1
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
2
|
Khademi SMH, Sahl C, Happonen L, Forsberg Å, Påhlman LI. The twin-arginine translocation system is vital for cell adhesion and uptake of iron in the cystic fibrosis pathogen Achromobacter xylosoxidans. Virulence 2024; 15:2284513. [PMID: 37974335 PMCID: PMC11533796 DOI: 10.1080/21505594.2023.2284513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Achromobacter xylosoxidans is an emerging pathogen that causes airway infections in patients with cystic fibrosis. Knowledge of virulence factors and protein secretion systems in this bacterium is limited. Twin arginine translocation (Tat) is a protein secretion system that transports folded proteins across the inner cell membranes of gram-negative bacteria. Tat has been shown to be important for virulence and cellular processes in many different bacterial species. This study aimed to investigate the role of Tat in iron metabolism and host cell adhesion in A. xylosoxidans. Putative Tat substrates in A. xylosoxidans were identified using the TatFind, TatP, and PRED-Tat prediction tools. An isogenic tatC deletion mutant (ΔtatC) was generated and phenotypically characterized. The wild-type and ΔtatC A. xylosoxidans were fractionated into cytosolic, membrane, and periplasmic fractions, and the expressed proteome of the different fractions was analysed using liquid chromatography-mass spectrometry (LC-MS/MS). A total of 128 putative Tat substrates were identified in the A. xylosoxidans proteome. The ΔtatC mutant showed attenuated host cell adhesion, growth rate, and iron acquisition. Twenty predicted Tat substrates were identified as expressed proteins in the periplasmic compartment, nine of which were associated with the wild type. The data indicate that Tat secretion is important for iron acquisition and host cell adhesion in A. xylosoxidans.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Cecilia Sahl
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, Umeå
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Sweden, Sweden
| |
Collapse
|
3
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Gimenez MR, Chandra G, Van Overvelt P, Voulhoux R, Bleves S, Ize B. Genome wide identification and experimental validation of Pseudomonas aeruginosa Tat substrates. Sci Rep 2018; 8:11950. [PMID: 30093651 PMCID: PMC6085387 DOI: 10.1038/s41598-018-30393-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
In bacteria, the twin-arginine translocation (Tat) pathway allows the export of folded proteins through the inner membrane. Proteins targeted to this system are synthesized with N-terminal signal peptides bearing a conserved twin-arginine motif. The Tat pathway is critical for many bacterial processes including pathogenesis and virulence. However, the full set of Tat substrates is unknown in many bacteria, and the reliability of in silico prediction methods largely uncertain. In this work, we performed a combination of in silico analysis and experimental validation to identify a core set of Tat substrates in the opportunistic pathogen Pseudomonas aeruginosa. In silico analysis predicted 44 putative Tat signal peptides in the P. aeruginosa PA14 proteome. We developed an improved amidase-based Tat reporter assay to show that 33 of these are real Tat signal peptides. In addition, in silico analysis of the full translated genome revealed a Tat candidate with a missassigned start codon. We showed that it is a new periplasmic protein in P. aeruginosa. Altogether we discovered and validated 34 Tat substrates. These show little overlap with Escherichia coli Tat substrates, and functional analysis points to a general role for the P. aeruginosa Tat system in the colonization of environmental niches and pathogenicity.
Collapse
Affiliation(s)
- Maxime Rémi Gimenez
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Perrine Van Overvelt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Bérengère Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France.
| |
Collapse
|
5
|
Differential Proteome Between Patient-Related and Non-related Environmental Isolates of Legionella pneumophila. Curr Microbiol 2017; 74:344-355. [PMID: 28138785 DOI: 10.1007/s00284-017-1198-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Molecular epidemiologic studies of Legionella have shown different molecular types coexisting in the same environment, with only one having the ability to trigger an outbreak. We therefore studied the proteome of isolates of these different molecular types in search of the proteins responsible for infection. In this study, we performed a differential proteomic analysis between patient-related and non-patient-related environmental isolates using two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry. Sixty-three spots were observed as being different between the two groups; 31 spots were identified corresponding to 23 different proteins. Patient-related isolates overexpressed proteins associated with metabolism, with enzymes of the tricarboxylic acid cycle and the degradation pathways being the most abundant proteins identified. However, the largest group of non-patient-related proteins was associated with stress response. Furthermore, the MOMP protein was located in different spots depending on their patient-related or non-patient-related origin, suggesting different post-translational modifications. According to these results, different bacterial adaptation pathways are activated in stress conditions which influence their ability to produce infection.
Collapse
|
6
|
Zhang H, Jia Y, Xie X, Wang M, Zheng Y, Xu S, Zhang W, Wang Q, Huang X, Du H. RpoE promotes invasion and intracellular survival by regulating SPI-1 and SPI-2 in Salmonella enterica serovar Typhi. Future Microbiol 2016; 11:1011-24. [PMID: 27492279 DOI: 10.2217/fmb.16.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM To demonstrate the role of RpoE during the later stage of hyperosmotic stress in Salmonella. MATERIALS & METHODS Expressions of SPI-1 and SPI-2 under hyperosmotic stress for 120 min were investigated by a microarray, and the invasion and intracellular survival of wild-type and ΔrpoE strains were compared. The global differential expression of bacterial proteins between the wild-type and ΔrpoE strains was examined after 120 min of hyperosmotic stress. RESULTS SPI-1 and SPI-2 were repressed, and the invasion and intracellular survival were defected in the ΔrpoE strain. Thirteen bacterial-associated proteins and 11 secreted proteins differed significantly between the wild-type and ΔrpoE strains. CONCLUSION RpoE may promote invasion and intracellular survival by regulating the expression of SPI-1 and SPI-2.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yanwei Jia
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Shungao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Wei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Xinxiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, PR China
| |
Collapse
|
7
|
Aurass P, Gerlach T, Becher D, Voigt B, Karste S, Bernhardt J, Riedel K, Hecker M, Flieger A. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors. Mol Cell Proteomics 2015; 15:177-200. [PMID: 26545400 DOI: 10.1074/mcp.m115.053579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/28/2022] Open
Abstract
Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests their phase specific function. The distinct temporal or spatial presence of such proteins might have important implications for functional assignments in the future or for use as life-stage specific markers for pathogen analysis.
Collapse
Affiliation(s)
- Philipp Aurass
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Thomas Gerlach
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Dörte Becher
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Birgit Voigt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Susanne Karste
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Jörg Bernhardt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Katharina Riedel
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Michael Hecker
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Antje Flieger
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany;
| |
Collapse
|
8
|
Scaturro M, Barello C, Giusti MD, Fontana S, Pinci F, Giuffrida MG, Ricci ML. Identification and characterization of genes, encoding the 3-hydroxybutyrate dehydrogenase and a putative lipase, in an avirulent spontaneousLegionella pneumophilaserogroup 6 mutant. APMIS 2014; 123:330-41. [DOI: 10.1111/apm.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/22/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Maria Scaturro
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Cristina Barello
- Istituto di Scienze delle Produzioni Alimentari; CNR; Sezione di Torino; Colleretto Giacosa (TO) Italy
| | - Melania De Giusti
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Stefano Fontana
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Federica Pinci
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Maria Gabriella Giuffrida
- Istituto di Scienze delle Produzioni Alimentari; CNR; Sezione di Torino; Colleretto Giacosa (TO) Italy
| | - Maria Luisa Ricci
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
9
|
Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish. Appl Microbiol Biotechnol 2012; 97:3545-57. [DOI: 10.1007/s00253-012-4462-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
|
10
|
Walther TH, Grage SL, Roth N, Ulrich AS. Membrane Alignment of the Pore-Forming Component TatAd of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy. J Am Chem Soc 2010; 132:15945-56. [DOI: 10.1021/ja106963s] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Torsten H. Walther
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stephan L. Grage
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Nadine Roth
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anne S. Ulrich
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One 2010; 5:e11718. [PMID: 20661449 PMCID: PMC2908689 DOI: 10.1371/journal.pone.0011718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/17/2010] [Indexed: 01/05/2023] Open
Abstract
Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.
Collapse
|
12
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
13
|
Rodríguez-Sanz M, Antúnez-Lamas M, Rojas C, López-Solanilla E, Palacios JM, Rodríguez-Palenzuela P, Rey L. The Tat pathway of plant pathogen Dickeya dadantii 3937 contributes to virulence and fitness. FEMS Microbiol Lett 2010; 302:151-8. [PMID: 19929966 DOI: 10.1111/j.1574-6968.2009.01844.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Protein secretion plays a very important role in the virulence of the bacterium Dickeya dadantii, the causative agent of soft rot disease, in a wide range of plant species. We studied the contribution of the twin-arginine translocation (Tat) protein system to the adaptation of D. dadantii 3937 to different growth conditions and to the interaction with the plant host. First, a list of 44 putative Tat substrates was obtained using bioinformatic programs taking advantage of the availability of the complete sequence of this bacterium. Second, a tatC mutant strain was constructed and analysed. The mutant displayed a pleiotropic phenotype, showing limited growth in an iron-depleted medium, higher sensitivity to copper, reduced motility on soft agar plates and attenuated virulence in witloof chicory leaves. Our results indicate the Tat system as an important determinant of the virulence and fitness of D. dadantii 3937. Potential Tat substrates related to the tatC mutant phenotype are discussed.
Collapse
Affiliation(s)
- Manuel Rodríguez-Sanz
- Departamento de Biotecnología, E.T.S.I. Agrónomos, Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Delpino MV, Comerci DJ, Wagner MA, Eschenbrenner M, Mujer CV, Ugalde RA, Fossati CA, Baldi PC, Delvecchio VG. Differential composition of culture supernatants from wild-type Brucella abortus and its isogenic virB mutants. Arch Microbiol 2009; 191:571-581. [PMID: 19436993 DOI: 10.1007/s00203-009-0484-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/17/2009] [Accepted: 04/30/2009] [Indexed: 01/18/2023]
Abstract
The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis-trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.
Collapse
Affiliation(s)
- M Victoria Delpino
- IDEHU, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4to. Piso, 1113 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
De Buck E, Lammertyn E, Anné J. The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 2008; 16:442-53. [PMID: 18715784 DOI: 10.1016/j.tim.2008.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/23/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
The twin-arginine translocation (Tat) pathway is a prokaryotic transport system that enables the transport of folded proteins across the cytoplasmic membrane. The Tat pathway was originally thought to transport only proteins that bind cofactors in the cytoplasm and, thus, fold before transport, like many proteins related to energy metabolism. However, in recent years it has become clear that the Tat pathway has a broader role and is also an important virulence factor in different bacterial pathogens. Because the Tat pathway is well conserved among important bacterial pathogens and absent from mammalian cells, it could be a target for novel antimicrobial compounds. In this review, we highlight the importance of the Tat system for virulence in several human and plant pathogens.
Collapse
Affiliation(s)
- Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | |
Collapse
|