1
|
Xiao N, Zhang Q, Xu H, Zheng C, Yin Y, Liu S, Shi W. Effect of Lactobacillus plantarum and flavourzyme on protein degradation and flavor development in grass carp during fermentation. Food Chem X 2024; 22:101439. [PMID: 38756472 PMCID: PMC11096861 DOI: 10.1016/j.fochx.2024.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/07/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
This study examined the effect of Flavourzyme and Lactobacillus plantarum (L. plantarum) on protein degradation and flavor development during grass carp fermentation. The control groups comprised natural fermentation and fermentation with L. plantarum. Compared with the two control samples, those exposed to combined Flavourzyme and L. plantarum fermentation exhibited lower moisture content and enhanced protein hydrolysis, which accelerated the production of water-soluble taste substances (trichloroacetic acid-soluble peptides and free amino acids). The electronic tongue and electronic nose results indicated that the grass carp subjected to combined fermentation way displayed a more intense umami taste and aroma. Moreover, the sensory evaluation results confirmed that the combined fermentation method significantly improved the taste and odor attributes of fermented grass carp. In conclusion, combined fermentation with Flavourzyme and L. plantarum may effectively reduce fermentation time and enhance the flavor of fermented grass carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huiya Xu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changliang Zheng
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Kim SH, Roy PK, Park SY. Synergistic Effects of Combined Flavourzyme and Floating Electrode-Dielectric Barrier Discharge Plasma on Reduction of Escherichia coli Biofilms in Squid ( Todarodes pacificus). Microorganisms 2024; 12:1188. [PMID: 38930569 PMCID: PMC11205502 DOI: 10.3390/microorganisms12061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the synergistic effect of combining flavourzyme, a natural enzyme, and floating electrode-dielectric barrier discharge (FE-DBD) plasma (1.1 kV, 43 kHz, N2 1.5 m/s) treatment, a non-thermal decontamination technology, against Escherichia coli biofilms in squid. E. coli (ATCC 35150 and ATCC 14301) biofilms were formed on the surface of squid and treated with different minimum inhibitory concentrations (MICs) of flavourzyme (1/8; 31.25 μL/mL, 1/4; 62.5 μL/mL, 2/4; 125 μL/mL, and 3/4 MIC; 250 μL/mL) and FE-DBD plasma (5, 10, 30, and 60 min). Independently, flavourzyme and FE-DBD plasma treatment decreased by 0.26-1.71 and 0.19-1.03 log CFU/cm2, respectively. The most effective synergistic combination against E. coli biofilms was observed at 3/4 MIC flavourzyme + 60 min FE-DBD plasma exposure, resulting in a reduction of 1.55 log CFU/cm2. Furthermore, the combined treatment exhibited higher efficacy in E. coli biofilm inactivation in squid compared to individual treatments. The pH values of the synergistic combinations were not significantly different from those of the untreated samples. The outcomes indicate that the combined treatment with flavourzyme and FE-DBD plasma can effectively provide effective control of E. coli biofilms without causing pH changes in squid. Therefore, our study suggests a new microbial control method for microbial safety in the seafood industry.
Collapse
Affiliation(s)
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| |
Collapse
|
3
|
Wu M, Luo Y, Yao Y, Ji W, Xia X. Multidimensional analysis of wheat original crucial endogenous enzymes driving microbial communities metabolism during high-temperature Daqu fermentation. Int J Food Microbiol 2024; 413:110589. [PMID: 38281434 DOI: 10.1016/j.ijfoodmicro.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Knowledge of the metabolism of functional enzymes is the key to accelerate the transformation and utilization of raw materials during high temperature Daqu (HTD) manufacturing. However, the metabolic contribution of raw materials-wheat is always neglected. In this research, the relationship between the metabolism of wheat and microorganisms was investigated using physicochemical and sequencing analysis method. Results showed that the process of Daqu generation was divided into three stages based on temperature. In the early stage, a positive correlation was found between Monascus, Rhizopus and glucoamylase metabolism (r > 0.8, p < 0.05). Meanwhile, the glucoamylase metabolism in wheat occupied 63.8 % of the total matrix at the day 4. In the middle to later stages, the wheat metabolism of proteases, α-amylases and lipases in gradually reached their peak. Additionally, Lactobacillus and α-amylases presented a positive correlation (r > 0.7, p < 0.05), and the α-amylases metabolism in wheat occupied 22.18 % of the total matrix during the same time period. More importantly, the changes of enzyme activity metabolic pathway in wheat and microorganism were reflected by respiratory entropy (RQ). Overall, these results guide the choice of substrate during Daqu production.
Collapse
Affiliation(s)
- Mengyao Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yongqi Yao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Ji
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, PR China.
| |
Collapse
|
4
|
Fu H, Feng Q, Qiu D, Shen X, Li C, He Y, Shang W. Improving the flavor of tilapia fish head soup by adding lipid oxidation products and cysteine. Food Chem 2023; 429:136976. [PMID: 37517226 DOI: 10.1016/j.foodchem.2023.136976] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Deodorization and umami enhancement are important challenges in promoting and consuming fish products. The aim of this study was to establish whether exogenous addition of oxidized lipids and cysteine can improve the fishy, umami and create a characteristic flavor in tilapia fish head soup. The results revealed that adding oxidized lipids and cysteine enhanced the sensory attributes of fish head soup and promoted the production of pleasant-tasting amino acids and fewer bitter amino acids in the Maillard reaction. Additionally, the combination increased the levels of well-flavored aldehydes, esters, heterocyclic compounds and less hydrocarbons in the fish head soup. Among the 13 volatile compounds screened, nine were identified as characteristic aromas of fish head soup, including nonanal, (E,E)-2,4-decadienal, 1-octen-3-ol, (E)-2-decenal, acetic acid, hexanal, heptanal, 2-octenal, and decanal. Exogenous lipid oxidation products, fatty acid oxidation, and Maillard reaction can improve the aroma and umami of tilapia fish head soup.
Collapse
Affiliation(s)
- Huixian Fu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Dan Qiu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China.
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| |
Collapse
|
5
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
6
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Xu D, Liu Y, Li X, Wang F, Huang Y, Ma X. Application and Effect of Pediococcus pentosaceus and Lactiplantibacillus plantarum as Starter Cultures on Bacterial Communities and Volatile Flavor Compounds of Zhayu, a Chinese Traditional Fermented Fish Product. Foods 2023; 12:foods12091768. [PMID: 37174306 PMCID: PMC10178518 DOI: 10.3390/foods12091768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Zhayu is a type of traditional fermented fish product in China that is made through the fermentation of salted fish with a mixture of cereals and spices. Inoculation fermentation was performed using Pediococcus pentosaceus P1, Lactiplantibacillus plantarum L1, and a mixture of two strains, which were isolated from cured fish in Hunan Province. Compared with the natural fermentation, inoculation with lactic acid bacteria (LAB) accelerated the degradation of myosin and actin in Zhayu, increased the trichloroacetic acid (TCA)-soluble peptide content by about 1.3-fold, reduced the colony counts of Enterobacteriaceae and Staphylococcus aureus by about 40%, and inhibited their lipid oxidation. In the texture profile analysis performed, higher levels of hardness and chewiness were observed in the inoculation groups. In this study, the bacterial community and volatile flavor compounds were detected through 16S high-throughput sequencing and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Inoculation with L. plantarum L1 reduced around 75% abundance of Klebsiella compared with the natural fermentation group, which was positively correlated with 2,3-Butanediol, resulting in a less pungent alcohol odor in Zhayu products. The abundances of 2-pentylfuran and 2-butyl-3-methylpyrazine were increased over threefold in the L1 group, which may give Zhayu its unique flavor and aroma.
Collapse
Affiliation(s)
- Dongmei Xu
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongle Liu
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xianghong Li
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Faxiang Wang
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yiqun Huang
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiayin Ma
- School of Food and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
8
|
Li Y, Li W, Li C, Li L, Yang D, Wang Y, Chen S, Wang D, Wu Y. Novel insight into flavor and quality formation in naturally fermented low-salt fish sauce based on microbial metabolism. Food Res Int 2023; 166:112586. [PMID: 36914319 DOI: 10.1016/j.foodres.2023.112586] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Low-salt fermentation is an effective way to shorten the fermentation time of fish sauce. In this study, the changes of microbial community, flavor, and quality during the natural fermentation of low-salt fish sauce were studied, followed by the elucidation of flavor and quality formation mechanisms based on microbial metabolism. The 16S rRNA gene high-throughput sequencing showed that both richness and evenness of microbial community were reduced during fermentation. The microbial genera, including Pseudomonas, Achromobacter, Stenotrophomonas, Rhodococcus, Brucella, and Tetragenococcus were more suitable for the fermentation environment, and obviously increased along with the fermentation. There were a total of 125 volatile substances identified by HS-SPME-GC-MS, of which 30 substances were selected as the characteristic volatile flavor substances, mainly including aldehydes, esters, and alcohols. Large amounts of free amino acids were produced in the low-salt fish sauce, especially umami and sweet amino acids, as well as high concentrations of biogenic amines. Correlation network constructed by the Pearson's correlation coefficient showed that most characteristic volatile flavor substances were significantly positively correlated with Stenotrophomonas, Achromobacter, Rhodococcus, Tetragenococcus, and Brucella. Stenotrophomonas and Tetragenococcus were significantly positively correlated with most free amino acids, especially umami and sweet amino acids. Pseudomonas and Stenotrophomonas were positively correlated with most biogenic amines, especially histamine, tyramine, putrescine, and cadaverine. Metabolism pathways suggested that the high concentrations of precursor amino acids contributed to the production of biogenic amines. This study indicates that the spoilage microorganisms and biogenic amines in the low-salt fish sauce need to be further controlled, and the strains belonging to Tetragenococcus can be isolated as potential microbial starters for the production of low-salt fish sauce.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenjing Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Daqiao Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
9
|
Zhang Z, Wu R, Xu W, Cocolin L, Liang H, Ji C, Zhang S, Chen Y, Lin X. Combined effects of lipase and Lactiplantibacillus plantarum 1-24-LJ on physicochemical property, microbial succession and volatile compounds formation in fermented fish product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2304-2312. [PMID: 36636889 DOI: 10.1002/jsfa.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Studies have shown that either the addition of starter culture or enzyme can improve fermentation in fish or other products. However, little research has been carried out on the effects of coupling starter cultures with lipase on the microbial community and product quality. Suanzhayu is a Chinese fermented fish product that mainly relies on spontaneous fermentation, resulting in an unstable flavor and quality. The present study investigated the impact of lipase and Lactiplantibacillus plantarum 1-24-LJ on the quality of Suanzhayu. RESULTS Inoculation decreased pH and 2-thiobarbituric acid reactive substances (TBARS) values, and also helped the dominance of the strain in the ecosystem, whereas lipase addition raised TBARS values and had little effect on pH, water activity (aw ) and microbiota. The addition of lipase and/or Lpb. plantarum increased the content of alcohols, aldehydes, ketones, esters and umami amino acids. The co-additions with the most significant effect and the total contents of volatile compounds (VCs) and free amino acids (FAAs) were 1801.92 g per 100 g and 21 357.05 mg per 100 g, respectively. Former-Lactobacillus was negatively correlated with pH, aw and Prevotella, but positively with VCs (ethyl ester of heptanoic acid, ethyl ester of octanoic acid) and FAAs (Tyr, Phe). Furthermore, adding Lpb. plantarum 1-24-LJ alone or in combination with lipase shortened the fermentation process. CONCLUSION The present study provides a recommended Suanzhayu process approach for improving product quality and flavor, as well as shortening fermentation time, by adding Lpb. plantarum 1-24-LJ with or without lipase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuoli Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ruohan Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
10
|
Soy-based yogurt-alternatives enriched with brewers’ spent grain flour and protein hydrolysates: Microstructural evaluation and physico-chemical properties during the storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Xiao N, Xu H, Hu Y, Zhang Y, Guo Q, Shi W. Unraveling the microbial succession during the natural fermentation of grass carp and their correlation with volatile flavor formation. Food Res Int 2023; 165:112556. [PMID: 36869460 DOI: 10.1016/j.foodres.2023.112556] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Complex microbial communities contribute significantly to the flavor formation of traditional fermented fish products. However, the relationship between microorganisms and flavor formation in traditional fermented grass carp products is still unclear. In this study, the diversity and succession of microbial communities and the variation of volatile compounds during natural fermentation of grass carp were analyzed using high-throughput sequencing of 16S rRNA and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. The core functional microorganism and key volatile compounds were identified, and their potential relationship was revealed using a correlation network model analysis. The microbial community analysis result showed that the microbial diversity during natural fermentation of grass carp decreased markedly with increasing fermentation time, and Lactiplantibacillus, Staphylococcus, and Enterobacter were the dominant genera in naturally fermented grass carp. HS-SPME-GC-MS analysis result showed that 45 volatile compounds were identified from fermented samples, among which 13 compounds (e.g., hexanal, heptanal, nonanal, decanal, 3-octanone, 3-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octen-3-ol, 1-octanol, ethyl acetate, 3-methyl-1-butanol acetate, and 2-methoxy-4-vinylphenol) were identified as the key volatile compounds. Additionally, the correlation network model analysis result revealed that Lactiplantibacillus showed significantly positive correlations with most of the key volatile compounds, making an important contribution to the formation of volatile flavor in naturally fermented grass carp. This study may lead to an understanding of the role of core functional microorganisms in the formation of volatile flavor during the natural fermentation of grass carp and provide some theoretical guidance for the industrial production of high-quality fermented grass carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huiya Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yun Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yurui Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
12
|
Xiao N, Xu H, Guo Q, Shi W. Effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation. J Food Biochem 2022; 46:e14405. [PMID: 36121197 DOI: 10.1111/jfbc.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation. The related results showed that the addition of flavourzyme reduced the moisture content and accelerated the hydrolysis of protein and generation of water-soluble flavor substances (e.g., TCA-soluble peptides, α-amino nitrogen, and free amino acids), thereby contributing to fermented grass carp products with a better taste quality. Besides, radar map results of electronic tongue and electronic nose showed that flavourzyme addition gives fermented products a more intense umami taste and odor. Meanwhile, sensory evaluation results also further confirmed that the addition of flavourzyme significantly improved the sensory attributes of fermented grass carp products, especially the taste and odor attributes. Overall, flavourzyme addition may be an effective way to shorten fermentation time and improve the flavor quality of fermented grass carp products during fermentation. PRACTICAL APPLICATIONS: In this study, to study the effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation, the related indicators include the moisture content, total nitrogen, non-protein nitrogen, protein degradation index, TCA-soluble peptides, α-amino nitrogen, free amino acids, electronic tongue, electronic nose, and sensory attributes were analyzed. This study may provide some useful information for the improvement of fermentation methods and the production of high-quality fermented grass carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huiya Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
13
|
Quality evaluation and shelf-life prediction model establishment of frozen Chinese mitten crab (Eriocheir sinensis). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Han J, Lin X, Liang H, Zhang S, Zhu B, Ji C. Improving the safety and quality of Roucha using amine-degrading lactic acid bacteria starters. Food Res Int 2022; 161:111918. [DOI: 10.1016/j.foodres.2022.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
15
|
Effect of Lactobacillus plantarum and flavourzyme on physicochemical and safety properties of grass carp during fermentation. Food Chem X 2022; 15:100392. [PMID: 36211756 PMCID: PMC9532724 DOI: 10.1016/j.fochx.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022] Open
Abstract
Fermentation decreased pH and Aw and increased ANN, TBARS, TVB-N, and BAs in grass carp flesh. Fermentation with Lactobacillus plantarum and flavourzyme could improve physicochemical properties of fermented grass carp. Fermentation of Lactobacillus plantarum and flavourzyme could contribute to fermented grass carp with safety properties.
The present study aimed to investigate the change in physicochemical and safety properties of grass carp during fermentation with flavourzyme and Lactobacillus plantarum (FLF). The natural fermentation (NF) and fermentation with Lactobacillus plantarum (LF) samples were used as control. The results showed that with increasing fermentation time, the pH and water activity (Aw) in each fermented grass carp sample gradually decreased, while the a-amino nitrogen (ANN), thiobarbituric acid reactive substance (TBARS), total volatile base nitrogen (TVB-N), biogenic amines (BAs), and harmful microbial gradually increased. Besides, compared with NF samples at each fermentation time, significantly lower pH, Aw, TBARS, TVB-N, BAs, and harmful microbial presented in LF and FLF samples. However, FLF samples have a higher AAN content than that of NF and LF samples during fermentation. Overall, the fermentation with Lactobacillus plantarum and flavourzyme could contribute to fermented grass carp products with better physicochemical and safety properties.
Collapse
|
16
|
Quality Improvement of Zhayu, a Fermented Fish Product in China: Effects of Inoculated Fermentation with Three Kinds of Lactic Acid Bacteria. Foods 2022; 11:foods11182756. [PMID: 36140884 PMCID: PMC9498116 DOI: 10.3390/foods11182756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
To investigate the effects of inoculation fermentation on the quality of Zhayu (a traditional fermented fish product in China), different amounts of L. plantarum, P. acidilactici, and P. pentosaceus were inoculated into samples, and the safety, nutritional, textural, and flavor properties of the samples were evaluated. Fermentation with lactic acid bacteria (LAB) decreased pH values and total volatile basic nitrogen content. The addition of 108~109 cfu/100 g LAB significantly increased the content of crude fat and water-soluble proteins in Zhayu. The addition of L. plantarum and P. acidilactici increased the content of soluble solids in Zhayu. Moreover, fermentation with LAB made the products tender and softer, and the samples prepared with 109 cfu/100 g LAB presented better overall qualities. Additionally, Zhayu fermented with L. plantarum and P. acidilactici showed the strongest sourness, while the samples prepared with P. pentosaceus showed the strongest umami taste, consistent with the highest contents of Asp (25.1 mg/100 g) and Glu (67.8 mg/100 g). The addition of LAB decreased the relative contents of aliphatic aldehydes, (Z)-3-hexen-1-ol, and 1-octen-3-ol, reducing the earthy and fishy notes. However, LAB enhanced the contents of terpenoids, acids, esters, and S-containing compounds, increasing the sour, pleasant, and unique odors of Zhayu.
Collapse
|
17
|
Naibaho J, Korzeniowska M, Wojdyło A, Muchdatul Ayunda H, Foste M, Yang B. Techno-functional properties of protein from protease-treated brewers’ spent grain (BSG) and investigation of antioxidant activity of extracted proteins and BSG residues. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Chodaczek G, Yang B. The roles of brewers' spent grain derivatives in coconut-based yogurt-alternatives: Microstructural characteristic and the evaluation of physico-chemical properties during the storage. Curr Res Food Sci 2022; 5:1195-1204. [PMID: 35992631 PMCID: PMC9382424 DOI: 10.1016/j.crfs.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Water soluble coconut extract (WSCE) was reported as a suitable matrix for probiotic delivery as yogurt alternatives. The study aimed to evaluate the roles of brewers' spent grain (BSG) derivatives in enhancing the properties of WSCE-based yogurt alternatives. BSG flour (BSGF) and 3 different protein extracts (BSGPs) including protein control (BSGP-C), protamex treatment (BSGP-P), and protamex combined with flavourzyme treatment (BSGP-PF) were incorporated in WSCE-based yogurt alternatives. Confocal laser scanning microscopy showed that BSGPs prepared with protease treatment generated less dense fat distribution and more homogenous globules compared to that in WSCE control yogurt. It also resulted in a softer, denser and more homogenous matrix. The modification in microstructural properties was aligned with differences in several functional groups including ⍺-glycosidic bond and hydroxyl groups from polysaccharides, aliphatic ethers and acid functional groups as well as aromatic hydrocarbons of lignin, amide I, acetyl groups and amide III. BSGF and BSGPs increased the mechanical properties, viscosity and modified flow behaviour properties demonstrating its ability in maintaining textural and gel formation. After 14 days of storage, maintenance in flow behaviour, syneresis and mechanical properties was identified. Furthermore, BSG derivatives enhanced lactic acid production up to 3 folds. In conclusion, BSG derivatives maintained the microstructure and gel formation, improved the properties of WSCE-based yogurt alternatives and preserved its behaviour during 14 days of storage.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tetova, 1200, Tetovo, Macedonia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
19
|
Dynamic evolution of flavor substances and bacterial communities during fermentation of leaf mustard (Brassica juncea var. multiceps) and their correlation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Liu A, Yan X, Shang H, Ji C, Zhang S, Liang H, Chen Y, Lin X. Screening of Lactiplantibacillus plantarum with High Stress Tolerance and High Esterase Activity and Their Effect on Promoting Protein Metabolism and Flavor Formation in Suanzhayu, a Chinese Fermented Fish. Foods 2022; 11:foods11131932. [PMID: 35804748 PMCID: PMC9265898 DOI: 10.3390/foods11131932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 01/31/2023] Open
Abstract
In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 107 CFU/mL in the model and 107 CFU/g in actual Suanzhayu systems, and the effects during fermentation on the physicochemical properties, amino acid, and volatile substance were investigated. The results showed that the inoculated group had a faster pH decrease, lower protein content, higher TCA-soluble peptides, and total amino acid contents than the control group in both systems (p < 0.05). Inoculation was also found to increase the production of volatile compounds, particularly esters, improve the sour taste, and decrease the bitterness of the product (p < 0.05). L. plantarum M22 was more effective than the other two strains in stimulating the production of isoamyl acetate, ethyl hexanoate, and ethyl octanoate. However, differences were discovered between the strains as well as between the model and the actual systems. Overall, the isolated strains, particularly L. plantarum M22, have good fermentation characteristics and have the potential to become excellent Suanzhayu fermenters in the future.
Collapse
Affiliation(s)
- Aoxue Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xu Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Hao Shang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, 10095 Turin, Italy
- Correspondence: ; Tel.: +86-0411-86318675; Fax: +86-0411-86318655
| |
Collapse
|
21
|
Exploring the Fungal Community and Its Correlation with the Physicochemical Properties of Chinese Traditional Fermented Fish (Suanyu). Foods 2022; 11:foods11121721. [PMID: 35741919 PMCID: PMC9222310 DOI: 10.3390/foods11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Suanyu is a traditional natural fermented fish product from Southwest China that contains very complex microflora. The main purpose of this study was to explore the fungal community and its relationship with the physicochemical properties of Suanyu. The fungal community structure of Suanyu from the main provinces (Guizhou and Hunan) was studied via high-throughput sequencing. The correlation between dominant fungi and physicochemical characteristics was analyzed via Spearman's correlation coefficient. The results showed that the pH value, total volatile base nitrogen content, and thiobarbituric acid reactive substance content ranges of Suanyu samples were 4.30-5.50, 17.11-94.70 mg/100 g, and 0.61 to 3.62 mg/kg, respectively. The average contents of total volatile base nitrogen, thiobarbituric acid reactive substance, and total BAs in Suanyu from Guizhou were lower than those from Hunan. The main BAs were phenethylamine, putrescine, cadaverine, histamine, and tyramine. Ascomycota was the dominant fungal phylum, and Kodamaea, Debaryomyces, Wallemia, Zygosaccharomyces, and unclassified Dipodascaceae were the dominant fungal genera in different samples. Moreover, high abundance levels of Kodamaea and Zygosaccharomyces were found in Suanyu from Guizhou. According to the correlation analysis, Kodamaea and Zygosaccharomyces were negatively correlated with TBARS (R2 = -0.43, -0.51) and TVBN (R2 = -0.37, -0.29), and unclassified Dipodascaceae was significant negatively correlated with tyramine (R2 = -0.56). This study expands the understanding of the fungal community and the fermentation characteristics of the dominant fungi in Suanyu.
Collapse
|
22
|
Li C, Li W, Li L, Chen S, Wu Y, Qi B. Microbial community changes induced by a newly isolated salt-tolerant Tetragenococcus muriaticus improve the volatile flavor formation in low-salt fish sauce. Food Res Int 2022; 156:111153. [DOI: 10.1016/j.foodres.2022.111153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
|
23
|
Zhang Y, Zhang J, Lin X, Liang H, Zhang S, Ji C. Lactobacillus strains inhibit biogenic amine formation in salted mackerel (Scomberomorus niphonius). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Contribution of microbial community to flavor formation in tilapia sausage during fermentation with Pediococcus pentosaceus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Moderate fermentation contributes to the formation of typical aroma and good organoleptic properties: A study based on different brands of Chouguiyu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Wang X, Song G, He Z, Zhao M, Cao X, Lin X, Ji C, Zhang S, Liang H. Effects of salt concentration on the quality of paocai, a fermented vegetable product from China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6202-6210. [PMID: 33908047 DOI: 10.1002/jsfa.11271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Paocai is a traditional Chinese fermented vegetable food. As the most important ingredient, salt has crucial effects on the bacterial community and volatile compounds of paocai. To demonstrate the effects of salt on the fermentation of paocai, the bacterial composition and volatile compounds were investigated using high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS). RESULTS The salt had no significant effects on the bacterial community at the phylum level. Proteobacteria and Bacteroidetes gradually decreased during the fermentation, and Firmicutes gradually increased as the dominant bacteria in the late stage of fermentation. At the genus level, Lactobacillus and Lactococcus gradually increased in relative abundance during the fermentation and became the dominant bacteria in paocai. High salt levels can contribute to the growth of Lactobacillus, which became the dominant genus in paocai. The salt concentration affected the profiles of volatile compounds in paocai after fermentation. A total of 42 volatile components were detected by GC-MS, among which phenols, aldehydes, and nitriles were the main ones. A high salt concentration will increase the volatile compound content, mainly aldehydes and alcohols, and improve the flavor of paocai. At the same time, the electronic tongue analysis also showed that a high salt concentration made a major contribution to the flavor of paocai. CONCLUSIONS These data are helpful to elucidate the effects of salt on the quality of paocai and contribute to improving the quality and reducing the use of salt. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ge Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhen He
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingwei Zhao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinying Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
27
|
Jiang C, Liu M, Yan X, Bao R, Liu A, Wang W, Zhang Z, Liang H, Ji C, Zhang S, Lin X. Lipase Addition Promoted the Growth of Proteus and the Formation of Volatile Compounds in Suanzhayu, a Traditional Fermented Fish Product. Foods 2021; 10:foods10112529. [PMID: 34828810 PMCID: PMC8625596 DOI: 10.3390/foods10112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
This work investigated the effect of lipase addition on a Chinese traditional fermented fish product, Suanzhayu. The accumulation of lactic acid and the decrease of pH during the fermentation were mainly caused by the metabolism of Lactobacillus. The addition of lipase had little effect on pH and the bacterial community structure but promoted the growth of Proteus. The addition of lipase promotes the formation of volatile compounds, especially aldehydes and esters. The formation of volatile compounds is mainly divided into three stages, and lipase had accelerated the fermentation process. Lactobacillus, Enterococcus and Proteus played an important role not only in inhibition of the growth of Escherichia-Shigella, but also in the formation of flavor. This study provides a rapid fermentation method for the Suanzhayu process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xinping Lin
- Correspondence: or ; Tel.: +86-0411-8631-8675
| |
Collapse
|
28
|
Liang X, Qian G, Sun J, Yang M, Shi X, Yang H, Wu J, Wang Z, Zheng Y, Yue X. Evaluation of antigenicity and nutritional properties of enzymatically hydrolyzed cow milk. Sci Rep 2021; 11:18623. [PMID: 34545177 PMCID: PMC8452708 DOI: 10.1038/s41598-021-98136-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
While enzymatic hydrolysis is an effective method for lowering the antigenicity of cow milk (CM), research regarding the antigenicity and nutritional traits of CM hydrolysate is limited. Here, we evaluated the protein content, amino acid composition, sensory traits, color, flow behavior, and antigenicity of CM following enzymatic hydrolysis. The results showed that enzymatic hydrolysis increased the degree of hydrolysis, destroyed allergenic proteins, including casein, β-lactoglobulin, and ɑ-lactalbumin, and significantly increased the content of free amino acids and nutritional quality. In particular, the antigenicity of CM was significantly reduced from 44.05 to 86.55% (P < 0.5). Simultaneously, the taste, color, and flow behavior of CM were altered, the sweetness and richness intensity decreased significantly (P < 0.5), and astringency and bitterness were produced. A slightly darker and more yellow color was observed in CM hydrolysate. In addition, apparent viscosity decreased and shear stress significantly increased with increasing shear rate intensity. The results will provide a solid theoretical foundation for the development of high-quality hypoallergenic dairy products.
Collapse
Affiliation(s)
- Xiaona Liang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Guanlin Qian
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Jing Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Hui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Zongzhou Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, 100866, People's Republic of China.
| |
Collapse
|