1
|
Xu TT, Zhang YJ, Yi JF, Bai CL, Guo Y. Exposure to plasticizers in city waste recycling: Focused on the size-fractioned particulate-bound phthalates and bisphenols. J Environ Sci (China) 2025; 155:454-465. [PMID: 40246480 DOI: 10.1016/j.jes.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 04/19/2025]
Abstract
Phthalate (PAEs) and Bisphenols (BPs) are plasticizers or additives in consumer products. They are typical endocrine disruptors, and potential health hazards may occur when people are exposed to them through inhalation, ingestion, and dermal contact. The current research on inhalation exposure pays limited attention to the particle distribution of PAEs and BPs in air, although particulate-bound pollutants are usually size-dependent. In this study, we discussed the size resolution of PAEs and BPs in air particles from city waste recycling plants. With paired urine samples of the workers, we also compared the internal and external exposure of PAEs and BPs and related potential health risks. The particulate-bound PAEs and BPs concentrated mainly on coarse particles (Dp > 2.1 µm), with a bimodal distribution, and the peak particle size ranged from 9-10 to 4.7-5.85 µm, respectively. Model calculation revealed that the deposition fluxes of PAEs in different respiratory regions followed the sequence of head airways (167±92.8 ng/h) > alveolar region (18.9 ± 9.96 ng/h) > tracheobronchial region (9.20±5.22 ng/h), and the similar trends went for BPs. The daily intakes of PAEs and BPs via dust ingestion were higher than those from respiratory inhalation and dermal contact, with mean value of 96 and 0.88 ng/(kg-bw day), respectively. For internal exposure, the estimated daily intakes of PAEs for waste recycling workers were higher than those in e-waste dismantling workers, while the exposure levels of bisphenols were comparable. Overall, the potential health risks from inhalation exposure to particulate-bound PAEs and BPs were low.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Zhang Y, Geng Y, Zhang Y, Ma Y, Yin X, Chen Z, Mu X, Gao R, Chen X, Li F, He J. Dicyclohexyl phthalate derails trophoblast function and lipid metabolism through NDRG1 by targeting PPARα:RXRα. Toxicology 2025; 514:154124. [PMID: 40157530 DOI: 10.1016/j.tox.2025.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Phthalates (PAEs) can impair trophoblast cell and subsequent placental development, adversely affecting pregnancy. The effects of dicyclohexyl phthalate (DCHP), the main PAE homologue in urban household dust, on trophoblast function and placental development are unknown. In this study, we investigated the effects and potential mechanisms of DCHP on trophoblast function and placental development by constructing in vitro trophoblast (10, 20, 30 μM) and in vivo mouse pregnancy (25, 50, 100 mg/kg bw) exposure models. We found that exposure to DCHP during pregnancy led to the accumulation of placental lipid droplets and foetal weight gain. Consistently, DCHP induced the uptake of fatty acids by HTR-8/SVneo cells, leading to intracellular lipid droplet accumulation and mitochondrial dysfunction while inhibiting cell migration and invasion. This suggests that metabolic processes can serve as important links for environmental pollutants to interfere with bodily functions. Knocking down N-myc Downstream-Regulated Gene 1 (NDRG1) can alleviate lipid metabolism abnormalities caused by DCHP exposure while restoring cell migration and invasion abilities. Further research has found that the enhanced transcriptional activity of PPARα:RXRα is an important molecular initiating event for the role of DCHP, which promotes the transcription of downstream target gene NDRG1 by binding to PPARα:RXRα. These findings fill the research gap regarding the effects and related mechanisms of DCHP exposure on the placenta, help explore prevention and treatment strategies for DCHP reproductive toxicity, and provide new insights into toxicological research on environmental pollutants.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhuxiu Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
3
|
Gómez-Olarte S, Röder S, Rolle-Kampczyk U, Sack U, von Bergen M, Borte M, Zenclussen AC, Herberth G. Prenatal exposure to mixtures of phthalates and bisphenol A and eczema risk: findings in atopic and non-atopic children from the LiNA birth cohort. ENVIRONMENTAL RESEARCH 2025; 278:121667. [PMID: 40274086 DOI: 10.1016/j.envres.2025.121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND We investigated whether maternal exposure to phthalate and bisphenol A (BPA) mixtures is associated with eczema in children, as most studies have only addressed single chemical exposures. METHODS Nine phthalate metabolites and BPA were quantified in urine at gestational weeks 34-36 (n = 540) and total, inhalant, and food allergen-specific immunoglobulin (Ig)E levels (sx1, and fx5) were measured in serum from 4-year-old children of the LiNA cohort (n = 219). The association of prenatal exposure to phthalates and BPA, both single and mixed, with eczema and IgE was assessed in children stratified by atopy status. Three independent statistical models adjusted for covariates were used: logistic regression -also in the sex-stratified analysis-, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR). Moreover, an in silico toxicogenomic analysis was conducted to explore putative underlying mechanisms. RESULTS The adjusted logistic regression showed that monobenzyl phthalate (MBzP; OR = 2.64, 95 % CI: 1.29-6.4) and the sum of di-2-ethylhexyl phthalate metabolites (2.09, 1.1-4.32) were significantly associated with eczema exclusively in atopic boys. The BKMR suggested a positive trend between chemical exposure and IgE values in the atopic subgroup. In the WQS model, the mixture' positive effect on eczema among atopic children was significant (1.90, 1.80-2.01) with MBzP (65.9 %), monoethyl phthalate (13.3 %), and BPA (10.9 %) being the main contributors, which jointly modulate antibody-mediated immunity and inflammation gene pathways in the toxicogenomic profiling. CONCLUSIONS Maternal exposure to mixtures of phthalates and BPA differentially impacts eczema risk among atopy-stratified children. The in silico chemical-gene interaction analysis in atopic children identified genes involved in immune cell activation and Ig production. Compared to non-atopic children, individual phthalates were significantly associated with eczema in atopic boys, suggesting that chemicals may have a larger effect size in predisposed populations.
Collapse
Affiliation(s)
- Sergio Gómez-Olarte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital "St. Georg", Academic Teaching Hospital of Leipzig University, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Germany; Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
4
|
Quelhas AR, Mariana M, Cairrao E. Prenatal Exposure to Dibutyl Phthalate and Its Negative Health Effects on Offspring: In Vivo and Epidemiological Studies. J Xenobiot 2024; 14:2039-2075. [PMID: 39728417 DOI: 10.3390/jox14040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Dibutyl phthalate (DBP) is a low-molecular-weight phthalate commonly found in personal care products, such as perfumes, aftershaves, and nail care items, as well as in children's toys, pharmaceuticals, and food products. It is used to improve flexibility, make polymer products soft and malleable, and as solvents and stabilizers in personal care products. Pregnancy represents a critical period during which both the mother and the developing embryo can be significantly impacted by exposure to endocrine disruptors. This article aims to elucidate the effects of prenatal exposure to DBP on the health and development of offspring, particularly on the reproductive, neurological, metabolic, renal, and digestive systems. Extensive research has examined the effects of DBP on the male reproductive system, where exposure is linked to decreased testosterone levels, reduced anogenital distance, and male infertility. In terms of the female reproductive system, DBP has been shown to elevate serum estradiol and progesterone levels, potentially compromising egg quality. Furthermore, exposure to this phthalate adversely affects neurodevelopment and is associated with obesity, metabolic disorders, and conditions such as hypospadias. These findings highlight how urgently stronger laws prohibiting the use of phthalates during pregnancy are needed to lower the risks to the fetus's health and the child's development.
Collapse
Affiliation(s)
- Ana R Quelhas
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Elisa Cairrao
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
5
|
Almeida-Toledano L, Navarro-Tapia E, Sebastiani G, Ferrero-Martínez S, Ferrer-Aguilar P, García-Algar Ó, Andreu-Fernández V, Gómez-Roig MD. Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175080. [PMID: 39079634 DOI: 10.1016/j.scitotenv.2024.175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The ubiquitous presence of phthalate compounds in cosmetics, personal care products and plastics commonly used in toys, food packaging or household products, results in human exposure with adverse effects on reproductive health and fetal development. Following the PRISMA methodology, this systematic review analyzes the effect of prenatal phthalate exposure on major pregnancy complications, such as gestational diabetes, pregnancy-induced hypertension, fetal growth restriction and preterm birth, and its role in fetal neurodevelopment. This review includes >100 articles published in the last 10 years, showing an association between maternal exposure to phthalates and the risk of developing pregnancy complications. Phthalates are negatively associated with motor skills and memory, and also increase the risk of delayed language acquisition, autism spectrum disorder traits, and behavioral deficits, such as attention deficit hyperactivity disorder in children prenatally exposed to phthalates. Di (2-ethylhexyl) phthalate and its metabolites (mono(2-ethylhexyl) phthalate, mono(3-carboxypropyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate) are the main compounds associated with the above-mentioned pregnancy complications and fetal neurodevelopmental disorders. In addition, this review discusses the molecular mechanisms responsible for various pregnancy complications and neurodevelopmental disorders, and the critical window of exposure, in order to clarify these aspects. Globally, the most common molecular mechanisms involved in the effects of phthalates are endocrine disruption, oxidative stress induction, intrauterine inflammation, and DNA methylation disorders. In general, the critical window of exposure varies depending on the pathophysiology of the complication being studied, although the first trimester is considered an important period because some of the most vulnerable processes (embryogenesis and placentation) begin early in pregnancy. Future research should aim to understand the specific mechanism of the disruptive effect of each component and to establish the toxic dose of phthalates, as well as to elucidate the most critical period of pregnancy for exposure and the long-term consequences for human health.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain.
| | - Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Sílvia Ferrero-Martínez
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Patricia Ferrer-Aguilar
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Óscar García-Algar
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain; Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Biosanitary Research Institute, Valencian International University (VIU), 46002, Valencia, Spain.
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| |
Collapse
|
6
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
7
|
Warner GR, Li Z, Flaws JA, Smith R. Year-to-year variation in phthalate metabolites in the Midlife Women's Health Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:610-619. [PMID: 38049486 PMCID: PMC11147960 DOI: 10.1038/s41370-023-00614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Humans are widely exposed to phthalates, which are metabolized in the body and excreted in urine. Phthalate metabolites are excreted within hours of exposure, making urinary phthalate biomarker concentrations highly variable. OBJECTIVE The goal of this study was to characterize the long-term variability in phthalate biomarker concentrations in women across the midlife transition and to identify factors that may be associated with increased variability in those phthalate biomarker concentrations by analyzing longitudinal urinary phthalate metabolite data from the Midlife Women's Health Study (2006-2015). METHODS A total of 741 women were enrolled in the study for a period of up to 4 years, during which they each provided 2-4 urine samples per year over 4 consecutive weeks that were pooled for analysis (1876 total pools). Nine phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: ƩPhthalates; DEHP: ƩDEHP), exposure sources (plastics: ƩPlastic; personal care products: ƩPCP), and modes of action (anti-androgenic: ƩAA). Phthalate metabolites were analyzed by quartile using generalized linear models. In addition, the impact of explanatory variables (race, annual family income, and type of work) on phthalate quartile was examined using ordinal logistic regression models. IMPACT STATEMENT Phthalate biomarker concentrations are highly variable among midlife women over time, and annual sampling may not be sufficient to fully characterize long-term exposure.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Smith
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA.
| |
Collapse
|
8
|
Wen HJ, Su PH, Sun CW, Tsai SF, Wang SL. Maternal phthalate exposure and BMI trajectory in children-an 18-year birth cohort follow-up study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:601-609. [PMID: 38898267 DOI: 10.1038/s41370-024-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Obesity is a major health concern worldwide. Previous studies have suggested that phthalate plasticizers are obesogens. However, the relationship between early-life phthalate exposure and long-term obesity development remains unknown. OBJECTIVE We investigated the association between prenatal phthalate exposure and children's body mass index (BMI) patterns in an 18-year birth cohort follow-up study in Taiwan. METHODS Our analytical lab quantified seven phthalate metabolites in maternal urine during pregnancy using quantitative liquid chromatography-tandem mass spectrometry. In addition, we calculated BMI z scores for participated children at each follow-up, utilized trajectory analysis to describe children's BMI z-score patterns at 2-18 years of age, and adopted generalized estimating equations (GEE) and multivariate logistic regression models to assess the association between prenatal phthalate exposure and BMI z scores in children. RESULTS A total of 208 mother-child pairs were included in the analysis. Maternal urinary diethyl phthalate (DEP) metabolites were associated with the increase of BMI z scores in children aged 2-18 years in the GEE model. Doubled maternal urinary ∑mDEHP (3 mono hexyl-metabolites of di-ethyl-hexyl phthalate (DEHP) increased the risk of children being in the stable-high BMI trajectory group until the age of eighteen. IMPACT STATEMENT We observed that BMI trajectories of children remained stable after the age of 5 years. During each follow-up, a higher frequency of overweight or obese was observed in children, ranging from 15.9% to 35.6% for girls and 15.2-32.0% for boys, respectively. Prenatal phthalate exposure was associated with increasing BMI z scores in children. Prenatal DEHP exposure was associated with a stable-high BMI trajectory in children up to the age of 18 years.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Institute of Earth Science, Academia Sinica, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shin-Fen Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
- Department of Public Health, National Defence Medical Centre, Taipei, Taiwan.
- Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
9
|
Jang EA, Kim KN, Bae SH. Associations of concentrations of eight urinary phthalate metabolites with the frequency of use of common adult consumer and personal-care products. Sci Rep 2024; 14:5187. [PMID: 38431676 PMCID: PMC10908856 DOI: 10.1038/s41598-024-55929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
This study analyzed the relationship between urine concentrations of phthalate metabolites (UCOM) and personal care products (PCPs) used in adults and examined the change in UCOM according to the usage frequency of PCPs based on raw data from the 3rd Korean National Environmental Health Survey conducted between 2015 and 2017. The relationship between PCP use frequency and UCOM was analyzed using multiple regression analysis, adjusting for baseline factors. The regression model consisted of a Crude Model with log-transformed UCOM before and after adjustment for urine creatinine concentrations. Model 1 was additionally adjusted for age, sex, and obesity, while Model 2 was additionally adjusted for smoking, alcohol consumption, pregnancy history, average monthly income of the household, and PCP exposure within the past 2 days. PCP usage frequency was significantly associated with the UCOM without adjustment for urine creatinine and correlated with demographic characteristics, urine creatinine concentration, and PCP exposure within the past 2 days. This study on exposure to urinary phthalates will play a crucial role in Korean public health by aligning with the fundamentals of research priorities and providing representative data on phthalate exposure for conducting population-level studies.
Collapse
Affiliation(s)
- Eun A Jang
- Department of Plastic and Reconstructive Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyu Nam Kim
- Department of Plastic and Reconstructive Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Hyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 96591, South Korea.
| |
Collapse
|
10
|
Brennan Kearns P, van den Dries MA, Julvez J, Kampouri M, López-Vicente M, Maitre L, Philippat C, Småstuen Haug L, Vafeiadi M, Thomsen C, Yang TC, Vrijheid M, Tiemeier H, Guxens M. Association of exposure to mixture of chemicals during pregnancy with cognitive abilities and fine motor function of children. ENVIRONMENT INTERNATIONAL 2024; 185:108490. [PMID: 38364572 DOI: 10.1016/j.envint.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Chemical exposures often occur in mixtures and exposures during pregnancy may lead to adverse effects on the fetal brain, potentially reducing lower cognitive abilities and fine motor function of the child. We investigated the association of motheŕs exposure to a mixture of chemicals during pregnancy (i.e., organochlorine compounds, per- and polyfluoroalkyl substances, phenols, phthalates, organophosphate pesticides) with cognitive abilties and fine motor function in their children. We studied 1097 mother-child pairs from five European cohorts participating in the Human Early Life Exposome study (HELIX). Measurement of 26 biomarkers of exposure to chemicals was performed on urine or blood samples of pregnant women (mean age 31 years). Cognitive abilities and fine motor function were assessed in their children (mean age 8 years) with a battery of computerized tests administered in person (Raveńs Coloured Progressive Matrices, Attention Network Test, N-back Test, Trail Making Test, Finger Tapping Test). We estimated the joint effect of prenatal exposure to chemicals on cognitive abilities and fine motor function using the quantile-based g-computation method, adjusting for sociodemographic characteristics. A quartile increase in all the chemicals in the overall mixture was associated with worse fine motor function, specifically lower scores in the Finger Tapping Test [-8.5 points, 95 % confidence interval (CI) -13.6 to -3.4; -14.5 points, 95 % CI -22.4 to -6.6, and -18.0 points, 95 % CI -28.6 to -7.4) for the second, third and fourth quartile of the overal mixture, respectively, when compared to the first quartile]. Organochlorine compounds, phthalates, and per- and polyfluoroalkyl substances contributed most to this association. We did not find a relationship with cognitive abilities. We conclude that exposure to chemical mixtures during pregnancy may influence neurodevelopment, impacting fine motor function of the offspring.
Collapse
Affiliation(s)
- Pavla Brennan Kearns
- Department of Epidemiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michiel A van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Mariza Kampouri
- University of Crete, Heraklion, Greece; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Lea Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | | | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
11
|
Baker BH, Melough MM, Paquette AG, Barrett ES, Day DB, Kannan K, Hn Nguyen R, Bush NR, LeWinn KZ, Carroll KN, Swan SH, Zhao Q, Sathyanarayana S. Ultra-processed and fast food consumption, exposure to phthalates during pregnancy, and socioeconomic disparities in phthalate exposures. ENVIRONMENT INTERNATIONAL 2024; 183:108427. [PMID: 38194756 PMCID: PMC10834835 DOI: 10.1016/j.envint.2024.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Consuming ultra-processed foods may increase exposure to phthalates, a group of endocrine disruptors prevalent in food contact materials. OBJECTIVES Investigate associations between ultra-processed food intake and urinary phthalates during pregnancy, and evaluate whether ultra-processed foods mediate socioeconomic disparities in phthalate exposures. METHODS In a socioeconomically diverse sample of 1031 pregnant women from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study in the urban South, the Block Food Frequency Questionnaire was administered and urinary phthalate metabolites were measured in the second trimester. Linear regressions modeled associations between phthalates and overall ultra-processed food consumption, individual ultra-processed foods, and exploratory factor analysis dietary patterns. Causal mediation analyses examined whether ultra-processed food intake mediates relationships between socioeconomic disparities and phthalate exposures. RESULTS Ultra-processed foods constituted 9.8-59.0 % (mean = 38.6 %) of participants' diets. 10 % higher dietary proportion of ultra-processed foods was associated with 13.1 % (95 %CI: 3.4 %-22.9 %) higher molar sum concentrations of di(2-ethylhexyl) phthalate metabolites (ΣDEHP). 10 % higher consumption of minimally-processed foods was associated with lower ΣDEHP (10.8 %: 3.4 %-22.9 %). Ultra- and minimally-processed food consumption were not associated with non-DEHP metabolites. Standard deviation higher consumptions of hamburger/cheeseburger, French fries, soda, and cake were associated with 10.5 % (4.2 %-17.1 %), 9.2 % (2.6 %-16.2 %), 7.4 % (1.4 %-13.6 %), and 6.0 % (0.0 %-12.4 %), respectively, higher ΣDEHP. Exploratory factor analysis corroborated positive associations of processed food with ΣDEHP, and uncovered a healthy dietary pattern associated with lower urinary ΣDEHP, mono(2-ethyl-5-hydroxyhexyl) (MEHHP), mono(2-ethyl-5-carboxypentyl) (MECPP), mono(2-carboxymethylhexyl) (MCMHP), and mono-isononyl (MINP) phthalates. Significant indirect effects indicated that lower income and education levels were associated with 1.9 % (0.2 %-4.2 %) and 1.4 % (0.1 %-3.3 %) higher ΣDEHP, respectively, mediated via increased ultra-processed food consumption. CONCLUSIONS Consumption of ultra-processed foods may increase exposure to phthalates. Policies to reduce dietary phthalate exposures from food packaging and processing are needed, as socioeconomic barriers can preclude dietary recommendations as a sole means to reduce phthalate exposures.
Collapse
Affiliation(s)
- Brennan H Baker
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Alison G Paquette
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Drew B Day
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Nicole R Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Kaja Z LeWinn
- University of California San Francisco, San Francisco, CA, USA
| | | | - Shanna H Swan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qi Zhao
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
12
|
Llopis M, Ventura PS, Brachowicz N, Sangüesa J, Murcia M, Lopez-Espinosa MJ, García-Baquero G, Lertxundi A, Vrijheid M, Casas M, Petrone P. Sociodemographic, lifestyle, and environmental determinants of vitamin D levels in pregnant women in Spain. ENVIRONMENT INTERNATIONAL 2023; 182:108293. [PMID: 37984291 DOI: 10.1016/j.envint.2023.108293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Vitamin D deficiency (<20 ng/mL circulating levels) is a worldwide public health concern and pregnant women are especially vulnerable, affecting the health of the mother and the fetus. This study aims to evaluate the sociodemographic, lifestyle, and environmental determinants associated with circulating vitamin D levels in Spanish pregnant women. METHODS We used data from the Spanish INMA ("Infancia y Medio Ambiente") prospective birth cohort study from the regions of Gipuzkoa, Sabadell, and Valencia. 25-hydroxyvitamin D3 (25(OH)D3) was measured in plasma collected in the first trimester of pregnancy. Information on 108 determinants was gathered: 13 sociodemographic, 48 lifestyle including diet, smoking and physical activity, and 47 environmental variables, representing the urban and the chemical exposome. Association of the determinants with maternal 25(OH)D3 levels was estimated in single- and multiple-exposure models. Machine learning techniques were used to predict 25(OH)D3 levels below sufficiency (30 ng/mL). RESULTS The prevalence of < 30 ng/mL 25(OH)D3 levels was 51 %. In the single-exposure analysis, older age, higher socioeconomic status, taking vitamin D, B12 and other sup*plementation, and higher humidity, atmospheric pressure and UV rays were associated with higher levels of 25(OH)D3 (IQR increase of age: 1.2 [95 % CI: 0.6, 1.8] ng/mL 25(OH)D3). In the multiple-exposures model, most of these associations remained and others were revealed. Higher body mass index, PM2.5 and high deprivation area were associated with lower 25(OH)D3 levels (i.e., Quartile 4 of PM2.5 vs Q1: -3.6 [95 % CI: -5.6, -1.5] ng/mL of 25(OH)D3). History of allergy and asthma, being multiparous, intake of vegetable fat, vitamin B6, alcohol consumption and molybdenum were associated with higher levels. The machine learning classification model confirmed some of these associations. CONCLUSIONS This comprehensive study shows that younger age, higher body mass index, higher deprived areas, higher air pollution and lower UV rays and humidity are associated with lower 25(OH)D3 levels.
Collapse
Affiliation(s)
- Maria Llopis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain
| | - Paula Sol Ventura
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | - Júlia Sangüesa
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Servei de Planificació i Avaluació de Polítiques de Salut, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Gonzalo García-Baquero
- Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto s/n, Salamanca, Spain; Health Research Institute BIODONOSTIA, Donostia, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain; Health Research Institute BIODONOSTIA, Donostia, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | | |
Collapse
|
13
|
Siddiq S, Clemons AM, Meeker JD, Gennings C, Rauh V, Leisher SH, Llanos AAM, McDonald JA, Wylie BJ, Factor-Litvak P. Predictors of Phthalate Metabolites Exposure among Healthy Pregnant Women in the United States, 2010-2015. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7104. [PMID: 38063534 PMCID: PMC10706567 DOI: 10.3390/ijerph20237104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Phthalate use and the concentrations of their metabolites in humans vary by geographic region, race, ethnicity, sex, product use and other factors. Exposure during pregnancy may be associated with detrimental reproductive and developmental outcomes. No studies have evaluated the predictors of exposure to a wide range of phthalate metabolites in a large, diverse population. We examined the determinants of phthalate metabolites in a cohort of racially/ethnically diverse nulliparous pregnant women. We report on urinary metabolites of nine parent phthalates or replacement compounds-Butyl benzyl phthalate (BBzP), Diisobutyl phthalate (DiBP), Diethyl phthalate (DEP), Diisononyl phthalate (DiNP), D-n-octyl phthalate (DnOP), Di-2-ethylhexyl terephthalate (DEHTP), Di-n/i-butyl phthalate (DnBP), Di-isononyl phthalate (DiNP) and Di-(2-ethylhexyl) phthalate (DEHP) from urine collected up to three times from 953 women enrolled in the Nulliparous Mothers To Be Study. Phthalate metabolites were adjusted for specific gravity. Generalized estimating equations (GEEs) were used to identify the predictors of each metabolite. Overall predictors include age, race and ethnicity, education, BMI and clinical site of care. Women who were Non-Hispanic Black, Hispanic or Asian, obese or had lower levels of education had higher concentrations of selected metabolites. These findings indicate exposure patterns that require policies to reduce exposure in specific subgroups.
Collapse
Affiliation(s)
- Shabnaz Siddiq
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.M.C.); (A.A.M.L.); (P.F.-L.)
| | - Autumn M. Clemons
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.M.C.); (A.A.M.L.); (P.F.-L.)
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Susannah Hopkins Leisher
- Stillbirth Research Program, Department of Obstetrics & Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adana A. M. Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.M.C.); (A.A.M.L.); (P.F.-L.)
| | - Jasmine A. McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.M.C.); (A.A.M.L.); (P.F.-L.)
| | - Blair J. Wylie
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.M.C.); (A.A.M.L.); (P.F.-L.)
| |
Collapse
|
14
|
Lu H, Chen D, Zhu Z, Yang L, Huang L, Xu C, Lu Y. Atmospheric phthalate esters in a multi-function area of Hangzhou: Temporal variation, gas/particle phase distribution, and population exposure risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:163987. [PMID: 37150462 DOI: 10.1016/j.scitotenv.2023.163987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Phthalate esters (PAEs) are prevalent in both indoor and outdoor environments. However, there are relatively few studies on phthalate contamination in the air of multi-function areas. Experiments were conducted to analyze the concentrations of 14 distinct PAEs in outdoor air in the college town of Hangzhou throughout both the warm and cold seasons. Correlation and principal component analyses were performed to investigate the influence and source factors of PAEs. This study also focused on the relationship between the gas/particle partition coefficient Kp and temperature, as well as the application of the gas/particle partition model. The risk of exposure to PAEs via inhalation was predicted for four groups of the general population: toddlers, adolescents, adults, and older adults. The results indicated that the concentration levels of Σ14PAEs in outdoor air were 1573 ng/m3 in the gaseous phase and 126 ng/m3 in the particulate phase. Additionally, this study indicated three primary sources of PAEs: indoor diffuse sources, industrial emission sources, and building construction sources. The gas/particle partitioning of PAEs also revealed that low-molecular-weight PAEs are more prevalent in gas, whereas high-molecular-weight PAEs are more predominant in the particle phase. A health risk analysis revealed high estimations of daily intakes (EDI) for toddlers and adolescents and high lifetime average daily doses (LADD) for older adults. This study establishes a solid foundation for formulating scientific and effective air pollution control measures by analyzing the characteristics and assessing the health risks of PAEs.
Collapse
Affiliation(s)
- Hao Lu
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Hangzhou 310018, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dezhen Chen
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; School of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhili Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Focused Photonics Inc., Hangzhou 310052, China
| | - Le Yang
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Lu Huang
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Chao Xu
- School of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Lu
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
15
|
Kumari M, Pulimi M. Phthalate esters: occurrence, toxicity, bioremediation, and advanced oxidation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2090-2115. [PMID: 37186617 PMCID: wst_2023_119 DOI: 10.2166/wst.2023.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phthalic acid esters are emerging pollutants, commonly used as plasticizers that are categorized as hazardous endocrine-disrupting chemicals (EDCs). A rise in anthropogenic activities leads to an increase in phthalate concentration in the environment which leads to various adverse environmental effects and health issues in humans and other aquatic organisms. This paper gives an overview of the research related to phthalate ester contamination and degradation methods by conducting a bibliometric analysis with VOS Viewer. Ecotoxicity analysis requires an understanding of the current status of phthalate pollution, health impacts, exposure routes, and their sources. This review covers five toxic phthalates, occurrences in the aquatic environment, toxicity studies, biodegradation studies, and degradation pathways. It highlights the various advanced oxidation processes like photocatalysis, Fenton processes, ozonation, sonolysis, and modified AOPs used for phthalate removal from the environment.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| | - Mrudula Pulimi
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| |
Collapse
|
16
|
Wu N, Tao L, Tian K, Wang X, He C, An S, Tian Y, Liu X, Chen W, Zhang H, Xu P, Liao D, Liao J, Wang L, Fang D, Hu Z, Yuan H, Huang J, Chen X, Zhang L, Hou X, Zeng R, Liu X, Xiong S, Xie Y, Liu Y, Li Q, Shen X, Zhou Y, Shang X. Risk assessment and environmental determinants of urinary phthalate metabolites in pregnant women in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53077-53088. [PMID: 36849691 DOI: 10.1007/s11356-023-26095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Pregnant women are widely exposed to phthalic acid esters (PAEs) that are commonly used in most aspects of modern life. However, few studies have examined the cumulative exposure of pregnant women to a variety of PAEs derived from the living environmental conditions in China. Therefore, this study aimed to determine the urinary concentrations of nine PAE metabolites in pregnant women, examine the relationship between urinary concentrations and residential characteristics, and conduct a risk assessment analysis. We included 1,888 women who were in their third trimester of pregnancy, and we determined their urinary concentrations of nine PAE metabolites using high-performance gas chromatography-mass spectrometry. The risk assessment of exposure to PAEs was calculated based on the estimated daily intake. A linear regression model was used to analyze the relationship between creatinine-adjusted PAE metabolite concentrations and residential characteristics. The detection rate of five PAE metabolites in the study population was > 90%. Among the PAE metabolites adjusted by creatinine, the urinary metabolite concentration of monobutyl phthalate was found to be the highest. Residential factors, such as housing type, proximity to streets, recent decorations, lack of ventilation in the kitchen, less than equal to three rooms, and the use of coal/kerosene/wood/wheat straw fuels, were all significantly associated with high PAE metabolite concentrations. Due to PAE exposure, ~ 42% (n = 793) of the participants faced potential health risks, particularly attributed to dibutyl phthalate, diisobutyl phthalate, and di(2-ethyl)hexyl phthalate exposure. Living in buildings and using coal/kerosene/wood/wheat straw as domestic fuel can further increase the risks.
Collapse
Affiliation(s)
- Nian Wu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Caidie He
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Songlin An
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Juan Liao
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Linglu Wang
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Derong Fang
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Zhongmei Hu
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Hongyu Yuan
- The People's Hospital of Xishui County, Chishui Xilu, Xishui County, Zunyi, Guizhou Province, 564600, People's Republic of China
| | - Jingyi Huang
- The People's Hospital of Xishui County, Chishui Xilu, Xishui County, Zunyi, Guizhou Province, 564600, People's Republic of China
| | - Xiaoshan Chen
- The People's Hospital of Meitan County, Chacheng Avenue, Meitan County, Zunyi, Guizhou Province, 564100, People's Republic of China
| | - Li Zhang
- The People's Hospital of Meitan County, Chacheng Avenue, Meitan County, Zunyi, Guizhou Province, 564100, People's Republic of China
| | - Xiaohui Hou
- School of Preclinical Medicine, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Quan Li
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China.
| | - Xuejun Shang
- Department of Urology, Jinling Hospital School of Medicine, Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, China
| |
Collapse
|
17
|
Yang L, Zou J, Zang Z, Wang L, Du Z, Zhang D, Cai Y, Li M, Li Q, Gao J, Xu H, Fan X. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161251. [PMID: 36587670 DOI: 10.1016/j.scitotenv.2022.161251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.
Collapse
Affiliation(s)
- Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
18
|
Chen HK, Wang SL, Chang YH, Sun CW, Wu MT, Chen ML, Lin YJ, Hsieh CJ. Associations between maternal phthalate exposure and neonatal neurobehaviors: The Taiwan maternal and infant cohort study (TMICS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120956. [PMID: 36581241 DOI: 10.1016/j.envpol.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown associations between prenatal phthalate exposure and neurobehavioral changes in children. However, few studies have focused on neonatal neurobehavioral development. This study aimed to examine the associations between prenatal phthalate exposure and neonatal neurobehavioral development in the early days of life after birth. This cohort study included 283 mother-infant pairs who participated in the Taiwan Mother Infant Cohort Study during 2012-2015. Each mother was interviewed, and urine samples were collected during the third trimester of pregnancy (weeks 29-40). Eleven common phthalate metabolites in maternal urine were analyzed. The Chinese version of the Neonatal Neurobehavioral Examination was used to evaluate early infant neurobehavioral development within five days of birth. We performed multiple linear regressions to explore the associations between phthalate exposure and neonatal neurobehavioral development. Sex differences in the association between phthalate metabolites and neonatal neurobehaviors were noted. Among girls, tertiles of phthalate metabolite concentrations were associated with worse behavioral responses and tone and motor patterns in the high-molecular-weight phthalate (HMW) and low-molecular-weight phthalate (LMW) groups. Girls in the highest tertile of di-2-ethylhexyl phthalate (DEHP) and mono-isobutyl phthalate (MiBP) had a negative association with tone and motor patterns. Girls in the highest tertile of mono-n-butyl phthalate (MnBP) and MiBP showed a negative association with behavioral responses. In contrast, tertiles of phthalate metabolite exposure were associated with improved neurobehaviors in mono-methyl phthalate (MMP) among boys. The highest tertile of MMP was positively associated with behavioral responses, primitive reflexes, and tone and motor patterns. Our findings suggest that maternal phthalate exposure affects neonatal neurobehavioral development in a sex-specific manner. Despite the relatively small sample size, our findings add to the existing research linking maternal phthalate exposure to neonatal neurobehavioral development. Additional research is needed to determine the potential long-term effects of prenatal phthalate exposure on children.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jie Lin
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
19
|
Roggeman M, Gys C, Klimowska A, Bastiaensen M, Wielgomas B, Ait Bamai Y, Covaci A. Reviewing the variability in urinary concentrations of non-persistent organic chemicals: evaluation across classes, sampling strategies and dilution corrections. ENVIRONMENTAL RESEARCH 2022; 215:114332. [PMID: 36116496 DOI: 10.1016/j.envres.2022.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Various biomonitoring studies have been carried out to investigate the exposure of populations by measuring non-persistent organic chemicals in urine. To accurately assess the exposure, study designs should be carefully developed to maximise reproducibility and achieve good characterization of the temporal variability. To test these parameters, the intraclass correlation coefficients (ICCs) are calculated from repeated measurements and range from poor (<0.4) to excellent (≥0.75). Several studies have reported ICCs based on diverse study designs, but an overview, including recommendations for future studies, was lacking. Therefore, this review aimed to collect studies describing ICCs of non-persistent organic chemicals, discuss variations due to study design and formulate recommendations for future studies. More than 60 studies were selected, considering various chemical classes: bisphenols, pyrethroids, parabens, phthalates, alternative plasticizers and phosphate flame retardants. The variation in ICCs for an individual chemical was high (e.g. ICC of propyl paraben = 0.28-0.91), showing the large impact of the study design and of the specific exposure sources. The highest ICCs were reported for parabens (median = 0.52), while lowest ICCs were for 3-phenoxybenzoic acid (median = 0.08) and bisphenol A (median = 0.20). Overall, chemicals that had an exposure source with high variation, such as the diet, showed lower ICCs than those with more stable exposure sources, such as indoor materials. Urine correction by specific gravity had an overall positive effect on reducing the variability of ICCs. However, this effect was mostly seen in the adult population, while specific compounds showed less variation with creatinine correction. Single samples might not accurately capture the exposure to most non-persistent organic chemicals, especially when small populations are sampled. Future studies that examine compounds with low ICCs should take adequate measures to improve accuracy, such as correcting dilution with specific gravity or collecting multiple samples for one participant.
Collapse
Affiliation(s)
- Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Anna Klimowska
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Yu Ait Bamai
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku Sapporo, 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
20
|
Ryva BA, Haggerty DK, Pacyga DC, James-Todd T, Li Z, Flaws JA, Strakovsky RS. Determinants of urinary phthalate biomarker concentrations in pre- and perimenopausal women with consideration of race. ENVIRONMENTAL RESEARCH 2022; 214:114056. [PMID: 35952743 DOI: 10.1016/j.envres.2022.114056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/OBJECTIVES Phthalates are endocrine disruptors in consumer plastics and personal care products. Our objectives were to identify determinants of phthalate biomarkers in women during the hormonally-sensitive midlife period, and to consider differences between non-Hispanic White and Black women. METHODS We used information from the Midlife Women's Health Study of pre- and peri-menopausal women from Baltimore, Maryland (enrolled 2006-2015). We collected sociodemographic/health information via baseline questionnaires or during clinic visits and measured nine phthalate metabolites in pools of 2-4 urines collected across one menstrual cycle. We calculated molar sums of metabolites to estimate exposure to di(2-ethylhexyl) phthalate (ΣDEHP), personal care product phthalates (ΣPCPs), and phthalates in plastics (ΣPlastics). Accounting for meaningful predictors from bivariable analyses, our multivariable linear regression models evaluated determinants of phthalate biomarkers in all women (n = 689), non-Hispanic White women only (n = 467), or non-Hispanic Black women only (n = 195). RESULTS In multivariable analyses of all women, those who were perimenopausal, widowed/divorced, non-Hispanic Black, with higher family income, with lower BMI, or who reported more frequent nausea had higher monoethyl phthalate (MEP) and ΣPCP. Non-Hispanic White women who were perimenopausal had lower mono-(3-carboxypropyl) phthalate (MCPP) and monobutyl phthalate (MBP), those who consume alcohol had higher mono-isobutyl phthalate (MiBP), and those with higher BMI had lower MEP and higher MCPP. Alternatively, widowed/divorced Black women had higher ΣDEHP, monobenzyl phthalate (MBzP), and ΣPlastics, whereas Black women with higher income had higher MEP and ΣPCP. Black women who described themselves as having "as much" physical activity as others or who reported a skin condition had lower MBzP and MCPP, respectively. CONCLUSION We identified important determinants of phthalate biomarkers in midlife women and observed some differences by race. Future studies could consider reasons for these differences when developing interventions to reduce phthalate disparities and related health effects.
Collapse
Affiliation(s)
- Brad A Ryva
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Diana K Haggerty
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Diana C Pacyga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jodi A Flaws
- The Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Rita S Strakovsky
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Pirard C, Charlier C. Urinary levels of parabens, phthalate metabolites, bisphenol A and plasticizer alternatives in a Belgian population: Time trend or impact of an awareness campaign? ENVIRONMENTAL RESEARCH 2022; 214:113852. [PMID: 35820649 DOI: 10.1016/j.envres.2022.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A human biomonitoring study was carried out in 2015 within an adult population living in Liege (Belgium). Some phthalate metabolites and parabens were measured in the urine of 252 participants, and information were collected about their food habits, life styles and home environment to identify some predictors of exposure. Concomitantly, an awareness campaign was initiated by the Provincial Authorities of Liege and spread over 2 years. Three years later (2018), 92 of the initial participants provided again urine samples, and the levels of phthalate metabolites, phthalate substitute (DINCH), parabens, bisphenol-A and bisphenol alternatives (bisphenol-S, -F, -Z, -P) were determined and compared to those obtained in 2015 to assess time trends. In 2015, methyl- and ethylparaben were the most abundant parabens (P50 = 9.12 μg/L and 1.1 μg/L respectively), while propyl- and butylparaben were sparsely detected. Except for mono-2-ethylhexyl phthalate and 6-OH-mono-propyl-heptyl phthalate, all other targeted phthalate metabolites were positively quantified in most of the urine samples (between 89 and 98%) with median concentrations ranging between 2.7 μg/L and 21.3 μg/L depending on the metabolite. The multivariate regression models highlighted some significant associations between urinary phthalate metabolite or paraben levels and age, rural or urban character of the residence place, and the use of some personal care products. However, all determination coefficients were weak meaning that the usual covariates included in the models only explained a small part of the variance. Between 2015 and 2018, levels of parabens and phthalate metabolites significantly decreased (from 1.3 to 2.5 fold) except for monoethyl phthalate which seemed to remain quite constant. Contrariwise, all bisphenol alternatives and DINCH metabolites were measured in higher concentrations in 2018 vs 2015 while BPA levels did not differ significantly. However, it was not feasible to unequivocally highlight an impact of the awareness campaign on the exposure levels of the population.
Collapse
Affiliation(s)
- Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium.
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
22
|
Bosch de Basea M, Carsin AE, Abellan A, Cobo I, Lertxundi A, Marin N, Soler-Blasco R, Ibarluzea J, Vrijheid M, Sunyer J, Casas M, Garcia-Aymerich J. Gestational phthalate exposure and lung function during childhood: A prospective population-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119833. [PMID: 35931390 DOI: 10.1016/j.envpol.2022.119833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The potential effect of gestational exposure to phthalates on the lung function levels during childhood is unclear. Therefore, we examined this association at different ages (from 4 to 11 years) and over the whole childhood. Specifically, we measured 9 phthalate metabolites (MEP, MiBP, MnBP, MCMHP, MBzP, MEHHP, MEOHP, MECPP, MEHP) in the urine of 641 gestating women from the INMA study (Spain) and the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC in their offspring at ages 4, 7, 9 and 11. We used linear regression and mixed linear regression with a random intercept for subject to assess the association between phthalates and lung function at each study visit and for the overall childhood, respectively. We also assessed the phthalate metabolites mixture effect on lung function using a Weighted Quantile Sum (WQS) regression. We observed that the phthalate metabolites gestational levels were consistently associated with lower FVC and FEV1 at all ages, both when assessed individually and jointly as a mixture, although most associations were not statistically significant. Of note, a 10% increase in MiBP was related to lower FVC (-0.02 (-0.04, 0)) and FEV1 z-scores (-0.02 (-0.04, -0.01) at age 4. Similar significant reductions in FVC were observed at ages 4 and 7 associated with an increase in MEP and MnBP, respectively, and for FEV1 at age 4 associated with an increase in MBzP. WQS regression consistently identified MBzP as an important contributor to the phthalate mixture effect. We can conclude that the gestational exposure to phthalates was associated with children's lower FVC and FEV1, especially in early childhood, and in a statistically significant manner for MEP, MiBP, MBzP and MnBP. Given the ubiquity of phthalate exposure and its established endocrine disrupting effects in children, our findings support current regulations that limit phthalate exposure.
Collapse
Affiliation(s)
- Magda Bosch de Basea
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alicia Abellan
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona. Spain
| | - Inés Cobo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Faculty of Medicine and Nursery of the University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Natalia Marin
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
23
|
Güil-Oumrait N, Cano-Sancho G, Montazeri P, Stratakis N, Warembourg C, Lopez-Espinosa MJ, Vioque J, Santa-Marina L, Jimeno-Romero A, Ventura R, Monfort N, Vrijheid M, Casas M. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. ENVIRONMENT INTERNATIONAL 2022; 169:107527. [PMID: 36126421 DOI: 10.1016/j.envint.2022.107527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnant women are simultaneously exposed to several non-persistent endocrine-disrupting chemicals, which may influence the risk of childhood obesity and cardiovascular diseases later in life. Previous prospective studies have mostly examined single-chemical effects, with inconsistent findings. We assessed the association between prenatal exposure to phthalates and phenols, individually and as a mixture, and body mass index (BMI) and blood pressure (BP) in preadolescents. METHODS We used data from the Spanish INMA birth cohort study (n = 1,015), where the 1st and 3rd- trimester maternal urinary concentrations of eight phthalate metabolites and six phenols were quantified. At 11 years of age, we calculated BMI z-scores and measured systolic and diastolic BP. We estimated individual chemical effects with linear mixed models and joint effects of the chemical mixture with hierarchical Bayesian kernel machine regression (BKMR). Analyses were stratified by sex and by puberty status. RESULTS In single-exposure models, benzophenone-3 (BP3) was nonmonotonically associated with higher BMI z-score (e.g. Quartile (Q) 3: β = 0.23 [95% CI = 0.03, 0.44] vs Q1) and higher diastolic BP (Q2: β = 1.27 [0.00, 2.53] mmHg vs Q1). Methyl paraben (MEPA) was associated with lower systolic BP (Q4: β = -1.67 [-3.31, -0.04] mmHg vs Q1). No consistent associations were observed for the other compounds. Results from the BKMR confirmed the single-exposure results and showed similar patterns of associations, with BP3 having the highest importance in the mixture models, especially among preadolescents who reached puberty status. No overall mixture effect was found, except for a tendency of higher BMI z-score and lower systolic BP in girls. CONCLUSIONS Prenatal exposure to UV-filter BP3 may be associated with higher BMI and diastolic BP during preadolescence, but there is little evidence for an overall phthalate and phenol mixture effect.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Parisa Montazeri
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maria-Jose Lopez-Espinosa
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad Miguel Hernández, Alicante, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Spain
| | - Alba Jimeno-Romero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
24
|
Gardener H, Nguyen V, Hoepner LA. Phthalate and bisphenol a exposures during pregnancy: Findings from the National Children's Study. ENVIRONMENTAL RESEARCH 2022; 214:114122. [PMID: 35995224 DOI: 10.1016/j.envres.2022.114122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Maternal exposure to phthalates and bisphenol A (BPA) during pregnancy can result in many adverse offspring health outcomes. Exposure to phthalates and BPA can vary depending on consumption of certain foods, some of which may vary by race/ethnicity. This study relates urine phthalate and BPA concentrations to sociodemographic and diet data. Concentrations of bisphenol A (BPA) and 11 phthalate metabolites were measured from spot urine at the third trimester visit of a sample of 485 pregnant women from the National Children's Study Vanguard Study Pilot data from seven U.S. cities. At the same time, food frequency questionnaires (FFQ) using the Diet*Calc software were obtained from 313 (65%) participants to assess dietary behavior. Overall, phthalate metabolites were highest among Hispanic women, particularly mBP, miBP, and mECPP, and these disparities were not explained by diet. Participants who did not attend college had higher concentrations of mBP, mBzP, mEP, and miBP, and lower mCOP. These disparities were also not explained by diet. The causes for these disparities should be further studied to reduce potential negative health outcomes associated with phthalate exposure for children of Hispanic or non-college educated women.
Collapse
Affiliation(s)
- Hannah Gardener
- Department of Neurology, University of Miami Miller School of Medicine, Clinical Research Building, 1120 NW 14th Street, Miami, FL, 33136, USA.
| | - Vivian Nguyen
- College of Medicine and Department of Environmental and Occupational Health Sciences of the School of Public Health, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY, 11230, USA.
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, State University of New York Downstate Health Sciences University School of Public Health, 450 Clarkson Avenue, Brooklyn, NY, 11230, USA.
| |
Collapse
|
25
|
Freire C, Castiello F, Lopez-Espinosa MJ, Beneito A, Lertxundi A, Jimeno-Romero A, Vrijheid M, Casas M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. ENVIRONMENTAL RESEARCH 2022; 213:113606. [PMID: 35716812 DOI: 10.1016/j.envres.2022.113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are widespread, anti-androgenic chemicals known to alter early development, with possible impact on puberty timing. AIM To investigate the association of prenatal phthalate exposure with pubertal development in boys and girls. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and non-phthalate plasticizer DINCH® were quantified in two urine samples collected during pregnancy from mothers participating in the INMA Spanish cohort study. Pubertal assessment of their children at age 7-10 years (409 boys, 379 girls) was conducted using the parent-reported Pubertal Development Scale. Modified Poisson and Weighted Quantile Sum (WQS) regression was employed to examine associations between prenatal phthalates and risk of puberty onset, adrenarche, and gonadarche. Effect modification by child weight status was explored by stratified analysis. RESULTS Prenatal exposure to DEHP was associated with higher risk of puberty onset (relative risk [RR] = 1.32, 95% CI = 1.09-1.59 per each log-unit increase in concentrations) and gonadarche (RR = 1.23, 95% CI = 1.00-1.50) in boys and higher risk of adrenarche (RR = 1.25, 95% CI = 1.03-1.51) in girls at age 7-10 years. In boys, prenatal exposure to DEP, DnBP, and DEHP was also associated with higher risk of adrenarche or gonadarche (RRs = 1.49-1.80) in those with normal weight, and BBzP and DINCH® exposure with lower risk of adrenarche (RR = 0.49, 95% CI = 0.27-0.89 and RR = 0.47, 95% CI = 0.24-0.90, respectively) in those with overweight/obesity. In girls, DiBP, DnBP, and DINCH® were associated with slightly higher risk of gonadarche (RRs = 1.14-1.19) in those with overweight/obesity. In the WQS model, the phthalate mixture was not associated with puberty in boys or girls. CONCLUSION Prenatal exposure to certain phthalates was associated with pubertal development at age 7-10 years, especially earlier puberty in boys with normal weight and girls with overweight/obesity. However, there was no evidence of effect of the phthalate mixture on advancing or delaying puberty in boys or girls.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
26
|
Liu H, Wang Y, Kannan K, Liu M, Zhu H, Chen Y, Kahn LG, Jacobson MH, Gu B, Mehta-Lee S, Brubaker SG, Ghassabian A, Trasande L. Determinants of phthalate exposures in pregnant women in New York City. ENVIRONMENTAL RESEARCH 2022; 212:113203. [PMID: 35358547 PMCID: PMC9232940 DOI: 10.1016/j.envres.2022.113203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 05/17/2023]
Abstract
Previous studies have provided data on determinants of phthalates in pregnant women, but results were disparate across regions. We aimed to identify the food groups and demographic factors that predict phthalate exposure in an urban contemporary pregnancy cohort in the US. The study included 450 pregnant women from the New York University Children's Health and Environment Study in New York City. Urinary concentrations of 22 phthalate metabolites, including metabolites of di-2-ethylhexylphthalate (DEHP), were determined at three time points across pregnancy by liquid chromatography coupled with tandem mass spectrometry. The Diet History Questionnaire II was completed by pregnant women at mid-pregnancy to assess dietary information. Linear mixed models were fitted to examine determinants of urinary phthalate metabolite concentrations. Using partial-linear single-index (PLSI) models, we assessed the major contributors, among ten food groups, to phthalate exposure. Metabolites of DEHP and its ortho-phthalate replacement, diisononyl phthalate (DiNP), were found in >90% of the samples. The sum of creatinine-adjusted DiNP metabolite concentrations was higher in older and single women and in samples collected in summer. Hispanic and non-Hispanic Black women had lower urinary concentrations of summed metabolites of di-n-octyl phthalate (DnOP), but higher concentrations of low molecular weight phthalates compared with non-Hispanic White women. Each doubling of grain products consumed was associated with a 20.9% increase in ∑DiNP concentrations (95%CI: 4.5, 39.9). PLSI models revealed that intake of dried beans and peas was the main dietary factor contributing to urinary ∑DEHP, ∑DiNP, and ∑DnOP levels, with contribution proportions of 76.3%, 35.8%, and 27.4%, respectively. Urinary metabolite levels of phthalates in pregnant women in NYC varied by age, marital status, seasonality, race/ethnicity, and diet. These results lend insight into the major determinants of phthalates levels, and may be used to identify exposure sources and guide interventions to reduce exposures in susceptible populations.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Shilpi Mehta-Lee
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
27
|
Mok S, Lim JE, Lee A, Kim S, Kim S, Lee I, Kho Y, Park J, Kim S, Choi K, Moon HB. Within- and between-person variability of urinary phthalate metabolites and bisphenol analogues over seven days: Considerations of biomonitoring study design. ENVIRONMENTAL RESEARCH 2022; 209:112885. [PMID: 35131323 DOI: 10.1016/j.envres.2022.112885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Urine was used as a part of a human biomonitoring study based on the excretion kinetics of less-persistent contaminants, such as phthalates and bisphenol A (BPA). Despite the advantages of being non-invasive and easy to collect, urine can show a large variability of concentrations of phthalate metabolites and BPA within a person depending on sampling time. Therefore, it is essential to assess the variability of urinary concentrations for comprehensive sampling design in the context of exposure and risk assessments. In this study, 18 phthalate metabolites and eight BPs were measured in all spot urine (n = 401) collected from 12 participants for seven consecutive days to evaluate within- and between-person variabilities. The intraclass correlation coefficients (ICCs) for all spot urines were poor for monomethyl phthalate (ICC: 0.002) and BPA (0.121) but were moderate for monoethyl phthalate (0.514) and monobenzyl phthalate (0.462). Based on the results of di (2-ethylhexyl) phthalate (DEHP) metabolites, the half-life and differences in metabolic capability seem to affect the ICCs. Urinary mono (2-ethylhexyl) phthalate (MEHP), a primary metabolite of DEHP, was suggested as a short-term exposure marker of DEHP in our study. Creatinine- and specific gravity-adjusted concentrations of phthalate metabolites and BPs resulted in increased ICCs, implying requirements for randomly collected spot urine. Most analytes in the first morning voids (FMVs) were correlated significantly with those in the daily composites, suggesting the feasibility of FMVs to estimate the daily exposure dose. This study facilitates a more comprehensive sampling design and data interpretation strategy for human biomonitoring studies.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Aram Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sungmin Kim
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Chemical Platform Technology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
28
|
EL-Desouky NA, Elyamany M, Hanon AF, Atef A, Issak M, Taha SHN, Hussein RF. Association of Phthalate Exposure with Endometriosis and Idiopathic Infertility in Egyptian Women. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Phthalates are compounds found in medical supplies, cellophane wraps, beverage containers, metal can linings, and other products. They have the potential to be significant endocrine disruptors. In experimental animals, thereby affecting their reproductive capacity. Endometriosis is a gynecological condition defined by ectopic endometrial glands and stromal development. Exposure to phthalates has been linked to the development of endometriosis in numerous studies. The dangers of phthalates to women’s reproductive health and fertility have been widely reported.
AIM: So far, the relationship between phthalates and infertility is not proven so we decided to see if there was a link between the urine phthalate metabolite levels and endometriosis or idiopathic infertility in Egyptian women.
METHODS: Our research was carried out at the infertility outpatient clinic of the Faculty of Medicine of Cairo University. It included 100 female subjects aged 18−40-years-old. Group A (idiopathic infertility; n = 40), Group B (endometriosis; n = 40), and Group C (control; n = 20) were the three age-matched groups that were studied. Using high-performance liquid chromatography (HPLC), the urine levels of mono-2-ethylhexyl phthalate (MEHP) were quantified.
RESULTS: The comparison between the study groups has revealed statistically significant differences regarding the urine MEHP levels between Groups A and B. An analysis of the urine MEHP levels in the study Groups A and B has also revealed that the significantly higher urinary MEHP levels are correlated with the use of dietary plastic containers, the use of cosmetics, and the patients’ estrogen levels. Moreover, the urinary MEHP levels of Group A were associated with a history of abortions.
CONCLUSIONS: Higher levels of urinary MEHP are positively associated with female reproductive disorders, specifically endometriosis, idiopathic infertility, and abortion.
Collapse
|
29
|
Wu W, Ma ZL, Yang F, Wu P, Zhang DX, Zeng R, Sun DL, Cao L. Urinary phthalate metabolites in pregnant women: occurrences, related factors, and association with maternal hormones. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33372-33382. [PMID: 35029832 DOI: 10.1007/s11356-022-18590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In this study, we aimed to evaluate phthalate metabolite levels in pregnant women, to explore the factors influencing exposure, and to assess phthalate metabolite levels in relation to thyroid hormone synthesis. We recruited 463 pregnant women and collected urine, blood, and questionnaire data at participant's first prenatal examination. Ten phthalate metabolites were analyzed: mono-isobutyl phthalate (MiBP); mono-methyl phthalate (MMP); mono-ethyl phthalate (MEP); mono-n-butyl phthalate (MnBP); mono-n-octyl phthalate (MOP); mono-benzyl phthalate (MBzP); and the metabolite of di-2-ethylhexyl phthalate (DEHP), which were mono (2-ethylhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and mono-(2-ethyl-5-carboxypentyl) phthalate. Multivariable generalized estimating equation models and linear mixed models were used to predict urinary biomarker concentrations and to assess the associations between phthalate exposure and thyroid hormones. Positive associations were found between phthalate metabolites and lower education (MEP and MOP), living near the road (MEP, MnBP, and ∑DEHP), and consuming more puffed food (MEP and MBzP). In addition, MnBP (percent change [%△] = 4.25; 95% confidence interval [CI] = 0.32, 8.18) and ∑DEHP (%△ = 5.12; 95% CI = 1.25, 8.99) were positively associated with thyroid-stimulating hormones, although MEP and MnBP were inversely associated with free thyroxine and total triiodothyronine. Our findings suggest that certain habits and behaviors were predictive of the positive presence of phthalate metabolites and that certain phthalate esters are associated with altered thyroid hormone levels.
Collapse
Affiliation(s)
- Wei Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zhi-Li Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ping Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - De-Xin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Rong Zeng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dan-Ling Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Liu Cao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Ezhou Maternal and Child Health Hospital, Ezhou, 436000, China.
| |
Collapse
|
30
|
Pacyga DC, Haggerty DK, Nicol M, Henning M, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Identification of profiles and determinants of maternal pregnancy urinary biomarkers of phthalates and replacements in the Illinois Kids Development Study. ENVIRONMENT INTERNATIONAL 2022; 162:107150. [PMID: 35247685 PMCID: PMC8967784 DOI: 10.1016/j.envint.2022.107150] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND/OBJECTIVES Pregnant women are exposed to multiple phthalates and their replacements, which are endocrine disrupting chemicals associated with adverse maternal and child health outcomes. Identifying maternal characteristics associated with phthalate/replacement exposure during pregnancy is important. METHODS We evaluated 13 maternal sociodemographic and lifestyle factors, enrollment year, and conception season as determinants of exposure biomarkers of phthalates and their replacements in 482 pregnant women from the Illinois Kids Development Study (I-KIDS, enrolled 2013-2018). We quantified 19 phthalate/replacement metabolites in pools of five first-morning urines collected across pregnancy. K-means clustering identified women with distinct patterns of biomarker concentrations and principal component analysis (PCA) identified principal component (PC) profiles of biomarkers that exist together. We used multivariable regression models to evaluate associations of predictors with identified k-means clusters and PCs. RESULTS K-means clustering identified two clusters of women: 1) low phthalate/di(2-ethylhexyl) terephthalate (∑DEHTP) and 2) high phthalate/∑DEHTP biomarker concentrations. PCA identified four PCs with loadings heaviest for biomarkers of plasticizer phthalates [di-isononyl, di-isodecyl, di-n-octyl phthalates] (PC1), of other phthalates [dibenzyl, di-n-butyl, di-iso-butyl phthalates] (PC2), of phthalate replacements [∑DEHTP, di(isononyl) cyclohexane-1,2-dicarboxylate (∑DiNCH)] (PC3), and of monoethyl phthalate [MEP] (PC4). Overall, age, marital status, income, parity, pre-pregnancy BMI, caffeine intake, enrollment year, and conception season were independently associated with k-means cluster membership and at least one PC. Additionally, race/ethnicity, education, employment, pregnancy intention, smoking status, alcohol intake, and diet were associated with at least one PC. For instance, women who conceived in the spring, summer, and/or fall months had lower odds of high phthalate/∑DEHTP cluster membership and had lower plasticizer phthalate, phthalate replacement, and MEP PC scores. CONCLUSIONS Conception season, enrollment year, and several sociodemographic/lifestyle factors were predictive of phthalate/replacement biomarker profiles. Future studies should corroborate these findings, with a special focus on replacements to which pregnant women are becoming increasingly exposed.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Diana K Haggerty
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - Megan Nicol
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - Melissa Henning
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Susan L Schantz
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61801, USA; The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
31
|
Chang CH, Tsai YA, Huang YF, Tsai MS, Hou JW, Lin CL, Wang PW, Huang LW, Chen CY, Wu CF, Hsieh CJ, Wu MT, Wang SL, Chen ML. The sex-specific association of prenatal phthalate exposure with low birth weight and small for gestational age: A nationwide survey by the Taiwan Maternal and Infant Cohort Study (TMICS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151261. [PMID: 34715222 DOI: 10.1016/j.scitotenv.2021.151261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 05/16/2023]
Abstract
The Taiwan Maternal and Infant Cohort Study (TMICS) was launched with the aim to assess the effects of prenatal exposure to phthalic acid esters (PAEs) on infant health. A total of 1102 pregnant women were enrolled in this study from 2012 to 2015. All participants completed a structured questionnaire, and provided urine specimens. The urinary concentrations of PAE metabolites in the third trimester were measured using liquid chromatography-electrospray ionization tandem mass spectrometry. Generalized additive model-penalized regression splines and logistic regression models were employed to determine the risk for low birth weight (LBW) or small for gestational age (SGA) among pregnant women exposed to PAEs. After adjustments for other covariates, each incremental unit of ln-transformed mono-n-butyl phthalate (MnBP) for pregnant women increased the odds of SGA in male neonates by 1.44 (95% CI: 0.92-2.23). An inverse association between SGA and maternal MnBP exposure level was observed in female neonates. An increase in one ln-transformed MnBP concentration unit decreased the risk of female SGA to 0.50 (95% CI: 0.24-0.97). In the penalized regression splines, increased risks of LBW/SGA in male neonates were presented while pregnant women exposed to increased MnBP levels. However, an association in the opposite direction was observed between maternal MnBP and LBW or SGA for male and female neonates. This study indicated that high maternal MnBP exposure in the third trimester was associated with LBW or SGA for male infants. Adverse effects on susceptible populations exposed to high levels of PAEs should be of concern.
Collapse
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Global Health and Health Security, Taipei Medical University, Taipei, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Ming-Song Tsai
- Department of OBS & GYN, Cathay General Hospital, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Ling Lin
- Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Chih-Yao Chen
- Division of Obstetrics and High Risk Pregnancy, Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Li Wang
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
32
|
Runkel AA, Mazej D, Snoj Tratnik J, Tkalec Ž, Kosjek T, Horvat M. Exposure of men and lactating women to environmental phenols, phthalates, and DINCH. CHEMOSPHERE 2022; 286:131858. [PMID: 34399256 DOI: 10.1016/j.chemosphere.2021.131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Phthalates and 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH), bisphenols (BPs), parabens (PBs), and triclosan (TCS) are high-production-volume chemicals of pseudo-persistence that are concerning for the environment and human health. This study aims to assess the exposure to 10 phthalates, DINCH, and environmental phenols (3 BPs, 7 PBs, and TCS) of Slovenian men (n = 548) and lactating primiparous women (n = 536). We observed urinary concentrations comparable to studies from other countries and significant differences among the sub-populations. In our study, men had significantly higher levels of phthalates, DINCH, and BPs, whereas the concentrations of PBs in urine were significantly higher in women. The most significant determinant of exposure was the area of residence and the year of sampling (2008-2014) that mirrors trends in the market. Participants from urban or industrialized sampling locations had higher levels of almost all monitored analytes compared to rural locations. In an attempt to assess the risk of the population, hazard quotient (HQ) values were calculated for individual compounds and the chemical mixture. Individual analytes do not seem to pose a risk to the studied population at current exposure levels, whereas the HQ value of the chemical mixture is near the threshold of 1 which would indicate a higher risk. We conclude that greater emphasis on the risk resulting from cumulative exposure to chemical mixtures and additional studies are needed to estimate the exposure of susceptible populations, such as children.
Collapse
Affiliation(s)
- Agneta A Runkel
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | | | - Žiga Tkalec
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Montazeri P, Fossati S, Warembourg C, Casas M, Clemente DBP, Garcia-Esteban R, Nawrot TS, Vrijheid M. Prenatal exposure to phthalates and phenols and preclinical vascular health during early adolescence. Int J Hyg Environ Health 2021; 240:113909. [PMID: 34952328 DOI: 10.1016/j.ijheh.2021.113909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIM Exposure to endocrine-disrupting chemicals may increase cardiovascular risk from early life, but studies in children have shown inconsistent results, most focused on analysis of single chemicals, and none included measures of micro-vascularization as early preclinical markers. This study aimed to evaluate the association between prenatal exposure to phthalates and phenols and macro- and microvascular health during early adolescence. METHODS Using data from a Spanish birth cohort (n = 416), prenatal exposure to eight phthalate metabolites and seven phenols (bisphenol A, four parabens, benzophenone-3, triclosan) were assessed using first and/or third trimester spot-urine concentrations. Macrovascular health (systolic and diastolic blood pressure (SBP and DBP, mmHg), pulse wave velocity (PWV, m/s)) and microvascular health (central retinal artery/vein equivalent (CRAE/CRVE, μm)), were measured at 11 years old. Linear regression models assessed associations for individual chemicals and Bayesian weighted quantile sum regression (BWQS) evaluated the overall association of the phthalate and phenol mixture with cardiovascular health. RESULTS In single exposure models, bisphenol-A was associated with decreased PWV (β per doubling of exposure = -0.06; 95% CI: -0.10, -0.01). Mono-iso-butyl phthalate was associated with an increase in CRAE (β = 1.89; 95% CI: 0.34, 3.44). Methyl- and butyl-parabens were associated with a decrease in CRVE (β = -0.71; 95% CI: -1.41, -0.01) and (β = -0.96; 95% CI: -1.57, -0.35), respectively. No statistically significant associations were observed between any of the exposures and SBP or DBP. BWQS models showed no evidence of associations between the phthalate and phenol mixture and any of the outcomes. CONCLUSIONS Our results provide little evidence to suggest that prenatal exposure to phthalates and phenols is associated with macro- or microvascular health during early adolescence, except a few associations with certain compounds. Errors in exposure measurement and reduced variability in cardiovascular measures at this early age limit our ability to draw strong conclusions.
Collapse
Affiliation(s)
- Parisa Montazeri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Raquel Garcia-Esteban
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
34
|
Lv C, Wei Z, Yue B, Xia N, Huang W, Yue Y, Li Z, Li T, Zhang X, Wang Y. Characterization of diphenyl phthalate as an agonist for estrogen receptor: an in vitro and in silico study. Toxicol Mech Methods 2021; 32:280-287. [PMID: 34697989 DOI: 10.1080/15376516.2021.1998276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phthalate esters (PAEs) are important pollutants in the environment, which can interfere with the endocrine system by mimicking estrogen. However, limited information is available on modulating the estrogen receptor (ER) of five PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), diphenyl phthalate (DPhP) and dicyclohexyl phthalate (DCHP). This study evaluated the agonistic effects of PAEs on human ER. The cytotoxicity assay showed that there were a significant inhibition of the cell proliferation with treatment of five PAEs. Moreover, DPhP does-dependently enhanced ER-mediated transcriptional activity in the reporter gene assay. The increased expression of estrogen-responsive genes (TFF1, CTSD, and GREB1) was also observed in MCF-7 cells treated with DPhP. The result of molecular docking showed that DPhP tended to bind to the agonist conformation of ER compared with the antagonist conformation of ER, demonstrating its agonist characteristic that has been confirmed in the reporter gene assay. Thus, we found that DPhP may be evaluated as an ER agonist in vitro and it can interfere with the normal function of human ER.
Collapse
Affiliation(s)
- Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Wei
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Benjie Yue
- College of Foreign Languages, Jilin Agricultural University, Changchun, China
| | - Ning Xia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yulan Yue
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiezhu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiuxia Zhang
- Office of Retirement Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
35
|
Wu W, Cao L, Zheng TT, Feng SY, Ma GW, He YY, Wu P. Prenatal phthalate exposure reduction through an integrated intervention strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57183-57191. [PMID: 34085200 DOI: 10.1007/s11356-021-14613-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Pregnancy represents a sensitive susceptibility window to phthalate esters (PAEs). In this study, we develop an intervention strategy for reducing the exposure of pregnant women to phthalates. Thirty-five pregnant women, who initially underwent maternity examination, were recruited from an ongoing longitudinal prospective prenatal cohort study. The intervention strategy integrates diet, lifestyle, and environmental factors. Participants were encouraged to modify their behaviors and habits according to the intervention strategy at three different periods. Urine samples were collected from the participants after antenatal examination every month, for 8 months, to measure ten PAE metabolites. Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-n-butyl phthalate (MnBP), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) declined significantly after the 1st intervention, while mono-isobutyl phthalate (MiBP) and mono-methyl phthalate (MMP) noticeably decreased after the 2nd intervention. The sum of the molar concentrations of MEHP, MEHHP, MEOHP, and MECPP reduced by 20 to 40% during subsequent intervention. In addition, the sum of the molar concentrations of MEP, MnBP, MMP, and MiBP as well as the sum of the molar concentrations of the ten metabolites also reduced. Our findings suggest that intervention through written recommendations can effectively reduce the burden of phthalates during pregnancy.
Collapse
Affiliation(s)
- Wei Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| | - Liu Cao
- Ezhou Maternal And Child Health Hospital, Ezhou, 436000, China
| | - Ting-Ting Zheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Shu-Yu Feng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Guan-Wei Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Ying-Ying He
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Ping Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
36
|
Darvishmotevalli M, Moradnia M, Hosseini R, Bina B, Feizi A, Ebrahimpour K, Pourzamani H, Feizabadi GK, Kelishadi R. Association between prenatal phthalate exposure and anthropometric measures of newborns in a sample of Iranian population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50696-50706. [PMID: 33966142 DOI: 10.1007/s11356-021-14182-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 05/15/2023]
Abstract
Phthalates or phthalic acid esters (PAEs) are a group of compounds which they can be entered into the human body through the various pathways. The aim of this study was to examine associations between prenatal phthalates exposure with anthropometric measures of neonates. Urine samples were obtained from 121 Iranian pregnant women at their first trimester of pregnancy, and the levels of monobutyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), and mono (2-ethyl-5hydroxyhexyl) phthalate (MEHHP) metabolites were determined by gas chromatography mass spectrometry (GC/MS). The correlations between the maternal urinary concentrations of phthalate metabolites with anthropometric measures of neonates as well as with the socio-demographic factors of participants (maternal education, age, family income, pre-pregnancy body mass index), their lifestyle variables (smoking habit, food pattern, and physical activity), and use of cleaning products (cosmetic and household cleaning products) were investigated. MBzP, MBP, MEHP, and MEHHP were detected in 100% of the participants with the concentration ranged 120 to 860 μg/g creatinine. Significant correlations were observed between the urinary levels of maternal MBzP (adjusted β = 0.3 (0.001), p = 0.03) and MEHHP (adjusted β = 0.3 (0.001), p = 0.04) with the birth weight of female neonates. MBP (adjusted β = -0.3 (0.02), p = 0.04) and MBzP (adjusted β = -0.3 (0.001), p = 0.02) had negative associations with the head circumference in male and female newborns, respectively. Furthermore, plastic packaging for pickle and passive smoking during pregnancy were identified to be significantly associated with low birth weight (p value < 0.05). Iranian pregnant women had higher concentrations of urinary phthalates compared to the other countries. Based on the findings, the higher prenatal exposure to phthalates could adversely impact the health status of newborns.
Collapse
Affiliation(s)
- Mohammad Darvishmotevalli
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Moradnia
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasem Kiani Feizabadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Wesselink AK, Fruh V, Hauser R, Weuve J, Taylor KW, Orta OR, Claus Henn B, Bethea TN, McClean MD, Williams PL, Calafat AM, Baird DD, Wise LA. Correlates of urinary concentrations of phthalate and phthalate alternative metabolites among reproductive-aged Black women from Detroit, Michigan. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:461-475. [PMID: 32980856 PMCID: PMC7994206 DOI: 10.1038/s41370-020-00270-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Phthalates are endocrine-disrupting chemicals that are widely present in consumer products. In the United States, Black women are more highly exposed to phthalates than other racial/ethnic groups, yet information on predictors of phthalate exposure among Black women is limited. OBJECTIVE We evaluated the association of demographics, lifestyle, reproductive history, and personal care product use with urinary concentrations of phthalate and phthalate alternative metabolites, using cross-sectional data from a study of 754 Black women from Detroit, Michigan (2010-2012). METHODS Women completed questionnaires and provided urine specimens which were analyzed for 16 phthalate and phthalate alternative metabolites. We used linear regression models to estimate mean percentage differences and 95% confidence intervals (CIs) in concentrations across levels of correlates. RESULTS Monoethyl phthalate (MEP) and MBP concentrations were positively associated with personal care product use, particularly nail products. Educational attainment was positively associated with high molecular weight phthalate concentrations but inversely associated with monobenzyl phthalate (MBzP) concentrations. Parity was positively associated with MBzP concentrations and inversely associated with concentrations of MEP and high molecular weight phthalates. SIGNIFICANCE We found that sociodemographics, reproductive characteristics, and use of certain personal care products were associated with urinary phthalate concentrations among Black women. Our results emphasize the importance of examining exposure determinants among multiply marginalized populations.
Collapse
Affiliation(s)
- Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kyla W Taylor
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Olivia R Orta
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
38
|
Al-Saleh I, Elkhatib R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M, McWalter P, Alkhenizan A. Potential health risks of maternal phthalate exposure during the first trimester - The Saudi Early Autism and Environment Study (SEAES). ENVIRONMENTAL RESEARCH 2021; 195:110882. [PMID: 33621597 DOI: 10.1016/j.envres.2021.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Phthalates are the most ubiquitous contaminants that we are exposed to daily due to their wide use as plasticizers in various consumer products. A few studies have suggested that in utero exposure to phthalates can disturb fetal growth and development in humans, because phthalates can interfere with endocrine function. We collected spot urine samples from 291 pregnant women in their first trimester (9.8 ± 2.3 gestational weeks) recruited in an ongoing prospective cohort study in Saudi Arabia. A second urine sample was collected within 1-7 d after enrollment. The aims of this study were to: (1) assess the extent of exposure to phthalates during the first trimester and (2) estimate the risk from single and cumulative exposures to phthalates. Most phthalate metabolites' urinary levels were high, several-fold higher than those reported in relevant studies from other countries. The highest median levels of monoethyl phthalate, mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), and mono-(2-ethylhexyl) phthalate (MEHP) in μg/l (μg/g creatinine) were 245.62 (197.23), 114.26 (99.45), 39.59 (34.02), and 23.51 (19.92), respectively. The MEHP levels were highest among three di (2-ethylhexyl) phthalate (DEHP) metabolites. %MEHP4, the ratio of MEHP to four di (2-ethylhexyl) phthalate metabolites (∑4DEHP), was 44%, indicating interindividual differences in metabolism and excretion. The hazard quotient (HQ) of individual phthalates estimated based on the reference dose (RfD) of the U.S. Environmental Protection Agency indicated that 58% (volume-based) and 37% (creatinine-based) of the women were at risk of exposure to ∑4DEHP (HQ > 1). Based on the tolerable daily intake (TDI) from the European Food Safety Authority, 35/12% (volume-/creatinine-based data) of the women were at risk of exposure to two dibutyl phthalate (∑DBP) metabolites (MiBP and MnBP). The cumulative risk was assessed using the hazard index (HI), the sum of HQs of all phthalates. The percentages of women (volume-/creatinine-based data) at health risks with an HI > 1 were 64/40% and 42/22% based on RfD and TDI, respectively. In view of these indices for assessing risk, our results for the anti-androgenic effects of exposing pregnant women to ∑4DEHP and ∑DBP early during pregnancy are alarming.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Patricia McWalter
- Family Medicine and Polyclinics Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Abdullah Alkhenizan
- Family Medicine and Polyclinics Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
39
|
Bloom MS, Valachovic EL, Begum TF, Kucklick JR, Brock JW, Wenzel AG, Wineland RJ, Cruze L, Unal ER, Newman RB. Association between gestational phthalate exposure and newborn head circumference; impacts by race and sex. ENVIRONMENTAL RESEARCH 2021; 195:110763. [PMID: 33516688 DOI: 10.1016/j.envres.2021.110763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Observational and experimental studies report associations between gestational phthalate exposure and fetal development, yet few data exist to characterize phthalate effects on head circumference (HC) or to estimate the impact of race or sex. To address this data gap, we enrolled 152 African American and 158 white mothers with uncomplicated singleton pregnancies from the Charleston, South Carolina (USA) metropolitan area in a prospective birth cohort. Study participants provided up to two urine specimens during mid and late gestation, completed a study questionnaire, and allowed access to hospital birth records. We measured eight phthalate monoester metabolites using liquid chromatography with tandem mass spectrometry, and calculated molar sums of phthalate parent diesters. After specific gravity correction, we tested for associations between phthalates and neonatal HC (cm) and cephalization index (cm/g) using multiple informant linear regression with inverse probability weighting to account for selection bias between repeated urine sampling, adjusted for maternal race, age, body mass index, education, and smoking. We explored interactions by maternal race and infant sex. A doubling of urinary monoethyl phthalate (MEP) concentration was associated with a -0.49% (95%CI: -0.95%, -0.02%) smaller head circumference, although seven other phthalate metabolites were null. There were no statistically significant associations with cephalization index. HC was larger for whites than African American newborns (p < 0.0001) but similar for males and females (p = 0.16). We detected interactions for maternal race with urinary monobutyl phthalate (MBP; p = 0.03), monobenzyl phthalate (MBzP; p = 0.01), monoethylhexyl phthalate (MEHP; p = 0.05), monomethyl phthalate (MMP; p = 0.02), and the sum of dibutyl phthalate metabolites (∑DBP; p = 0.05), in which reduced HC circumference associations were stronger among whites than African Americans, and interactions for sex with MBP (p = 0.08) and MiBP (p = 0.03), in which associations were stronger for females than males. Our results suggest that gestational phthalate exposure is associated with smaller neonatal HC and that white mothers and female newborns have greater susceptibility.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA.
| | - Edward L Valachovic
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Thoin F Begum
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina Asheville, Asheville, NC, USA
| | - Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC, USA
| | - Elizabeth R Unal
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
40
|
González-Mariño I, Ares L, Montes R, Rodil R, Cela R, López-García E, Postigo C, López de Alda M, Pocurull E, Marcé RM, Bijlsma L, Hernández F, Picó Y, Andreu V, Rico A, Valcárcel Y, Miró M, Etxebarria N, Quintana JB. Assessing population exposure to phthalate plasticizers in thirteen Spanish cities through the analysis of wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123272. [PMID: 32645544 DOI: 10.1016/j.jhazmat.2020.123272] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 05/24/2023]
Abstract
Phthalates are widely used plasticizers that produce endocrine-disrupting disorders. Quantifying exposure is crucial to perform risk assessments and to develop proper health measures. Herein, a wastewater-based epidemiology approach has been applied to estimate human exposure to six of the mostly used phthalates within the Spanish population. Wastewater samples were collected over four weekdays from seventeen wastewater treatment plants serving thirteen cities and ca. 6 million people (12.8 % of the Spanish population). Phthalate metabolite loads in wastewater were transformed into metabolite concentrations in urine and into daily exposure levels to the parent phthalates. Considering all the sampled sites, population-weighted overall means of the estimated concentrations in urine varied between 0.7 ng/mL and 520 ng/mL. Very high levels, compared to human biomonitoring data, were estimated for monomethyl phthalate, metabolite of dimethyl phthalate. This, together with literature data pointing to other sources of this metabolite in sewage led to its exclusion for exposure assessments. For the remaining metabolites, estimated concentrations were closer to those found in urine. Their 4-days average exposure levels ranged from 2 to 1347 μg/(day∙inh), exceeding in some sites the daily exposure thresholds set for di-i-butyl phthalate and di-n-buthyl phthalate by the European Food Safety Authority.
Collapse
Affiliation(s)
- Iria González-Mariño
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain.
| | - Leticia Ares
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosa Montes
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Eva Pocurull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Rosa María Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV) - CIDE (CSIC-University of Valencia-GV), University of Valencia, 46113 Moncada, Spain
| | - Vicente Andreu
- Food and Environmental Safety Research Group (SAMA-UV) - CIDE (CSIC-University of Valencia-GV), University of Valencia, 46113 Moncada, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, 28805, Alcalá de Henares, Spain
| | - Yolanda Valcárcel
- Group of Risks for the Environmental and Public Health (RiSAMA), Medical Specialities and Public Health, Rey Juan Carlos University, 28933 Móstoles (Madrid), Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Néstor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
41
|
Zettergren A, Andersson N, Larsson K, Kull I, Melén E, Georgelis A, Berglund M, Lindh C, Bergström A. Exposure to environmental phthalates during preschool age and obesity from childhood to young adulthood. ENVIRONMENTAL RESEARCH 2021; 192:110249. [PMID: 32980305 DOI: 10.1016/j.envres.2020.110249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 05/24/2023]
Abstract
Obesity rates are increasing globally, and recent theories suggest that phthalates may contribute to obesity development. This longitudinal study aimed to investigate associations between environmental phthalate exposure during childhood and obesity, utilizing data from 100 participants from a Swedish birth cohort. The participants were followed repeatedly from birth and provided spot urine samples at 4 years. Weight and height were measured at ages 4, 8, 16 and 24 years, as well as additional anthropometric indices at 24 years. Urine samples were analysed for 10 phthalate metabolites using liquid chromatography tandem mass spectrometry. Generalized estimating equation models were performed to assess overall and age-specific associations between urinary phthalate concentrations and BMI groups; thin/normal weight vs overweight/obese. After adjustment for potential confounders, overall associations were observed for diisononyl phthalate (DiNP) metabolites mono(oxo-isononyl) phthalate (MOiNP) (OR per increase ng/ml: 1.18; 95% CI: 1.05, 1.33), mono(carboxy-isooctyl) phthalate (MCiOP) (OR: 1.06; 95% CI: 1.01, 1.11) and ∑DiNP (OR: 1.02; 95% CI:1.00, 1.04) and development of overweight/obesity up to age 24 years. Age-specific associations were observed for the same metabolites at 8, 16 and 24 years. Furthermore, linear regression analysis revealed associations between increased body fat % at age 24 years and MHiNP (β: 2.42; 95% CI: 0.44, 4.39), MOiNP (β: 2.32; 95% CI: 0.46, 4.18), MCiOP (β: 2.65; 95% CI: 0.41, 4.89) and ∑DiNP (β: 2.65; 95% CI: 0.52, 4.77). These findings suggest that DiNP exposure during preschool age may be associated with subsequent obesity, however these findings need to be corroborated by further research.
Collapse
Affiliation(s)
- Anna Zettergren
- Institute of Environmental Medicine, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
| | - Kristin Larsson
- Institute of Environmental Medicine, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
| | - Inger Kull
- Sachs' Children and Youth Hospital, Södersjukhuset, SE 118 61, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE 118 83, Stockholm, Sweden.
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, SE 171 77, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, SE 118 61, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE 118 83, Stockholm, Sweden.
| | - Antonios Georgelis
- Centre for Occupational and Environmental Medicine, Stockholm County Council, SE 113 65, Stockholm, Sweden.
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, SE 223 63, Lund, Sweden.
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, SE 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, SE 113 65, Stockholm, Sweden.
| |
Collapse
|
42
|
Martínez-Razo LD, Martínez-Ibarra A, Vázquez-Martínez ER, Cerbón M. The impact of Di-(2-ethylhexyl) Phthalate and Mono(2-ethylhexyl) Phthalate in placental development, function, and pathophysiology. ENVIRONMENT INTERNATIONAL 2021; 146:106228. [PMID: 33157377 DOI: 10.1016/j.envint.2020.106228] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a chemical widely distributed in the environment as is extensively used in the plastic industry. DEHP is considered an endocrine disruptor chemical (EDC) and humans are inevitably and unintentionally exposed to this EDC through several sources including food, beverages, cosmetics, medical devices, among others. DEHP exposure has been associated and may be involved in the development of various pathologies; importantly, pregnant women are a particular risk group considering that endocrine alterations during gestation may impact fetal programming leading to the development of several chronic diseases in adulthood. Recent studies have indicated that exposure to DEHP and its metabolite Mono(2-ethylhexyl) phthalate (MEHP) may impair placental development and function, which in turn would have a negative impact on fetal growth. Studies performed in several trophoblastic and placental models have shown the negative impact of DEHP and MEHP in key processes related to placental development such as implantation, differentiation, invasion and angiogenesis. In addition, many alterations in placental functions like hormone signaling, metabolism, transfer of nutrients, immunomodulation and oxidative stress response have been reported. Moreover, clinical-epidemiological evidence supports the association between DEHP exposure and adverse pregnancy outcomes and pathologies. In this review, we aim to summarize for the first time current knowledge about the impact of DEHP and MEHP exposure on placental development and pathophysiology, as well as the mechanisms involved. We also remark the importance of exploring DEHP and MEHP effects in different trophoblast cell populations and discuss new perspectives regarding this topic.
Collapse
Affiliation(s)
- Luis Daniel Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico.
| |
Collapse
|
43
|
He J, Chang K, Liu S, Ji J, Liu L, Feng Y, Wei J. Phthalate levels in urine of pregnant women and their associated missed abortion risk. Reprod Biol 2020; 21:100476. [PMID: 33387725 DOI: 10.1016/j.repbio.2020.100476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 11/15/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Phthalates are one of the most common environmental endocrine disrupting chemicals (EDCs) in human contact. Prenatal phthalates exposure may adversely affect intrauterine growth, however, little is known about their association. This study aimed to explore the impact of phthalates on the risk of missed abortion. A total of 123 women with missed abortion (cases) and 148 normal pregnant women (controls) were simultaneously collected from Taiyuan, China. Four urinary phthalate metabolites were determined by high-performance liquid chromatography (HPLC). Logistic regression model was used to estimate odds ratios (ORs) and 95 % confidence intervals (95 % CI) of missed abortion associated with phthalate metabolite levels. Four phthalate metabolites, including monomethyl phthalate (MMP), monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), were detected in at least 78.97 % of all participants, with the highest geometric mean concentration of 147.19 ng/mL for MEP of the urine samples. Both MMP (Z = -3.898, P < 0.001) and MBP (Z = -2.198, P = 0.028) concentrations were higher in cases than in controls. There were no significant differences for MEP (Z = -0.285, P = 0.076) and MBzP (Z = -0.878, P = 0.380) concentrations between cases and controls. Furthermore, Logistic analysis revealed that each one-unit increase in log-transformed MMP (OR = 1.49, 95 % CI = 1.14-1.95) was positively associated with missed abortion. Increasing risks of missed abortion were observed the third quartile (Q3) and the highest quartile (Q4) of MMP(OR = 2.21, 95 % CI = 1.06-4.60; OR = 2.85, 95 % CI = 1.34-6.05) compared to the lowest quartile (Q1) of MMP concentrations. We concluded that prenatal phthalates exposure may contribute to an increased risk of missed abortion.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kewei Chang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Sha Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingru Ji
- Department of Obstetrics, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Liangpo Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan Feng
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital, Taiyuan, 030001, Shanxi, China; Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Junni Wei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
44
|
Daniel S, Balalian AA, Insel BJ, Liu X, Whyatt RM, Calafat AM, Rauh VA, Perera FP, Hoepner LA, Herbstman J, Factor-Litvak P. Prenatal and early childhood exposure to phthalates and childhood behavior at age 7 years. ENVIRONMENT INTERNATIONAL 2020; 143:105894. [PMID: 32679391 PMCID: PMC7867029 DOI: 10.1016/j.envint.2020.105894] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Emerging evidence suggests that phthalate exposure may be associated with behavior problems in children and that these associations may be sex specific. METHODS In a follow up study of 411 inner-city minority mothers and their children, mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), monoisobutyl phthalate (MiBP), monethyl phthalate (MEP) and four di-2-ethylhexyl phthalate metabolites (DEHP) were quantified in maternal urine samples collected during the third trimester and in child urine samples at ages 3 and 5 years. The Conners' Parent Rating Scale-Revised: Long Form (CPRS) and Child Behavior Checklist (CBCL) were administered to the mothers to assess children's behavior problems at 7 years of age. The analysis included children with available measures of CBCL, CPRS and phthalates measured in maternal urine. We performed both Quasi-Poisson regression and a mixture analysis using Weighted Quantile Sum(WQS) regression to assess the risk for CPRS scores and for internalizing and externalizing behaviors (from the CBCL) following intra-uterine exposure to the phthalate metabolites for boys and girls separately. RESULTS Among boys, increases in in anxious-shy behaviors were associated with prenatal exposure to MBzP (Mean Ratio [MR] = 1.20, 95%CI 1.05-1.36) and MiBP (Mean Ratio (MR) = 1.22, 95%CI 1.02-1.47). Among girls, increases in perfectionism were associated with MBzP (MR = 1.15, 95%CI 1.01-1.30). In both boys and girls, increases in psychosomatic problems were associated with MiBP (MR = 1.28, 95%CI 1.02-1.60), and MnBP (MR = 1.28, 95%CI 1.02-1.59), respectively. Among girls, decreased hyperactivity was associated with two DEHP metabolites, mono(2-ethyl-5-oxohexyl) phthalate (MR = 0.83, 95%CI 0.71-0.98) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MR = 0.85, 95%CI 0.72-0.99). Using weighted Quantile Sum logistic regression, no associations were found between the Weighted Quantile Sum (WQS) of phthalate metabolites and CPRS scores or externalizing and internalizing behaviors. Nonetheless, when the analysis was performed separately for DEHP and non-DEHP metabolites significant associations were found between the WQS of DEHP metabolites and social problems in boys (OR = 2.15, 95%CI 1.13-4.06, p-value = 0.02) anxious-shy problems in girls (OR = 2.19, 95%CI 1.15-4.16, p = 0.02), and emotional lability problems in all children (OR = 0.61, 95%CI 0.38-0.97, p = 0.04). MEHP and MEOHP were the most highly weighted DEHP metabolites in WQS mixture. The analysis performed with CBCL scale corroborated these associations. CONCLUSION Concentration of non-DEHP metabolites was associated with anxious-shy behaviors among boys. DEHP phthalate metabolites were associated with decreased hyperactivity and impulsivity among girls on CPRS scores. These findings lend further support to the adverse associations between prenatal phthalate exposure and childhood outcomes, and clearly suggest that such associations are sex and mixture specific.
Collapse
Affiliation(s)
- Sharon Daniel
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Pediatrics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center, Beer-Sheva, Israel; Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robin M Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica P Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori A Hoepner
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Environmental & Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Julie Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Sol CM, Santos S, Duijts L, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Philips EM, Trasande L, Jaddoe VWV. Fetal exposure to phthalates and bisphenols and childhood general and organ fat. A population-based prospective cohort study. Int J Obes (Lond) 2020; 44:2225-2235. [PMID: 32920592 DOI: 10.1038/s41366-020-00672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Fetal exposure to phthalates and bisphenols might have long-lasting effects on growth and fat development. Not much is known about the effects on general and organ fat development in childhood. We assessed the associations of fetal exposure to phthalates and bisphenols with general and organ fat measures in school-aged children. METHODS In a population-based, prospective cohort study among 1128 mother-child pairs, we measured maternal urinary phthalate metabolites and bisphenol concentrations in first, second, and third trimester. Offspring body mass index, fat mass index by dual-energy X-ray absorptiometry, and visceral and pericardial fat indices and liver fat fraction were measured by magnetic resonance imaging at 10 years. RESULTS After adjustment for confounders and correction for multiple testing, an interquartile range increase in first trimester phthalic acid concentrations remained associated with a 0.14 (95% confidence interval: 0.05, 0.22) standard deviation score increase in pericardial fat index. We also observed tendencies for associations of higher maternal low molecular weight phthalate urinary concentrations in second trimester with childhood pericardial fat index, but these were not significant after adjustment for multiple testing. High molecular weight phthalate, di-2-ethylhexyl phthalate, and di-n-octyl phthalate concentrations were not associated with childhood outcomes. Maternal urinary bisphenol concentrations were not associated with childhood adiposity. CONCLUSIONS Maternal first trimester phthalic acid concentrations are associated with increased childhood pericardial fat index at 10 years of age, whereas maternal bisphenol concentrations are not associated with childhood adiposity. We did not find significant sex-specific effects. These findings should be considered as hypothesis generating and need further replication and identification of underlying mechanisms.
Collapse
Affiliation(s)
- Chalana M Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA.,Department of Chemistry, the Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA.,Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elise M Philips
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA.,Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA.,Department of Population Health, New York University School of Medicine, New York City, NY, USA.,New York University Wagner School of Public Service, New York City, NY, 10016, USA.,New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Waits A, Chen HC, Kuo PL, Wang CW, Huang HB, Chang WH, Shih SF, Huang PC. Urinary phthalate metabolites are associated with biomarkers of DNA damage and lipid peroxidation in pregnant women - Tainan Birth Cohort Study (TBCS). ENVIRONMENTAL RESEARCH 2020; 188:109863. [PMID: 32846647 DOI: 10.1016/j.envres.2020.109863] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Phthalate exposure and oxidative stress have been linked to adverse reproductive outcomes in experimental studies, whereas no clear line has been drawn for human, especially in pregnant women. This study explored relationships between urinary phthalate metabolites and biomarkers of lipid peroxidation and oxidative and nitrosative DNA damage. Measurements from 97 Taiwanese pregnant women were taken at three different times during second and third trimesters. Five oxidative/nitrosative stress biomarkers - 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-isoprostaglandin F2α (8-isoPF2α), and malondialdehyde (MDA), and 11 phthalate metabolites were measured in urine samples. Linear regressions in each visit and linear mixed-model regressions were fitted to estimate percent changes in oxidative/nitrosative stress biomarkers resulting from inter-tertile increase of phthalate metabolite level and the cumulative concentrations of di (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate. The highest urine concentrations of phthalate metabolites and the greatest number of significant positive associations between phthalate metabolites and oxidative/nitrosative stress biomarkers were observed in the third visit and in repeated measurements analysis, respectively. Of the biomarkers related to DNA damage, 8-OHdG (25.4% inter-tertile increase for mono-iso-butyl phthalate) was more sensitive to phthalate exposure than 8-NO2Gua. Among the biomarkers of lipid peroxidation, HNE-MA (61.2% inter-tertile increase for sum of DEHP metabolites) was more sensitive than 8-isoPF2α and MDA. Our findings support the hypothesis that pregnant phthalate exposure increases the oxidative stress biomarkers of DNA damage and lipid peroxidation. Future research may elucidate the mediating roles of oxidative/nitrosative stress biomarkers in the link between phthalate exposure and adverse reproductive outcomes.
Collapse
Affiliation(s)
- Alexander Waits
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital and College of Medicine, Tainan, Taiwan
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/ Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Fang Shih
- Department of Health Management and Policy, University of Michigan School of Public Health, USA
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
47
|
Alharbi MH, Mumena WA, Hammouda SA. Use of Plastics with Hot Food among Saudi Pregnant Women Is Associated with Increased Concentrations of A1C, Thyroid-Stimulating Hormone, and Homocysteine and Decreased Concentrations of Vitamins and Minerals. Nutrients 2020; 12:nu12092609. [PMID: 32867150 PMCID: PMC7551572 DOI: 10.3390/nu12092609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
Data regarding association between the use of plastics with hot food and levels of vitamins and minerals, and other biochemical parameters are lacking. Cross-sectional data for 740 healthy pregnant Saudi women were collected from 21 health care centres and 2 hospitals from Madinah, Saudi Arabia. Detailed data regarding the frequency of plastic use with hot food were collected, and laboratory analyses of thyroid-stimulating hormone (TSH), homocysteine (HCY), glycated A1C (A1C), and selected vitamins and minerals were also done. Daily use of plastics with hot food was frequently reported among young mothers (p = 0.002). Plastic use with hot food on a daily basis was positively associated with TSH, HCY, and A1C, while it was negatively associated with concentrations of vitamin E, zinc, and selenium. Future research should address the complex hormonal and metabolic abnormalities that are linked to the release of certain components associated with the use of plastics with hot food. Interventions are urgently needed to eliminate the use of plastics with hot food to prevent health complications that may result from the long-term use of these materials.
Collapse
|
48
|
Nishimura Y, Moriya K, Kobayashi S, Araki A, Sata F, Mitsui T, Itoh S, Miyashita C, Cho K, Kon M, Nakamura M, Kitta T, Murai S, Kishi R, Shinohara N. Association of exposure to prenatal phthalate esters and bisphenol A and polymorphisms in the ESR1 gene with the second to fourth digit ratio in school-aged children: Data from the Hokkaido study. Steroids 2020; 159:108637. [PMID: 32165209 DOI: 10.1016/j.steroids.2020.108637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022]
Abstract
Phthalates and bisphenol A (BPA) are estrogenic endocrine disruptors. Polymorphisms in the gene encoding estrogen receptor 1 (ESR1) may contribute to the ratio of the lengths of the second and fourth digits (2D:4D), which is considered an index of prenatal exposure to sex hormones. Thus, we investigated whether ESR1 polymorphisms modify the effects of prenatal exposure to phthalates and BPA on 2D:4D in a birth cohort. Maternal serum in the first trimester was used to determine prenatal exposure to these compounds. Six hundred twenty-three children (7 years of age) provided mean 2D:4D from photocopies and were genotyped for single nucleotide polymorphisms in ESR1, particularly PvuII (T > C, dbSNP: rs2234693), XbaI (A > G, dbSNP: rs9340799), and rs2077647 (A > G). The associations among compound exposure, mean 2D:4D, and ESR1 polymorphisms were assessed by multiple linear regression adjusted for potential cofounding factors. Boys with the AG/GG genotype at rs2077647 in the group exposed to high levels of mono(2-ethylhexyl) phthalate (MEHP) or Σ Di(2-ethylhexyl) phthalate (DEHP) showed feminized 2D:4D compared with boys with the AA genotype at rs2077647 who had low exposure to MEHP or ΣDEHP (MEHP: increase in mean 2D:4D of 1.51%, 95% confidence interval [CI]: 0.40-2.63; ΣDEHP: increase in mean 2D:4D of 1.37%, 95% CI: 0.25-2.49). No significant differences were found among girls. There were no associations between mean 2D:4D and metabolites other than MEHP or BPA. These data suggest that ESR1 polymorphisms modify the effects of prenatal exposure to DEHP on mean 2D:4D among boys.
Collapse
Affiliation(s)
- Yoko Nishimura
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan; Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan; Department of Urology, Sapporo City General Hospital, North-11, West-13, Chuo-ku, Sapporo 060-8604, Japan.
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo 162-8473, Japan
| | - Takahiko Mitsui
- Department of Urology, Graduate School of Medical Science, University of Yamanashi, Simokato-1110, Chuo 409-3898, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, North-14, West-5 Kita-ku, Sapporo 060-8648, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| | - Michiko Nakamura
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takeya Kitta
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Sachiyo Murai
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
49
|
Exposure to Endocrine Disrupting Chemicals in the Dutch general population is associated with adiposity-related traits. Sci Rep 2020; 10:9311. [PMID: 32518352 PMCID: PMC7283255 DOI: 10.1038/s41598-020-66284-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Endocrine Disrupting Chemicals (EDCs) have been linked to a variety of cardiometabolic diseases. Yet, few studies have investigated the exposure to EDCs and cardiometabolic health taking lifestyle into account. We aimed to assess exposure to five parabens, three bisphenols and thirteen metabolites of in total eight phthalates in a general Dutch population and to investigate their association with cardiometabolic traits. In 662 adult subjects from the population-based Lifelines cohort, 21 EDC analytes were measured in 24-hour urine collected in 2012, using LC-MS/MS. Association analyses between cardiometabolic traits and EDC concentrations were performed using multivariate linear models adjusting for age, sex, education, smoking, diabetes, physical activity and caloric intake. Quartile analyses were performed to assess linearity. Bisphenol A, four parabens and eight phthalate metabolites were detected in 84-100% of the samples. Adjusted associations for MiBP and MBzP and adiposity-related traits were robust for multiple testing (Beta’s, BMI: 1.12, 2.52; waist circumference: 0.64, 1.56, respectively; FDR < 0.009). Associations for triglyceride, HDL-cholesterol, glucose and blood pressure were not. Linearity was confirmed for significant associations. Exposure to EDCs in the Dutch population is ubiquitous. We found direct associations between phthalates and adiposity-related traits. Prospective studies are needed to confirm these findings.
Collapse
|
50
|
Sanchis Y, Coscollà C, Corpas-Burgos F, Vento M, Gormaz M, Yusà V. Biomonitoring of bisphenols A, F, S and parabens in urine of breastfeeding mothers: Exposure and risk assessment. ENVIRONMENTAL RESEARCH 2020; 185:109481. [PMID: 32278926 DOI: 10.1016/j.envres.2020.109481] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/28/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study we used human biomonitoring to assess the internal exposure and the risk to four parabens and three bisphenols in 103 Spanish breastfeeding mothers participating in the BETTERMIILK project. Urinary methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) presented detection frequencies ranging from 12% (BP) to 92% (MP), while bisphenol A (BPA), bisphenol F (BPF) and bisphenol S (BPS) were detected in 76% (BPA) and 20% (BPF, BPS) of the mothers. Average paraben concentrations (geometric mean) ranged from 0.021 ng mL-1 (BP) to 17.7 ng mL-1 (MP), whereas bisphenols had geometric means concentrations from 0.042 ng mL-1 (BPF) to 0.927 ng mL-1 (BPA). Except for BPA, the estimated daily intakes (EDI) were calculated in order to interpret urinary levels in a risk assessment context. The obtained EDIs ranged from 0.00042 mg/kg/day for PP to 0.0434 mg/kg/day for MP and EP. A hazard quotient (HQ) was calculated for BPA (0.0049) and parabens (0.001-0.004), showing no risk in the studied population. Sociodemographic characteristics, food consumption, and usage patterns of personal care products (PCPs) were investigated as possible determinants of exposure. Use of makeup and skincare products were associated with higher concentrations of MP and PP, respectively. Regarding dietary habits, MP was also associated with the consumption of packaged and bakery products.
Collapse
Affiliation(s)
- Yovana Sanchis
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Máximo Vento
- Neonatal Division at the University and Polytechnic Hospital La Fe, Avenida Abril Martorell, 106, 46026, Valencia, Spain
| | - María Gormaz
- Neonatal Division at the University and Polytechnic Hospital La Fe, Avenida Abril Martorell, 106, 46026, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain; Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100, Burjassot, Spain.
| |
Collapse
|