1
|
Chen X, Zhang S, Jiang D, Li Y, Yin M, Fang C, Lv Z, Huang Y, Yang H, Zhang H, Zhang J, Fu Q, Wang H, Jiang W, Chen Y, Li X. Prenatal heavy metal exposure and pediatric asthma, allergic rhinitis, atopic dermatitis: a systematic review and meta-analysis. Expert Rev Clin Immunol 2024; 20:1401-1409. [PMID: 39109589 DOI: 10.1080/1744666x.2024.2390024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/21/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE We review the prevalence of allergic diseases in children across prenatal exposures to heavy metals. METHODS This systematic review and meta-analysis is registered in the PROSPERO database (CRD42023478471). A comprehensive search of PubMed, Web of Science, Medline and Cochrane library was conducted from the database inception until 31 October 2023. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the quality of included studies. We used a random-effects model to summarize the effects from the studies. RESULTS A total of 16 studies were included, 120,065 mother-child pairs enrolled. The NOS scores indicated that the quality of the literature included in the study was of a high standard. CONCLUSION The final results indicate that prenatal exposure to Pb increased the incidence of wheeze and Eczema in infants, and exposure to Ni and CD increased the incidence of AD in infants.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shipeng Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Dongxi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yu Li
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Man Yin
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Caishan Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zeyi Lv
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yue Huang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hao Yang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hui Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Jianfeng Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Qinwei Fu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hanyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Wenjing Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yang Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xinrong Li
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
2
|
Xiang Y, Wang Y, Deng Y, Wang T, Chen J, He M. Independent and joint associations of multiple metals exposure with vital capacity index: a cross-sectional study in Chinese children and adolescents. Int Arch Occup Environ Health 2024; 97:791-801. [PMID: 38969801 DOI: 10.1007/s00420-024-02085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE The current study aimed to explore the relationships between urinary metals and vital capacity index (VCI) in 380 children and adolescents in Northeast China using a variety of statistical methods. METHODS A cross-sectional survey was conducted among 380 children and adolescents in Liaoning Province, China. To assess the relationships between urinary metals and VCI, Elastic-net (ENET) regression, multivariate linear regression, weighted quantile sum (WQS), bayesian kernel machine regression (BKMR) and quantile-based g computation (qgcomp) were adopted. RESULTS The ENET model selected magnesium (Mg), vanadium (V), manganese (Mn), arsenic (As), tin (Sn) and lead (Pb) as crucial elements. In multiple linear regression, we observed urinary Pb, Mn was negatively correlated with VCI individually in both total study population and adolescents (all p values < 0.05) in the adjustment model. The WQS indices were negatively related with VCI in total study population (β=-3.19, 95%CI: -6.07, -0.30) and adolescents (β=-3.46, 95%CI: -6.58, -0.35). The highest weight in total study population was Pb (38.80%), in adolescents was Mn (35.10%). In the qgcomp, Pb (31.90%), Mn (27.20%) were the major negative contributors to the association in the total population (β=-3.51, 95%CI: -6.29, -0.74). As (42.50%), Mn (39.90%) were the main negative contributors (β=-3.95, 95% CI: -6.68, -1.22) among adolescents. The results of BKMR were basically consistent with WQS and qgcomp analyses. CONCLUSIONS Our results indicated that Pb and Mn were priority toxic materials on VCI. The cumulative effect of metals was negatively related to VCI, and this relationship was more pronounced in adolescents.
Collapse
Affiliation(s)
- Yuting Xiang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yuting Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ye Deng
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianyun Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jiamei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Fu Z, Zhang X, Zhong C, Gao Z, Yan Q. Association between single and mixed exposure to polycyclic aromatic hydrocarbons and biological aging. Front Public Health 2024; 12:1379252. [PMID: 38903587 PMCID: PMC11188445 DOI: 10.3389/fpubh.2024.1379252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aging is one of the most important public health issues. Previous studies on the factors affecting aging focused on genetics and lifestyle, but the association between polycyclic aromatic hydrocarbons (PAHs) and aging is still unclear. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) 2003-2010. A total of 8,100 participants was used to construct the biological age predictors by using recent advanced algorithms Klemera-Doubal method (KDM) and Mahalanobis distance. Two biological aging indexes, recorded as KDM-BA acceleration and PhenoAge acceleration, were used to investigate the relationship between single PAHs and biological age using a multiple linear regression analysis, and a weighted quantile sum (WQS) model was constructed to explore the mixed effects of PAHs on biological age. Finally, we constructed the restricted cubic spline (RCS) model to assess the non-linear relationship between PAHs and biological age. Results Exposure to PAHs was associated with PhenoAge acceleration. Each unit increase in the log10-transformed level of 1-naphthol, 2-naphthol, and 2-fluorene was associated with a 0.173 (95% CI: 0.085, 0.261), 0.310 (95% CI: 0.182, 0.438), and 0.454 (95% CI: 0.309, 0.598) -year increase in PhenoAge acceleration, respectively (all corrected P < 0.05). The urinary PAH mixture was relevant to KDM-BA acceleration (β = 0.13, 95% CI: 0, 0.26, P = 0.048) and PhenoAge acceleration (β = 0.59, 95% CI: 0.47, 0.70, P < 0.001), and 2-naphthol had the highest weight in the weighted quantile sum (WQS) regression. The RCS analyses showed a non-linear association between 2-naphthol and 2-fluorene with KDM-BA acceleration (all P < 0.05) in addition to a non-linear association between 1-naphthol, 2-naphthol, 3-fluorene, 2-fluorene, and 1-pyrene with PhenoAge acceleration (all P < 0.05). Conclusion Exposure to mixed PAHs is associated with increased aging, with 2-naphthol being a key component of PAHs associated with aging. This study has identified risk factors in terms of PAH components for aging.
Collapse
Affiliation(s)
- Zuqiang Fu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Sherris AR, Loftus CT, Szpiro AA, Dearborn LC, Hazlehurst MF, Carroll KN, Moore PE, Adgent MA, Barrett ES, Bush NR, Day DB, Kannan K, LeWinn KZ, Nguyen RHN, Ni Y, Riederer AM, Robinson M, Sathyanarayana S, Zhao Q, Karr CJ. Prenatal polycyclic aromatic hydrocarbon exposure and asthma at age 8-9 years in a multi-site longitudinal study. Environ Health 2024; 23:26. [PMID: 38454435 PMCID: PMC10921622 DOI: 10.1186/s12940-024-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND AIM Studies suggest prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) may influence wheezing or asthma in preschool-aged children. However, the impact of prenatal PAH exposure on asthma and wheeze in middle childhood remain unclear. We investigated these associations in socio-demographically diverse participants from the ECHO PATHWAYS multi-cohort consortium. METHODS We included 1,081 birth parent-child dyads across five U.S. cities. Maternal urinary mono-hydroxylated PAH metabolite concentrations (OH-PAH) were measured during mid-pregnancy. Asthma at age 8-9 years and wheezing trajectory across childhood were characterized by caregiver reported asthma diagnosis and asthma/wheeze symptoms. We used logistic and multinomial regression to estimate odds ratios of asthma and childhood wheezing trajectories associated with five individual OH-PAHs, adjusting for urine specific gravity, various maternal and child characteristics, study site, prenatal and postnatal smoke exposure, and birth year and season in single metabolite and mutually adjusted models. We used multiplicative interaction terms to evaluate effect modification by child sex and explored OH-PAH mixture effects through Weighted Quantile Sum regression. RESULTS The prevalence of asthma in the study population was 10%. We found limited evidence of adverse associations between pregnancy OH-PAH concentrations and asthma or wheezing trajectories. We observed adverse associations between 1/9-hydroxyphenanthrene and asthma and persistent wheeze among girls, and evidence of inverse associations with asthma for 1-hydroxynathpthalene, which was stronger among boys, though tests for effect modification by child sex were not statistically significant. CONCLUSIONS In a large, multi-site cohort, we did not find strong evidence of an association between prenatal exposure to PAHs and child asthma at age 8-9 years, though some adverse associations were observed among girls.
Collapse
Affiliation(s)
- Allison R Sherris
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US.
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, US
| | - Logan C Dearborn
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | - Marnie F Hazlehurst
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | | | - Paul E Moore
- Vanderbilt University Medical Center, Nashville, TN, US
| | | | - Emily S Barrett
- Rutgers University School of Public Health, Piscataway, NJ, US
| | | | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, US
| | | | | | | | - Yu Ni
- San Diego State University, San Diego, CA, US
| | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | | | | | - Qi Zhao
- University of Tennessee Health Science Center, Memphis, TN, US
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| |
Collapse
|
5
|
Wang T, Zhang Y, Li G, Zou H. Alternative stepwise adsorption process of environmental waste-based biochar for treating dental wastewater containing lead and chromium. ENVIRONMENTAL POLLUTANTS AND BIOAVAILABILITY 2023; 35. [DOI: 10.1080/26395940.2023.2288877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/23/2023] [Indexed: 01/20/2025]
Affiliation(s)
- Tian Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - You Zhang
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Guihong Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Huiru Zou
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| |
Collapse
|
6
|
Signes-Pastor AJ, Notario-Barandiaran L, Guill M, Madan J, Baker E, Jackson B, Karagas MR. Prenatal exposure to metal mixtures and lung function in children from the New Hampshire birth cohort study. ENVIRONMENTAL RESEARCH 2023; 238:117234. [PMID: 37793590 DOI: 10.1016/j.envres.2023.117234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Prenatal exposure to metals/metalloids, even at common US population levels, may pose risks to fetal health, and affect children's lung function. Yet, the combined effects of simultaneous prenatal exposures on children's lung function remain largely unexplored. This study analyzed 11 metals (As speciation, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Sn, Zn) in maternal urine during weeks 24-28 of gestation and evaluated lung function, including forced vital capacity (FVC) and forced expiratory volume in the first second of expiration (FEV1), in 316 US mother-child pairs at around age 7. We used Bayesian Kernel Machine Regression (BKMR), weighted quantile sum regression (WQSR), and multiple linear regression to examine the association between metal mixture exposure and children's lung function, adjusting for maternal smoking, child age, sex, and height. In BKMR models assessing combined exposure effects, limited evidence of metal non-linearity or interactions was found. Nevertheless, Co, As species, and Pb showed a negative association, while Mo exhibited a positive association with children's FVC and FEV1, with other metals held constant at their medians. The weighted index, from WQSR analysis assessing the cumulative impact of all metals, highlighted prenatal Mo with the highest positive weight, and Co, As, and Sb with the most substantial negative weights on children's FVC and FEV1. Urinary Co and Pb were negatively associated with FVC (β = -0.09, 95% confidence interval (CI) (-0.18; -0.01) and β = -0.07, 95% CI (-0.13; 0.00), respectively). Co was also negatively associated with FEV1 (β = -0.09, 95% CI (-0.18; 0.00). There was a negative association between As and FVC, and a positive association between Mo and both FVC and FEV1, though with wide confidence intervals. Our findings suggest that prenatal trace element exposures may impact children's lung function, emphasizing the importance of reducing toxic exposures and maintaining adequate nutrient levels.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA; Unidad de Epidemiología de la Nutrición. Universidad Miguel Hernández, Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain.
| | - Leyre Notario-Barandiaran
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA; Unidad de Epidemiología de la Nutrición. Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain
| | - Margaret Guill
- Department of Pediatrics, Dartmouth College, Lebanon, NH, USA
| | - Juliette Madan
- Department of Pediatrics, Dartmouth College, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Brian Jackson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA.
| |
Collapse
|
7
|
Chen Y, Zhao A, Li R, Kang W, Wu J, Yin Y, Tong S, Li S, Chen J. Independent and combined associations of multiple-heavy-metal exposure with lung function: a population-based study in US children. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01565-0. [PMID: 37097600 DOI: 10.1007/s10653-023-01565-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Previous research has found relationships between some single metals and lung function parameters. However, the role of simultaneous multi-metal exposure is poorly understood. The crucial period throughout childhood, when people are most susceptible to environmental dangers, has also been largely ignored. The study aimed to evaluate the joint and individual associations of 12 selected urinary metals with pediatric lung function measures using multi-pollutant approaches. A total of 1227 children aged 6-17 years from the National Health and Nutrition Examination Survey database of the 2007-2012 cycles were used. The metal exposure indicators were 12 urine metals adjusted for urine creatinine, including arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), mercury (Hg), molybdenum (Mo), lead (Pb), antimony (Sb), thallium (Tl), tungsten (Tu), and uranium (Ur). The outcomes of interest were lung function indices, including the 1st second of a forceful exhalation (FEV1), forced vital capacity (FVC), forced expiratory flow between 25 and 7% of vital capacity (FEF25-75%), and peak expiratory flow (PEF). Multivariate linear regression, quantile g-computation (QG-C), and Bayesian kernel machine regression models (BKMR) were adopted. A significantly negative overall effect of metal mixtures on FEV1 (β = - 161.70, 95% CI - 218.12, - 105.27; p < 0.001), FVC (β = - 182.69, 95% CI - 246.33, - 119.06; p < 0.001), FEF25-75% (β = - 178.86 (95% CI - 274.47, - 83.26; p < 0.001), and PEF (β = - 424.17, 95% CI - 556.55, - 291.80; p < 0.001) was observed. Pb had the largest negative contribution to the negative associations, with posterior inclusion probabilities (PIPs) of 1 for FEV1, FVC, and FEF25-75%, and 0.9966 for PEF. And Pb's relationship with lung function metrics showed to be nonlinear, with an approximate "L" shape. Potential interactions between Pb and Cd in lung function decline were observed. Ba was positively associated with lung function metrics. Metal mixtures were negatively associated with pediatric lung function. Pb might be a crucial element. Our findings highlight the need for prioritizing children's environmental health to protect them from later respiratory disorders and to guide future research into the toxic mechanisms of metal-mediated lung function injury in the pediatric population.
Collapse
Affiliation(s)
- Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
| | - Wenhui Kang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
| | - Jinhong Wu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shilu Tong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China.
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianyu Chen
- College of Public Health, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|