1
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Yamaki S, Yamazaki K. Biological characterization and genomic analysis of a novel bacteriophage, MopsHU1, infecting Morganella psychrotolerans. Arch Virol 2024; 169:182. [PMID: 39153099 DOI: 10.1007/s00705-024-06112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Morganella psychrotolerans is a histamine-producing bacterium that causes histamine poisoning. In this study, we isolated and characterized a novel phage, MopsHU1, that infects M. psychrotolerans. MopsHU1 is a podovirus with a limited host spectrum. Genomic analysis showed that MopsHU1 belongs to the family Autographiviridae, subfamily Studiervirinae, and genus Kayfunavirus. Comparative analysis revealed that the MopsHU1 genome is similar to those of Citrobacter phage SH3 and Cronobacter phage Dev2. Moreover, the Escherichia coli phage K1F genome is also similar, except for its tailspike gene sequence. These results expand our understanding of the Kayfunavirus phages that infect Morganella spp. Note: The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank database under the accession number LC799501.
Collapse
Affiliation(s)
- Shogo Yamaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, 041-8611, Japan.
| | - Koji Yamazaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, 041-8611, Japan
| |
Collapse
|
3
|
Wang D, Zhao Y, Chen S, Wei Y, Yang X, Li C, Wang Y. Elucidating the potential of chlorogenic acid for controlling Morganella psychrotolerans growth and histamine formation. J Appl Microbiol 2024; 135:lxad308. [PMID: 38140945 DOI: 10.1093/jambio/lxad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
AIM To investigate the inhibitory impact of chlorogenic acid (CGA) on the growth of Morganella psychrotolerans and its ability to form histamine. METHODS AND RESULTS The antimicrobial effect of CGA on M. psychrotolerans was evaluated using the minimum inhibitory concentration (MIC) method, revealing an MIC value of 10 mg ml-1. The alkaline phosphatase (AKP) activity, cell membrane potential, and scanning electron microscopy images revealed that CGA treatment disrupted cell structure and cell membrane. Moreover, CGA treatment led to a dose-dependent decrease in crude histidine decarboxylase (HDC) activity and gene expression of histidine decarboxylase (hdc). Molecular docking analysis demonstrated that CGA interacted with HDC through hydrogen bonds. Furthermore, in situ investigation confirmed the efficacy of CGA in controlling the growth of M. psychrotolerans and significantly reducing histamine formation in raw tuna. CONCLUSION CGA had good activity in controlling the growth of M. psychrotolerans and histamine formation.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
4
|
Yang M, Luo Y, Sharma A, Jia Z, Wang S, Wang D, Wang S, Lin S, Perreault W, Purohit S, Gu T, Dillow H, Liu X, Yu H, Zhang B. Nondestructive and multiplex differentiation of pathogenic microorganisms from spoilage microflora on seafood using paper chromogenic array and neural network. Food Res Int 2022; 162:112052. [DOI: 10.1016/j.foodres.2022.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
|
5
|
Wang D, Li C, Pan C, Wang Y, Xiang H, Feng Y, Yang X, Chen S, Zhao Y, Wu Y, Li L, Kawai Y, Yamazaki K, Yamaki S. Antimicrobial activity and mechanism of action of oregano essential oil against Morganella psychrotolerans and potential application in tuna. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Yamaki S, Yamazaki K, Kawai Y. Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. Int J Food Microbiol 2022; 372:109680. [DOI: 10.1016/j.ijfoodmicro.2022.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
7
|
Kim SG, Lee SB, Giri SS, Kim HJ, Kim SW, Kwon J, Park J, Roh E, Park SC. Characterization of Novel Erwinia amylovora Jumbo Bacteriophages from Eneladusvirus Genus. Viruses 2020; 12:E1373. [PMID: 33266226 PMCID: PMC7760394 DOI: 10.3390/v12121373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Jumbo phages, which have a genome size of more than 200 kb, have recently been reported for the first time. However, limited information is available regarding their characteristics because few jumbo phages have been isolated. Therefore, in this study, we aimed to isolate and characterize other jumbo phages. We performed comparative genomic analysis of three Erwinia phages (pEa_SNUABM_12, pEa_SNUABM_47, and pEa_SNUABM_50), each of which had a genome size of approximately 360 kb (32.5% GC content). These phages were predicted to harbor 546, 540, and 540 open reading frames with 32, 34, and 35 tRNAs, respectively. Almost all of the genes in these phages could not be functionally annotated but showed high sequence similarity with genes encoded in Serratia phage BF, a member of Eneladusvirus. The detailed comparative and phylogenetic analyses presented in this study contribute to our understanding of the diversity and evolution of Erwinia phage and the genus Eneladusvirus.
Collapse
Affiliation(s)
- Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| | - Jungkum Park
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Korea; (J.P.); (E.R.)
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Korea; (J.P.); (E.R.)
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (S.G.K.); (S.B.L.); (S.S.G.); (H.J.K.); (S.W.K.); (J.K.)
| |
Collapse
|