.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
As spores of Alicyclobacillus acidoterrestris can survive traditional pasteurization, this organism has been suggested as a target bacterium in the fruit juice industry. This study aimed to investigate the inactivation effect of cold plasma on A. acidoterrestris spores and the mechanism behind the inactivation. The inactivation effect was detected by the plate count method and described by kinetic models. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), the detection of dipicolinic acid (DPA) release and heat resistance detection, the detection and scavenging experiment of reactive species, and cryo-scanning electron microscopy were used to explore the mechanism of cold plasma inactivation of A. acidoterrestris. The results showed that cold plasma can effectively inactivate A. acidoterrestris spores in saline with a 3.0 ± 0.3 and 4.4 ± 0.8 log reduction in CFU/mL, for 9 and 18 min, respectively. The higher the voltage and the longer the treatment time, the stronger the overall inactivation effect. However, a lower gas flow rate may increase the probability of spore contact with reactive species, resulting in better inactivation results. The biphasic model fits the survival curves better than the Weibull model. SEM and TEM revealed that cold plasma treatment can cause varying degrees of damage to the morphology and structure of A. acidoterrestris spores, with at least 50 % sustaining severe morphological and structural damage. The DPA release and heat resistance detection showed that A. acidoterrestris spores did not germinate but died directly during the cold plasma treatment. 1O2 plays the most important role in the inactivation, while O3, H2O2 and NO3- may also be responsible for inactivation. Cold plasma treatment for 1 min reduced A. acidoterrestris spores in apple juice by 0.4 ± 0.0 log, comparable to a 12-min heat treatment at 95 °C. However, as the treatment time increased, the survival curve exhibited a significant tailing phenomenon, which was most likely caused by the various compounds in apple juice that can react with reactive species and exert a physical shielding effect on spores. Higher input power and higher gas flow rate resulted in more complete inactivation of A. acidoterrestris spores in apple juice. What's more, the high inactivation efficiency in saline indicates the cold plasma device provides a promising alternative for controlling A. acidoterrestris spores during apple washing. Overall, our study provides adequate data support and a theoretical basis for using cold plasma to inactivate A. acidoterrestris spores in the food industry.
Collapse
Affiliation(s)
- Hao Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Kaiyu Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Ivan Kurtovic
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
6
|
Zhang H, Zhang C, Han Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12618-w. [PMID: 37421472 PMCID: PMC10390405 DOI: 10.1007/s00253-023-12618-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/10/2023]
Abstract
The grim situation of bacterial infection has undoubtedly become a major threat to human health. In the context of frequent use of antibiotics, a new bactericidal method is urgently needed to fight against drug-resistant bacteria caused by non-standard use of antibiotics. Cold atmospheric plasma (CAP) is composed of a variety of bactericidal species, which has excellent bactericidal effect on microbes. However, the mechanism of interaction between CAP and bacteria is not completely clear. In this paper, we summarize the mechanisms of bacterial killing by CAP in a systematic manner, discuss the responses of bacteria to CAP treatment that are considered to be related to tolerance and their underlying mechanisms, review the recent advances in bactericidal applications of CAP finally. This review indicates that CAP inhibition and tolerance of survival bacteria are a set of closely related mechanisms and suggests that there might be other mechanisms of tolerance to survival bacteria that had not been discovered yet. In conclusion, this review shows that CAP has complex and diverse bactericidal mechanisms, and has excellent bactericidal effect on bacteria at appropriate doses. KEY POINTS: • The bactericidal mechanism of CAP is complex and diverse. • There are few resistant bacteria but tolerant bacteria during CAP treatment. • There is excellent germicidal effect when CAP in combination with other disinfectants.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chengxi Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qi Han
- Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Sun Y, Wang Y, Zhao Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Inactivation mechanisms of atmospheric pressure plasma jet on Bacillus cereus spores and its application on low-water activity foods. Food Res Int 2023; 169:112867. [PMID: 37254316 DOI: 10.1016/j.foodres.2023.112867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Bacillus cereus spore is one of the most easily contaminated bacterial spores in low-water activity foods such as black pepper. Atmospheric-pressure plasma jet (APPJ) has emerged as an emerging and promising method for microbial inactivation in food processing. This study aimed to investigate the efficacy of APPJ in inactivating spores under various treatment parameters and to examine the resulting alterations in spore structures and internal membrane properties. Meanwhile, the practical application of APPJ for spore inactivation in black pepper was also evaluated. The results indicated that air-APPJ had superior spore inactivation capability compared to N2 and O2-APPJ. After 20 min of APPJ treatment (50 L/min, 800 W, and 10 cm), the reduction in spore count (>2 log CFU/g) was significantly greater than that achieved by heat treatment (80℃). The damage of inner membranes was considered as the major reason of the dried spore inactivation by APPJ treatment. Moreover, it achieved a reduction in spore count of > 1 log CFU/g on inoculated black pepper without significantly affecting its color and flavor. Although the antioxidant activity of black pepper was slightly reduced, the overall quality of the product was not considerably affected by plasma treatment. This study concluded that APPJ is an effective technique for spore inactivation, offering promising potential for application in the decontamination of low-water activity foods.
Collapse
Affiliation(s)
- Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
8
|
In-package cold plasma treatment for microbial inactivation in plastic-pouch packaged steamed rice cakes. Int J Food Microbiol 2023; 389:110108. [PMID: 36736172 DOI: 10.1016/j.ijfoodmicro.2023.110108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In-package atmospheric cold plasma (ICP) treatment was investigated as a method to inactivate microorganisms in Korean steamed rice cakes (SRCs) packaged in plastic pouches. The effect against Escherichia coli O157:H7 increased with increasing ICP treatment power and time and using nylon-containing pouches. Moreover, E. coli O157:H7 growth was effectively inhibited at 4 and 25 °C when SRCs were in a pouch filled with an O2-CO2 (70 % and 30 %) gas. Under optimal treatment power (30 W), treatment time (4 min), and headspace-to-SRC volume ratio (7:1) conditions, ICP effectively inactivated E. coli O157:H7, Bacillus cereus spores, Penicillium chrysogenum, and indigenous aerobic bacteria, as well as yeast and molds in SRCs packaged with air in the nylon/low density polyethylene pouch by 2.2 ± 0.2 log CFU/g, 1.4 ± 0.2 log spores/g, 2.2 ± 0.3 log spores/g, 1.1 ± 0.2 log CFU/g, and 1.0 ± 0.1 log CFU/g, respectively. Furthermore, post-treatment storage was effective in preventing the growth of E. coli O157:H7 in SRCs at 4 °C and 25 °C when the pouch was filled with N2-CO2 (50 % and 50 %) or O2-CO2 (70 % and 30 %). Collectively, these findings indicate that ICP treatment effectively decontaminates SRCs and represents a potential non-thermal microbial decontamination technology for SRCs in pouch packaging.
Collapse
|
9
|
Guan P, Chang Y, Li S, Wang X, Dong Z, Zhou W, Zheng Q, Huang Z, Suo B. Transcriptome analysis reveals the molecular mechanism of cinnamaldehyde against Bacillus cereus spores in ready-to-eat beef. Food Res Int 2023; 163:112185. [PMID: 36596126 DOI: 10.1016/j.foodres.2022.112185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the antibacterial effect and mechanism of cinnamaldehyde on Bacillus cereus spores in ready-to-eat beef. The colour difference and texture of the ready-to-eat beef supplemented with cinnamaldehyde did not differ greatly from the colour and texture of the blank beef. However, cinnamaldehyde has an effective antibacterial effect on the total number of bacterial colonies and B. cereus spores in ready-to-eat beef. Transmission electron microscopy (TEM) analysis revealed that the cell membrane of B. cereus was disrupted by cinnamaldehyde, leading to leakage of intracellular components. Transcriptome sequencing (RNA-seq) indicated that the B. cereus spore resistance regulation system (sigB, sigW, rsbW, rsbV, yfkM and yflT) and phosphoenolpyruvate phosphotransferase system (PTS) (ptsH, ptsI and ptsG) respond positively to cinnamaldehyde in an adverse environment. Intracellular disorders due to damage to the cell membrane involve some transporters (copA, opuBA and opuD) and some oxidative stress systems (ywrO, scdA and katE) in the regulation of the body. However, downregulation of K+ transport channels (kdpD and kdpB), osmotic pressure regulation (opuE) and some oxidative stress (norR and srrA)-related genes may accelerate spore apoptosis. In addition, cinnamaldehyde also effectively inhibits the spore germination-related genes (smc, mreB and gerE). This study provides new insights into the molecular mechanism of the antibacterial effect of cinnamaldehyde on B. cereus spores in ready-to-eat beef.
Collapse
Affiliation(s)
- Peng Guan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuting Chang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Zijie Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weitao Zhou
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qi Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhongmin Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
10
|
Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. FOOD ENGINEERING REVIEWS 2022. [PMCID: PMC9226271 DOI: 10.1007/s12393-022-09316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractChanging consumers’ taste for chemical and thermally processed food and preference for perceived healthier minimally processed alternatives is a challenge to food industry. At present, several technologies have found usefulness as choice methods for ensuring that processed food remains unaltered while guaranteeing maximum safety and protection of consumers. However, the effectiveness of most green technology is limited due to the formation of resistant spores by certain foodborne microorganisms and the production of toxins. Cold plasma, a recent technology, has shown commendable superiority at both spore inactivation and enzymes and toxin deactivation. However, the exact mechanism behind the efficiency of cold plasma has remained unclear. In order to further optimize and apply cold plasma treatment in food processing, it is crucial to understand these mechanisms and possible factors that might limit or enhance their effectiveness and outcomes. As a novel non-thermal technology, cold plasma has emerged as a means to ensure the microbiological safety of food. Furthermore, this review presents the different design configurations for cold plasma applications, analysis the mechanisms of microbial spore and biofilm inactivation, and examines the impact of cold plasma on food compositional, organoleptic, and nutritional quality.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Kechrist Obileke
- Renewable and Sustainable Energy, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD UK
| |
Collapse
|
11
|
Darvish H, Ramezan Y, Khani MR, Kamkari A. Effect of low-pressure cold plasma processing on decontamination and quality attributes of Saffron ( Crocus sativus L.). Food Sci Nutr 2022; 10:2082-2090. [PMID: 35702300 PMCID: PMC9179142 DOI: 10.1002/fsn3.2824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the microbial decontamination of saffron using the low-pressure cold plasma (LPCP) technology. Therefore, other quality characteristics of saffron that create the color, taste, and aroma have also been studied. The highest microbial log reduction was observed at 110 W for 30 min. Total viable count (TVC), coliforms, molds, and yeasts log reduction were equal to 3.52, 4.62, 2.38, and 4.12 log CFU (colony-forming units)/g, respectively. The lowest decimal reduction times (D-values) were observed at 110 W, which were 9.01, 3.29, 4.17, and 8.93 min for TVC, coliforms, molds, and yeasts. LPCP treatment caused a significant increase in the product's color parameters (L*, a*, b*, ΔE, chroma, and hue angle). The results indicated that the LPCP darkened the treated stigma's color. Also, it reduced picrocrocin, safranal, and crocin in treated samples compared to the untreated control sample (p < .05). However, after examining these metabolites and comparing them with saffron-related ISO standards, all treated and control samples were good.
Collapse
Affiliation(s)
- Haleh Darvish
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Yousef Ramezan
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research CenterTehran Medical SciencesIslamic Azad UniversityTehranIran
| | | | - Amir Kamkari
- Department of Food EngineeringFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
12
|
Sriraksha MS, Ayenampudi SB, Noor M, Raghavendra S, Chakka AK. Cold plasma technology: An insight on its disinfection efficiency of various food systems. FOOD SCI TECHNOL INT 2022; 29:428-441. [PMID: 35345915 DOI: 10.1177/10820132221089169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cold plasma technology is considered as one of the novel potential non-thermal techniques for food disinfection. The acceptability of any food product depends upon its physicochemical properties and shelf life. Recent studies have confirmed that plasma can effectively reduce the pathogenic microbes in various food systems. Further, there are reports that cold plasma showed minimal or no effect on the physicochemical and sensory properties of the foods owing to its low-temperature operation. The present review explores the recent reports on cold plasma technology emphasizing its disinfection efficacy on different food categories. Various researchers have demonstrated that plasma successfully reduced the microorganisms on cereals, milk, meat, fish and spices. Therefore, based on the current research, it can be suggested that cold plasma is an effective disinfectant technology for the inactivation of pathogenic microorganisms, and its non-thermal and environmentally friendly nature is an added advantage over traditional processing technologies.
Collapse
Affiliation(s)
- M S Sriraksha
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| | - Surendra Babu Ayenampudi
- Hindustan Institute of Science and Technology (Deemed to be university), Chennai, Tamil Nadu, India
| | - Mizna Noor
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| | - S.N. Raghavendra
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| | - Ashok Kumar Chakka
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| |
Collapse
|
13
|
Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
15
|
Farag MA, Mesak MA, Saied DB, Ezzelarab NM. Uncovering the dormant food hazards, a review of foodborne microbial spores' detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Lee SY, Park HH, Min SC. Pulsed light plasma treatment for the inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in red pepper flakes. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
18
|
|
19
|
Dry Sterilization of Paprika (Capsicum annuum L.) by Short Time-Intensive Microwave-Infrared Radiation: Establishment of Process Using Glass Transition, Sorption, and Quality Degradation Kinetic Parameters. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, Mathew B, Abdel-Daim MM, Aleya L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135624. [PMID: 31784171 DOI: 10.1016/j.scitotenv.2019.135624] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Neurological disorders represent a great challenge and are the leading cause of death and disability globally. Although numerous complicated mechanisms are involved in the progressions of chronic and acute neurodegenerative disorders, most of the diseases share mutual pathogenic features such as oxidative stress, mitochondrial dysfunction, neuroinflammation, protein misfolding, excitotoxicity, and neuronal damage, all of these are the common targets of nuclear factor erythroid 2 related factor 2 (Nrf2) signaling cascade. No cure has yet been discovered to tackle these disorders, so, intervention approaches targeting phytochemicals have been recommended as an alternative form of treatment. Sulforaphane is a sulfur-rich dietary phytochemical which has several activities such as antioxidant, anti-inflammatory, and anti-tumor via multiple targets and various mechanisms. Given its numerous actions, sulforaphane has drawn considerable attention for neurological disorders in recent years. Nrf2 is one of the most crucial targets of sulforaphane which has potential in regulating the series of cytoprotective enzyme expressions that have neuroprotective, antioxidative, and detoxification actions. Neurological disorders are auspicious candidates for Nrf2-targeted treatment strategy. Sulforaphane protects various neurological disorders by regulating the Nrf2 pathway. In this article, we recapitulate current studies of sulforaphane-mediated Nrf2 activation in the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
21
|
Synergistic Effects of Mild Heating and Dielectric Barrier Discharge Plasma on the Reduction of Bacillus Cereus in Red Pepper Powder. Foods 2020; 9:foods9020171. [PMID: 32053978 PMCID: PMC7073615 DOI: 10.3390/foods9020171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
The synergistic efficacy of a combined treatment of mild heat (MH) and dielectric barrier discharge (DBD) plasma in Bacillus cereus-contaminated red pepper powder was tested. A cocktail of three strains of B. cereus (NCCP 10623, NCCP 14579, ATCC 11778) was inoculated onto red pepper powder and then treated with MH (60 °C for 5-20 min) and DBD plasma (5-20 min). Treatment with MH and DBD plasma alone for 5-20 min resulted in reductions of 0.23-1.43 and 0.12-0.96 log CFU/g, respectively. Combined treatment with MH and DBD plasma was the most effective at reducing B. cereus counts on red pepper powder, and resulted in log-reductions of ≥ 6.0 log CFU/g. The largest synergistic values (4.24-4.42 log) against B. cereus in red pepper powder were obtained by the combination of 20 min MH and 5-15 min DBD plasma. The values of Hunter color ''L'', ''a'', and ''b'', were not significantly different from those of the untreated sample and that with the combination of MH (60 °C for 5-20 min) and DBD plasma (5-20 min). Also, no significant (p > 0.05) differences in pH values between samples were observed. Therefore, these results suggest that the combination of MH treatment and DBD plasma can be potentially utilized in the food industry to effectively inactivate B. cereus without incurring quality deterioration of red pepper powder.
Collapse
|
22
|
Wang W, Li Z, Zhang M, Sun C. Preparation of 3D network CNTs-modified nickel foam with enhanced microwave absorptivity and application potential in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:135006. [PMID: 31726351 DOI: 10.1016/j.scitotenv.2019.135006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) modified nickel foams (MWCNTs-NF) were developed with an electrophoretic deposition methodology for microwave (MW) assisted catalysis and processing enhancement. A nickel foam (NF) was selected to serve the dual purpose both as the MW absorbing catalytic materials and the matrix for MWCNTs loading in order to maximize the recyclability of the catalysts. The effects of electrophoretic voltage and concentration of electrophoretic fluid on the morphology and deposition characteristics of MWCNTs on the NF matrix were investigated. It was found that the MWCNTs-NF composite material resulted in strong enhancement of MW absorptivity with synergistic heat-generating effects that were not observed when MWCNTs or NF was exposed to MW alone. The combination of NF and MWCNTs brought a catalytic total organic carbon removal efficiency of 97% in wastewater treatment, while that using bare MWCNTs and NF were only 65.2% and 79.3%, respectively. The coupling of NF with MWCNTs led to the formation of additional MW-absorbing channels and focal sites with strong MW absorptivity, which in turn gave rise to the synergistic MW heating effects. This research highlights the great prospect of the MW-assisted reaction enhancement using the MWCNTs-NF composite material as the catalyst in wastewater treatment and other similar engineering applications.
Collapse
Affiliation(s)
- Wenlong Wang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong 250061, China
| | - Zhe Li
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong 250061, China
| | - Meng Zhang
- National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, Shandong 250061, China.
| | - Chenggong Sun
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
23
|
Kim SY, Lee SY, Min SC. Improvement of the Antioxidant Activity, Water Solubility, and Dispersion Stability of Prickly Pear Cactus Fruit Extracts Using Argon Cold Plasma Treatment. J Food Sci 2019; 84:2876-2882. [PMID: 31513725 DOI: 10.1111/1750-3841.14791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 11/30/2022]
Abstract
Microwave-powered cold plasma (CP) treatment was evaluated as a means to increase the antioxidant activity, water solubility, and dispersion stability of prickly pear cactus fruit (Opuntia ficus-indica (L.) Mill.) extract. The extract (2 g) was treated at various CP generation powers and treatment times at 25 °C to 28 °C. The antioxidant activity of the prickly pear cactus fruit extract increased by 1.8% and 1.7% after CP treatment at 750 W for 40 min and 856 W for 36 min, respectively. Both the water solubility and dispersion stability (delta backscattering) of the extract increased by 2.4% and 0.1%, respectively, following CP treatment at 644 W for 36 min. These results suggest the potential of CP treatment to increase the applicability of the prickly pear cactus fruit extract and possibly other insoluble natural antioxidant compounds in foods by improving their antioxidant activities and solubility in water. PRACTICAL APPLICATION: Prickly pear cactus fruit is a functional food with a high antioxidant concentration. This study demonstrated that cold plasma treatment improved the water solubility and dispersion stability of prickly pear cactus fruit extract without altering or improving its antioxidant activity. The obtained results suggested the potential of applying cold plasma technology to improve the applicability of the extract, which is difficult to solubilize in food systems, to various processed foods.
Collapse
Affiliation(s)
- Su Yeon Kim
- Dept. of Food Science and Technology, Seoul Women's Univ, 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| | - Seung Young Lee
- Dept. of Food Science and Technology, Seoul Women's Univ, 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| | - Sea C Min
- Dept. of Food Science and Technology, Seoul Women's Univ, 621 Hwarangno, Nowon-gu, Seoul, 01797, Republic of Korea
| |
Collapse
|
24
|
Roh SH, Lee SY, Park HH, Lee ES, Min SC. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. Int J Food Microbiol 2019; 293:24-33. [PMID: 30634068 DOI: 10.1016/j.ijfoodmicro.2018.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/10/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
The effects of surface coating, microbial loading, surface-to-volume ratio, sample stacking, mixing of samples with romaine lettuce, and shaking of the samples on the inactivation of Salmonella contaminating boiled chicken breast (BCB) cubes using in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment at 38.7 kV were investigated. Whey protein coating increased the ADCP treatment efficacy in inactivating Salmonella on BCB cubes; the D-value increased from 0.2 to 1.3 min when the initial inoculum concentration increased from 3.8 to 5.7 log CFU/sample. ADCP decontaminated stacked BCB samples uniformly, and shaking during the treatment increased the inactivation rate. The concentrations of chicken protein isolate, water, and soybean oil in a chicken breast model food that resulted in the highest Salmonella reduction (1.7 log CFU/sample) were 20.5%, 68.9%, and 10.6%, respectively. ADCP treatment did not affect the color and tenderness of the model food, irrespective of its composition. The present study indicated that ADCP is a feasible technology to decontaminate prepackaged ready-to-eat meat cube products.
Collapse
Affiliation(s)
- Si Hyeon Roh
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Seung Young Lee
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Hyeon Hwa Park
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Eun Song Lee
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
25
|
Kim JE, Oh YJ, Song AY, Min SC. Preservation of red pepper flakes using microwave-combined cold plasma treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1577-1585. [PMID: 30146707 DOI: 10.1002/jsfa.9336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Red pepper flakes are often contaminated with various microorganisms; however, any technologies aiming to decontaminate the flakes should also maintain their quality properties. This study investigated the effect of microwave-combined cold plasma treatment (MCPT) at different microwave power densities on microbial inactivation and preservation of red pepper flakes. Red pepper flake samples inoculated with spores of Bacillus cereus or Aspergillus flavus and without inoculation were subjected to MCPT at 900 W for 20 min at either low microwave power density (LMCPT, 0.17 W m-2 ) or high microwave power density (HMCPT, 0.25 W m-2 ). RESULTS The numbers of B. cereus and A. flavus spores on red pepper flakes after LMCPT and HMCPT were initially reduced by 0.7 ± 0.1 and 1.4 ± 0.3 log spores cm-2 and by 1.5 ± 0.3 and 1.5 ± 0.2 log spores cm-2 respectively and remained constant for 150 days at 25 °C. Immediately after HMCPT, the concentrations of capsaicin and ascorbic acid in the flakes were significantly lower than in untreated samples; however, no difference in concentration was detected during storage. Neither LMCPT nor HMCPT affected the antioxidant activity or color of the flakes during storage. LMCPT also did not affect the sensory properties and the concentrations of capsaicin and dihydrocapsaicin of the flakes, indicating its suitability in preserving their quality properties. CONCLUSION MCPT may provide an effective non-thermal treatment for food preservation which can improve the microbial safety and stability of red pepper flakes while maintaining intact their qualitative properties. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Yeong Ji Oh
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Ah Young Song
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Liao X, Muhammad AI, Chen S, Hu Y, Ye X, Liu D, Ding T. Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr 2018; 59:2562-2572. [PMID: 29621402 DOI: 10.1080/10408398.2018.1460797] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Fuli Institute of Food Science, Zhejiang University , Hangzhou , China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University Kano , Kano , Nigeria
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Yaqin Hu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Fuli Institute of Food Science, Zhejiang University , Hangzhou , China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Fuli Institute of Food Science, Zhejiang University , Hangzhou , China
| |
Collapse
|
27
|
AŞKIN UZEL R. Preservation of sweet red pepper paste quality: effect of packing material, ozone gas and protective agent use. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.13917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|