1
|
Yan J, Huang J, Peng S, Sun D, Lu W, Song Z, Ma J, You J, Fan H, Chen L, Li J. Recent advances in molecular-imprinting-based solid-phase microextraction for determination of pharmaceutical residues. J Chromatogr A 2025; 1754:466016. [PMID: 40349500 DOI: 10.1016/j.chroma.2025.466016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Pharmaceutical residues usually exist in various complicated matrices at trace levels, but pose potential threats to human health and ecological environment. Recognition and determination of the residues are important and urgent. Therefore, efficient sample pretreatment techniques become a research hotspot for the sensitive and precise determination by chromatography and mass spectrometry. Molecular-imprinting-based solid-phase microextraction (MI-SPME) combines the rapidity, high enrichment and solvent-free property of SPME with the specific recognition and selective adsorption ability of molecularly imprinted polymers (MIPs), and shows significant advantages in the highly selective separation and enrichment of drug residues in complex samples. Herein, we review recent advances in MI-SPME for determination of pharmaceutical residues since 2019. Firstly, the basic characteristics and operation process of SPME are briefly introduced, and then the polymerization methods of MIPs including free radical polymerization, in-situ polymerization and sol-gel polymerization, and new imprinting technologies and strategies including surface imprinting, nano-imprinting, dummy template, multi-template/functional monomer imprinting and stimuli-responsive imprinting, are comprehensively overviewed. Then, various modes of MI-SPME device are meticulously discussed, mainly including MIPs-coated fiber SPME, MIPs-based in-tube SPME, dispersible SPME, MIPs in-tip SPME, MIPs stir bar sorptive extraction, and MIPs thin film microextraction. Subsequently, typical application cases of MI-SPME coupled with chromatography and mass spectrometry for the determination of drug residues are summarized, in the fields of food safety, biological medicine and environmental monitoring, specially mentioning chiral drug detection and matrix effects and interferences. Finally, the possible challenges of MI-SPME in drug residue detection are presented, and the research prospects and development trends of MI-SPME are proposed.
Collapse
Affiliation(s)
- Jingyi Yan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jingying Huang
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Siyuan Peng
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dani Sun
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenhui Lu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhihua Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Long J, Xu H, Qi X, Yan C, Sun X, Jin Y, Liu X, Liu H. The deletion of the uvrY in Aeromonas veronii disrupted the BarA/UvrY two-component system, decreasing persister formation and bacterial resistance to multiple antibiotics. Int J Food Microbiol 2025; 435:111183. [PMID: 40168752 DOI: 10.1016/j.ijfoodmicro.2025.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Antibiotic resistance (AR) is increasingly recognized as a critical global public health threat. Aeromonas species, widely distributed in aquatic environments, have emerged as potential foodborne pathogens. These bacteria are frequently detected in water sources and various ready-to-eat foods, posing a significant risk to food safety and human health. Two-component systems (TCSs) are key regulators of stress tolerance and adaptive behaviors, but the role of the BarA-UvrY TCS in AR is unclear. In our study, multidrug-resistant Aeromonas veronii (A. veronii) strains isolated from the grass carp intestinal contents were used to investigate the role of uvrY in AR, and mutant strain (Δ uvrY) was constructed using homologous recombination. The growth characteristics of wild-type (WT), Δ uvrY, and complemented strains (C-Δ uvrY) were evaluated under various stress conditions. Additionally, prokaryotic transcriptome analysis was performed to identify the downstream stress-factors in WT and Δ uvrY. The results indicated that the Δ uvrY strain exhibited reduced tolerance to osmotic and acid - base stress compared with the WT and C-Δ uvrY. Furthermore, the deletion of uvrY in A. veronii significantly impaired persister formation and decreased resistance to multiple antibiotics, particularly tetracyclines and chloramphenicol. The transcriptome analysis revealed that the increased susceptibility of Δ uvrY to tetracyclines was accompanied by a significant down-regulation of efflux pump genes and NADH dehydrogenase I. STRING network analysis further demonstrated that the BarA-UvrY TCS is associated with genes encoding NADH dehydrogenase I and efflux pump. Additionally, efflux experiments and respiratory rate assays confirmed that the Δ uvrY strain exhibited reduced efflux pump activity and a low respiratory rate, establishing a clear correlation between these two processes. Collectively, BarA-UvrY TCS play a crucial role in AR and persister formation by mediating energy-dependent efflux mechanisms. This study provides mechanistic insights into the regulatory functions of UvrY and offers a theoretical foundation for developing novel strategies to control A. veronii infections and enhance antimicrobial interventions.
Collapse
Affiliation(s)
- Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaonan Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanjiang Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zabłotni A, Schmidt M, Siwińska M. The SOS Response Activation and the Risk of Antibiotic Resistance Enhancement in Proteus spp. Strains Exposed to Subinhibitory Concentrations of Ciprofloxacin. Int J Mol Sci 2024; 26:119. [PMID: 39795976 PMCID: PMC11720175 DOI: 10.3390/ijms26010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The widespread and inappropriate use of antibiotics, for therapeutic and prophylactic purposes, has contributed to a global crisis of rapidly increasing antimicrobial resistance of microorganisms. This resistance is often associated with elevated mutagenesis induced by the presence of antibiotics. Additionally, subinhibitory concentrations of antibiotics can trigger stress responses in bacteria, further exacerbating this problem. In the present study, we investigated the effect of low doses of ciprofloxacin on the induction of the SOS response and the subsequent development of antibiotic resistance in Proteus spp. strains. Our findings revealed an increase in mutation frequencies within the studied strains, accompanied by a significant upregulation of recA expression. These observations were consistent across experiments involving two subinhibitory concentrations of ciprofloxacin. To establish mutation frequencies and assess gene expression changes, we utilized the RifS-to-RifR forward mutagenesis assay and RT-qPCR analysis, respectively. Furthermore, employing the microdilution method, we demonstrated that these changes could promote cross-resistance to multiple classes of antibiotics in Proteus spp. clinical strains. This, combined with the recurrent nature of Proteus-associated infections, poses a substantial risk of therapeutic failure. In conclusion, exposure to low doses of ciprofloxacin can significantly impact the susceptibility of Proteus bacilli, not only reducing their sensitivity to ciprofloxacin itself but also fostering resistance to other antibiotic classes. These findings underscore the importance of cautious antibiotic use and highlight the potential consequences of subinhibitory antibiotic exposure in clinical and environmental settings.
Collapse
Affiliation(s)
- Agnieszka Zabłotni
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.S.); (M.S.)
| | | | | |
Collapse
|
4
|
Vetrova AA, Ivanova AA, Petrikov KV, Gavrichkova O, Korneykova MV, Sazonova OI. Antibiotic Resistance as a Functional Characteristic of Urban Dust Particles' Microbial Communities. BIOLOGY 2024; 13:1022. [PMID: 39765689 PMCID: PMC11672966 DOI: 10.3390/biology13121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Urban dust samples were collected in Moscow (Russia) in June 2021. The samples were collected in three functional zones of Moscow (traffic, residential, and recreational) and included air microparticles, leaf dust, and paved dust. Data on the taxonomic composition of bacterial communities were obtained for dust samples, and their functional characteristics were predicted using PICRUSt2 2.5.0 and FAPROTAX 1.8.0 software. The culturable part of the bacterial community was examined for the presence of antibiotic-resistant strains with respect to β-lactams, tetracyclines, amphenicols, and aminoglycosides. The presence of bacteria resistant to ceftazidime, cefepime, and tetracycline was detected in all dust samples. The presence of bacteria resistant to meropenem and amikacin was only observed in the dust collected from leaves in the residential and traffic zones. The overall abundance of cultured antibiotic-resistant bacteria from the total heterotrophs ranged from 0.03% to 1.88%, with the highest percentage observed in dust from the residential zone. Notably, strains resistant to all antibiotics tested were observed in the leaf dust bacterial community.
Collapse
Affiliation(s)
- Anna A. Vetrova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| | - Anastasia A. Ivanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| | - Kirill V. Petrikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| | - Olga Gavrichkova
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy;
| | - Maria V. Korneykova
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Institute of North Industrial Ecology Problems Subdivision of the Federal Research Center “Kola Science Centre of Russian Academy of Science”, 184209 Apatity, Russia
| | - Olesya I. Sazonova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| |
Collapse
|
5
|
Singh I, Kumar S, Singh S, Wani MY. Overcoming resistance: Chitosan-modified liposomes as targeted drug carriers in the fight against multidrug resistant bacteria-a review. Int J Biol Macromol 2024; 278:135022. [PMID: 39182895 DOI: 10.1016/j.ijbiomac.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering standard antibiotics ineffective against multi-drug resistant bacteria. To tackle this urgent issue, innovative approaches are essential. Liposomes, small spherical vesicles made of a phospholipid bilayer, present a promising solution. These vesicles can encapsulate various medicines and are both biocompatible and biodegradable. Their ability to be modified for targeted tissue or cell uptake makes them an ideal drug delivery system. By delivering antibiotics directly to infection sites, liposomes minimize side effects and reduce the development of resistance. However, challenges such as poor stability and rapid drug leakage limit their biological application. Chitosan, a biocompatible polymer, enhances liposome interaction with specific tissues or cells, enabling selective drug release at infection sites. Incorporating chitosan into liposome formulations alters and diversifies their surface characteristics through electrostatic interactions, resulting in improved stability and pH-sensitive drug release. These interactions are crucial for enhancing drug retention and targeted delivery, especially in varying pH environments like tumor sites or infection areas, thereby improving therapeutic outcomes and reducing systemic side effects. This review discusses recent advancements, challenges, and the need for further research to optimize liposome formulations and enhance targeted drug delivery for effective AMR treatment. Chitosan-modified liposomes offer a promising strategy to overcome AMR and improve antimicrobial therapies.
Collapse
Affiliation(s)
- Ira Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Shalinee Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Wissmann R, Kümmerlen D, Echtermann T. Trends in Antimicrobial Usage on Swiss Pig Farms from 2018 to 2021: Based on an Electronic Treatment Journal. Antibiotics (Basel) 2024; 13:831. [PMID: 39335005 PMCID: PMC11440108 DOI: 10.3390/antibiotics13090831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: The aim of this retrospective observational study was to observe the trends in antimicrobial usage (AMU) from 2018 to 2021 in Swiss pigs based on an electronic treatment journal used nationwide by farmers. Thus, for the first time, standardized, longitudinal comparisons of AMU between the years could be analyzed, as well as the influence of targeted interventions, on farms with higher consumption. (2) Methods: The data was evaluated by different indicators, such as the amount of active ingredient in kilograms, treatment days per farm (ATI) and treatment incidence (TI) based either on animal-defined daily doses (TIADD) or used daily doses (TIUDD). Calculations were performed across the following five age categories: suckling piglets, weaners, fattening pigs, and gestating and lactating sows, and the proportions of antimicrobial classes were evaluated for each age category. (3) Results: The highest amount of the active ingredient was administered to the group of fattening pigs, while the suckling piglets received the lowest amount of the active ingredient. In 2021, there was a significant decrease in active ingredient consumption per pig, but a significant increase in ATI, TIADD and TIUDD compared to 2018. The largest proportion of AMU was attributed to penicillins each year, followed by sulfonamides and tetracyclines. The "Highest Priority Critically Important Antimicrobials" represented a proportion of overall usage, declining from 5.2% in 2018 to 3.1% in 2021, while polypeptides were the most used class of critical antimicrobials. Interventions on high-usage farms showed that some farms decreased their AMU in the following year while others did not. (4) Conclusions: This study reveals a decrease in the overall usage measured in kilograms per pig of antimicrobials in Swiss pigs between 2019 and 2021 through the monitoring of AMU, but, at the same time, there was an increase in treatment days or incidence per farm. Critical antimicrobials can be reduced regardless of the indicator. The significance and quality of interventions should be investigated in future studies.
Collapse
Affiliation(s)
| | | | - Thomas Echtermann
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Wang Y, Zheng C, Qiu M, Zhang L, Fang H, Yu Y. Tebuconazole promotes spread of a multidrug-resistant plasmid into soil bacteria to form new resistant bacterial strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172444. [PMID: 38615769 DOI: 10.1016/j.scitotenv.2024.172444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The development of antibiotic resistance threatens human and environmental health. Non-antibiotic stressors, including fungicides, may contribute to the spread of antibiotic resistance genes (ARGs). We determined the promoting effects of tebuconazole on ARG dissemination using a donor, Escherichia coli MG1655, containing a multidrug-resistant fluorescent plasmid (RP4) and a recipient (E. coli HB101). The donor was then incorporated into the soil to test whether tebuconazole could accelerate the spread of RP4 into indigenous bacteria. Tebuconazole promoted the transfer of the RP4 plasmid from the donor into the recipient via overproduction of reactive oxygen species (ROS), enhancement of cell membrane permeability and regulation of related genes. The dissemination of the RP4 plasmid from the donor to soil bacteria was significantly enhanced by tebuconazole. RP4 plasmid could be propagated into more genera of bacteria in tebuconazole-contaminated soil as the exposure time increased. These findings demonstrate that the fungicide tebuconazole promotes the spread of the RP4 plasmid into indigenous soil bacteria, revealing the potential risk of tebuconazole residues enhancing the dissemination of ARGs in soil environments.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Greene HC, Makovi K, Abdul-Mumin R, Bansal A, Frimpong JA. Challenges in the distribution of antimicrobial medications in community dispensaries in Accra, Ghana. PLoS One 2024; 19:e0281699. [PMID: 38809832 PMCID: PMC11135707 DOI: 10.1371/journal.pone.0281699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION The dispensation of medicines in some low- and middle-income countries is often carried out by private vendors operating under constrained conditions. The aim of this study was to understand the challenges reported by employees of dispensaries, specifically, chemical and herbal shops and pharmacies in Accra, Ghana. Our objectives were twofold: (1) to assess challenges faced by medicine vendors related to dispensing antimicrobials (antibiotic and antimalarial medications), and (2) to identify opportunities for improving their stewardship of antimicrobials. METHODS Data were collected in 79 dispensaries throughout Accra, in 2021, using a survey questionnaire. We used open-ended questions, grounded on an adapted socioecological model of public health, to analyze these data and determine challenges faced by respondents. RESULTS We identified multiple, interlocking challenges faced by medicine vendors. Many of these relate to challenges of antimicrobial stewardship (following evidence-based practices when dispensing medicines). Overall, medicine vendors frequently reported challenges at the Customer and Community levels. These included strained interactions with customers and the prohibitive costs of medications. The consequences of these challenges reverberated and manifested through all levels of the socioecological model of public health (Entity, Customer, Community, Global). DISCUSSION The safe and effective distribution of medications was truncated by strained interactions, often related to the cost of medicines and gaps in knowledge. While addressing these challenges requires multifaceted approaches, we identified several areas that, if intervened upon, could unlock the great potential of antimicrobal stewardship. The effective and efficient implementation of key interventions could facilitate efforts spearheaded by medicine vendors and leverage the benefits of their role as health educators and service providers. CONCLUSION Addressing barriers faced by medicine vendors would provide an opportunity to significantly improve the provision of medications, and ultimately population health. Such efforts will likely expand access to populations who may otherwise be unable to access medications and treatment in formal institutions of care such as hospitals. Our findings also highlight the broad range of care provided by shopkeepers and vendors at dispensaries. These findings suggest that the meaningful engagement of dispensaries as valued conduits of community health is a promising pathway for interventions aiming to improve antimicrobial stewardship.
Collapse
Affiliation(s)
- Hannah Camille Greene
- Social Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kinga Makovi
- Social Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Rafiatu Abdul-Mumin
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K Tedam University of Technology & Applied Sciences, Navrongo, Ghana
| | - Akhil Bansal
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jemima A. Frimpong
- Social Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Beckermann J, Linnaus ME, Swartz H, Stewart S, York J, Gassner RR, Kasal CA, Seidel AG, Wachter CJ, Kooda KJ, Rich JR, Sawyer MD. Optimizing antibiotic management for patients with acute appendicitis: A quality improvement study. Surgery 2024; 175:1352-1357. [PMID: 38413304 DOI: 10.1016/j.surg.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND To decrease surgical site infections after appendectomy for acute appendicitis, preoperative broad-spectrum antibiotics are often used in clinical practice. However, this treatment strategy has come under scrutiny because of increasing rates of antibiotic-resistant infections. METHODS The aim of this multisite quality improvement project was to decrease the treatment of uncomplicated acute appendicitis with piperacillin-tazobactam without increasing the rate of surgical site infections. Our quality improvement intervention had 2 distinct components: (1) updating electronic health record orders to encourage preoperative administration of narrow-spectrum antibiotics and (2) educating surgeons and emergency department clinicians about selecting appropriate antibiotic therapy for acute appendicitis. Patient demographics, clinical characteristics, and outcomes were compared 6 months before and after implementation of the quality improvement intervention. RESULTS A total of 352 laparoscopic appendectomies were performed during the 6-month preintervention period, and 369 were performed during the 6-month postintervention period. The preintervention period and postintervention period groups had similar baseline demographics, vital signs, and laboratory test values. The rate of preoperative piperacillin-tazobactam administration significantly decreased after the intervention (51.4% preintervention period vs 20.1% postintervention period, P < .001). The rate of surgical site infections was similar in both groups (superficial surgical site infections = 1.4% preintervention period vs 0.8% postintervention period, P = .50; deep surgical site infections = 1.1% preintervention period vs 0.0% postintervention period, P = .06; and organ space surgical site infections = 3.1% preintervention period vs 3.0% postintervention period, P > .99). Rates of 30-day readmission, reoperation, and Clostridioides difficile infection also did not differ between groups. CONCLUSION Our quality improvement intervention successfully decreased piperacillin-tazobactam administration without increasing the rate of surgical site infections in patients with acute appendicitis.
Collapse
Affiliation(s)
- Jason Beckermann
- General and Trauma Surgery, Mayo Clinic Health System-Northwest Wisconsin region, Eau Claire, WI.
| | - Maria E Linnaus
- General and Trauma Surgery, Mayo Clinic Health System-Northwest Wisconsin region, Eau Claire, WI
| | | | | | | | | | - Christopher A Kasal
- General Surgery, Mayo Clinic Health System-Southeast Minnesota region, Red Wing, MN
| | - Annaliese G Seidel
- Department of Surgery, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Corey J Wachter
- Pharmacy Services, Mayo Clinic Health System-Northwest Wisconsin region, Eau Claire, WI
| | - Kirstin J Kooda
- Pharmacy Services, Critical Care, and General Surgery (Sawyer), Mayo Clinic, Rochester, MN
| | - Jennifer R Rich
- Research & Innovation, Mayo Clinic Health System-Northwest Wisconsin region, Eau Claire, WI
| | - Mark D Sawyer
- Division of Trauma, Critical Care, and General Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Wickramasinghe ND, Sampath AHJ, Nanayakkara CM, de Silva KMN, de Silva RM. Ilmenite-derived titanic acid species: exploring their outstanding light-independent antibacterial activity. RSC Adv 2024; 14:3379-3389. [PMID: 38259984 PMCID: PMC10801453 DOI: 10.1039/d3ra07262b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The emergence of resistance in detrimental pathogenic bacteria towards well-recognized antibiotics has greatly impacted global medicine, consequently exploring potent antibacterial compounds is becoming a potential area of research. Although photocatalytic metal oxides have been extensively explored in this regard, their applicability is diminished due to the requirement of photon energy. Therefore, in our study, we explored the light-independent antibacterial effect of two unexplored titanium species, known as metatitanic acid (MTA) and potassium titanate, against Staphylococcus aureus, Escherichia coli, and Pseudomonas spp. using the disk diffusion method in Luria-Bertani agar medium, where the well-known antibiotic, gentamicin, was used as the positive control. These two titanium compounds were readily synthesized through a novel process which was originally developed for the extraction of TiO2 from ilmenite. The synthesized MTA was characterized using FT-IR, Raman spectroscopy, XRD, TGA, UV-visible spectroscopy, and SEM. According to our findings, both MTA and potassium titanate exhibited superior light-independent antibacterial properties, where for some concentrations, the effect was even greater than gentamicin. However, nano-TiO2 totally failed as an antibacterial compound against the tested three strains under dark conditions.
Collapse
Affiliation(s)
- Nadeera Dilshan Wickramasinghe
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka +94714406263
| | - A H Janaka Sampath
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka +94714406263
| | | | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka +94714406263
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka +94714406263
| |
Collapse
|
11
|
Zheng P, Lun J, Yu F, Huang T, Peng T, Li J, Hu Z. Deletion of ArmPT, a LamB-like protein, increases cell membrane permeability and antibiotic sensitivity in Vibrio alginolyticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115855. [PMID: 38157797 DOI: 10.1016/j.ecoenv.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Vibrio bacterial species are dominant pathogens in mariculture animals. However, the extensive use of antibiotics and other chemicals has increased drug resistance in Vibrio bacteria. Despite rigorous investigative studies, the mechanism of drug resistance in Vibrio remains a mystery. In this study, we found that a gene encoding LamB-like outer membrane protein, named ArmPT, was upregulated in Va under antibiotic stress by RT-qPCR. We speculated that ArmPT might play a role in Va's drug resistance. Subsequently, using ArmPT gene knockout and gene complementation experiments, we confirmed its role in resistance against a variety of antibiotics, particularly kanamycin (KA). Transcriptomic and proteomic analyses identified 188 and 83 differentially expressed genes in the mutant strain compared with the wild-type (WT) before and after KA stress, respectively. Bioinformatic analysis predicted that ArmPT might control cell membrane permeability by changing cadaverine biosynthesis, thereby influencing the cell entry of antibiotics in Va. The higher levels of intracellular reactive oxygen species and the infused content of KA showed that antibiotics are more likely to enter the Va mutant strain. These results uncover the drug resistance mechanism of Va that can also exist in other similar pathogenic bacteria.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jingsheng Lun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
12
|
Tartik M. The priority of yeast to select among various DNA options to repair genome breaks by homologous recombination. Mol Biol Rep 2024; 51:99. [PMID: 38206425 DOI: 10.1007/s11033-023-09058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Horizontal gene transfer (HGT) is considered an important mechanism to contribute to the evolution of bacteria, plants, and animals by allowing the movement of genetic material between organisms, in difference to vertical inheritance. Thereby it can also play a significant role in spreading traits like antibiotic resistance among bacteria and virulence factors between pathogens. During the HGT, organisms take up free DNA from the environment and incorporate it into their genomes. Although HGT is known to be carried out by many organisms, there is limited information on how organisms select which genetic material for horizontal transfer. Here we have investigated the preference priority of Saccharomyces cerevisiae between different options of gene source presented under certain stress conditions to repair a double-strand break (DSB) in DNA via HR. RESULTS Each genetic module was designed with appropriate sequences being homologous for two sides of the DSB, which is important for yeast to repair the fracture with HR. S. cerevisiae made a random selection between two heterologous T1 (44%) and T2 (56%) modules to repair DSB. Interestingly, yeast corrected the DNA break only with the T3 module (almost 100%) when the homologous T3 module was an option for the selection. It seems that S. cerevisiae tends to prefer T3 over alternatives to fix DSBs when it exists among the options. CONCLUSIONS It seems that S. cerevisiae have a preference for priority to select a particular one under certain conditions when it has various DNA options to repair a DSB in its genome, further studies are required to support our findings.
Collapse
Affiliation(s)
- Musa Tartik
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000, Bingol, Turkey.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
13
|
Wang W, Liu JS, Zhou JW, Jia AQ. Synergistic effect of kanamycin and amikacin with setomimycin on biofilm formation inhibition of Listeria monocytogenes. Microb Pathog 2023; 185:106447. [PMID: 37972742 DOI: 10.1016/j.micpath.2023.106447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes, a foodborne pathogen that causes listeriosis with high fatality rate, exhibits multidrug resistance (MDR) known to be progressively increasing. Alternative antibacterial strategies are in high demand for treating this well-known pathogen. Anti-biofilm and anti-virulence strategies are being explored as novel approaches to treat bacterial infections. In this study, one rare antibacterial named setomimycin was isolated from Streptomyces cyaneochromogenes, which showed potent antibacterial activity against L. monocytogenes. Next, the inhibition of biofilm formation and listeriolysin O (LLO) production against L. monocytogenes were investigated at sub-minimal inhibitory concentrations (sub-MICs) of setomimycin alone or combined with kanamycin and amikacin. Crystal violet staining confirmed that setomimycin combining with kanamycin or amikacin could dramatically reduce biofilm formation against L. monocytogenes at sub-MICs, which was further evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In the meantime, sub-MICs of setomimycin could significantly suppress the secretion of LLO. Furthermore, the transcription of genes associated with biofilms and main virulence factors, such as LLO, flagellum, and metalloprotease, were suppressed by setomimycin at sub-MICs. Hence, the study provided a deep insight into setomimycin as an alternative antibacterial agent against L. monocytogenes.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Jun-Sheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
14
|
Ghosh R, De M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS OMEGA 2023; 8:35442-35451. [PMID: 37810644 PMCID: PMC10551917 DOI: 10.1021/acsomega.3c04893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
The continued emergence and spread of drug-resistant pathogens and the decline in the approval of new antimicrobial drugs pose a major threat to managing infectious diseases, resulting in high morbidity and mortality. Even though a significant variety of antibiotics can effectively cure many bacterial infectious diseases, microbial infections remain one of the biggest global health problems, which may be due to the traditional drug delivery system's shortcomings which lead to poor therapeutic index, low drug absorption, and numerous other drawbacks. Further, the use of traditional antibiotics to treat infectious diseases has always been accompanied by the emergence of multidrug resistance and adverse side effects. Despite developing numerous new antibiotics, nanomaterials, and various techniques to combat infectious diseases, they have persisted as major global health issues. Improving the current antibiotic delivery systems is a promising approach to solving many life-threatening infections. In this context, nanoliposomal systems have recently attracted much attention. Herein, we attempt to provide a concise summary of recent studies that have used liposomal nanoparticles as delivery systems for antibacterial medicines. The minireview also highlights the enormous potential of liposomal nanoparticles as antibiotic delivery systems. The future of these promising approaches lies in developing more efficient delivery systems by precisely targeting bacterial cells with antibiotics with minimum cytotoxicity and high bacterial combating efficacy.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
15
|
Song C, Sun X, Wang Y, Bülow L, Mecklenburg M, Wu C, Meng Q, Xie B. Activity fingerprinting of AMR β-lactamase towards a fast and accurate diagnosis. Front Cell Infect Microbiol 2023; 13:1222156. [PMID: 37743856 PMCID: PMC10512244 DOI: 10.3389/fcimb.2023.1222156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Antibiotic resistance has become a serious threat to global public health and economic development. Rapid and accurate identification of a patient status for antimicrobial resistance (AMR) are urgently needed in clinical diagnosis. Here we describe the development of an assay method for activity fingerprinting of AMR β-lactamases using panels of 7 β-lactam antibiotics in 35 min. New Deli Metallo β-lactamase-1 (NDM-1) and penicillinase were demonstrated as two different classes of β-lactamases. The panel consisted of three classes of antibiotics, including: penicillins (penicillin G, piperacillin), cephalosporins (cefepime, ceftriaxone, cefazolin) and carbapenems (meropenem and imipenem). The assay employed a scheme combines the catalytic reaction of AMR β-lactamases on antibiotic substrates with a flow-injected thermometric biosensor that allows the direct detection of the heat generated from the enzymatic catalysis, and eliminates the need for custom substrates and multiple detection schemes. In order to differentiate classes of β-lactamases, characterization of the enzyme activity under different catalytic condition, such as, buffer composition, ion strength and pH were investigated. This assay could provide a tool for fast diagnosis of patient AMR status which makes possible for the future accurate treatment with selected antibiotics.
Collapse
Affiliation(s)
- Chenchen Song
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Xuan Sun
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yao Wang
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Qinglai Meng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Bin Xie
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Löffler P, Escher BI, Baduel C, Virta MP, Lai FY. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37335844 DOI: 10.1021/acs.est.2c09854] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The global spread of antimicrobial resistance (AMR) is concerning for the health of humans, animals, and the environment in a One Health perspective. Assessments of AMR and associated environmental hazards mostly focus on antimicrobial parent compounds, while largely overlooking their transformation products (TPs). This review lists antimicrobial TPs identified in surface water environments and examines their potential for AMR promotion, ecological risk, as well as human health and environmental hazards using in silico models. Our review also summarizes the key transformation compartments of TPs, related pathways for TPs reaching surface waters and methodologies for studying the fate of TPs. The 56 antimicrobial TPs covered by the review were prioritized via scoring and ranking of various risk and hazard parameters. Most data on occurrences to date have been reported in Europe, while little is known about antibiotic TPs in Africa, Central and South America, Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterial TPs are even scarcer. We propose evaluation of structural similarity between parent compounds and TPs for TP risk assessment. We predicted a risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides. We estimated the ecotoxicological effect concentrations of TPs from the experimental effect data of the parent chemical for bacteria, algae and water fleas, scaled by potency differences predicted by quantitative structure-activity relationships (QSARs) for baseline toxicity and a scaling factor for structural similarity. Inclusion of TPs in mixtures with their parent increased the ecological risk quotient over the threshold of one for 7 of the 24 antimicrobials included in this analysis, while only one parent had a risk quotient above one. Thirteen TPs, from which 6 were macrolide TPs, posed a risk to at least one of the three tested species. There were 12/21 TPs identified that are likely to exhibit a similar or higher level of mutagenicity/carcinogenicity, respectively, than their parent compound, with tetracycline TPs often showing increased mutagenicity. Most TPs with increased carcinogenicity belonged to sulfonamides. Most of the TPs were predicted to be mobile but not bioaccumulative, and 14 were predicted to be persistent. The six highest-priority TPs originated from the tetracycline antibiotic family and antivirals. This review, and in particular our ranking of antimicrobial TPs of concern, can support authorities in planning related intervention strategies and source mitigation of antimicrobials toward a sustainable future.
Collapse
Affiliation(s)
- Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, UZ, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, 72076 Tübingen, Germany
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Marko P Virta
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, Helsinki 00100, Finland
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| |
Collapse
|
17
|
Naga NG, El-Badan DE, Ghanem KM, Shaaban MI. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Commun Signal 2023; 21:133. [PMID: 37316831 DOI: 10.1186/s12964-023-01154-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dalia E El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Khaled M Ghanem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Caliskan-Aydogan O, Alocilja EC. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023; 11:1491. [PMID: 37374993 PMCID: PMC10305383 DOI: 10.3390/microorganisms11061491] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
20
|
Barros KS, Giacobbo A, Agnol GD, Velizarov S, Pérez–Herranz V, Bernardes AM. Evaluation of mass transfer behaviour of sulfamethoxazole species at ion–exchange membranes by chronopotentiometry for electrodialytic processes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Oh J, Park SY, Lee JS, Lee SH. Effect of restricting piperacillin/tazobactam prescription on rates of antimicrobial resistance in gram-negative bacteria and antibiotic consumption. Eur J Clin Microbiol Infect Dis 2023; 42:53-60. [PMID: 36378363 DOI: 10.1007/s10096-022-04525-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
The increasing resistance of gram-negative bacteria is a serious global public health concern. One way to prevent increasing antibiotic resistance is by implementing the antibiotic stewardship program. This study aimed to assess the changes in the consumption of antimicrobials and antimicrobial resistance rates after implementing piperacillin/tazobactam restriction. This study was conducted at Kandong Sacred Heart Hospital. We retrospectively collected and analysed data between October 2018 and May 2021 to evaluate antibiotic consumption and resistance patterns after restricting piperacillin/tazobactam. This study included two periods, a 16-month pre-restriction period and a 16-month post-restriction period. During the study period, there was a significant decrease in the consumption of piperacillin/tazobactam after implementing the restriction policy (127.82 ± 9.39 to 104.82 ± 15.66 defined daily doses/1000 patient days, p < 0.001). A significant decrease in the resistance rate of Acinetobacter spp. was observed for cefepime (p = 0.001), ceftazidime (p = 0.004), levofloxacin (p = 0.021), meropenem (p = 0.002) and piperacillin (p = 0.028). The introduction of piperacillin/tazobactam restriction reduced their use and positively impacted the resistance rates of Acinetobacter spp., carbapenem-resistant Pseudomonas spp. and carbapenem-resistant Enterobacteriaceae which are major threats to nosocomial infections.
Collapse
Affiliation(s)
- Jihyu Oh
- Division of Infectious Disease, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, 150, Seongan-Ro, Gangdong-Gu, Seoul, 05355, Republic of Korea
| | - So Yeon Park
- Division of Infectious Disease, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, 150, Seongan-Ro, Gangdong-Gu, Seoul, 05355, Republic of Korea.
| | - Jin Seo Lee
- Division of Infectious Disease, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, 150, Seongan-Ro, Gangdong-Gu, Seoul, 05355, Republic of Korea
| | - Seo Hu Lee
- Division of Infectious Disease, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, 150, Seongan-Ro, Gangdong-Gu, Seoul, 05355, Republic of Korea
| |
Collapse
|
22
|
Grakh K, Mittal D, Kumar T, Thakur S, Panwar D, Singh L, Kumar M, Jindal N. Attitude, Opinions, and Working Preferences Survey among Pet Practitioners Relating to Antimicrobials in India. Antibiotics (Basel) 2022; 11:antibiotics11101289. [PMID: 36289947 PMCID: PMC9599001 DOI: 10.3390/antibiotics11101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] Open
Abstract
The indiscriminate usage and overuse of antimicrobials in pets or companion animals are underlying causes of antimicrobial resistance (AMR). Despite the multi-faceted global challenge presented by antimicrobial resistance, very few studies have appraised pet practitioners’ factors, such as written policy on antimicrobials, dose rate prescribed, use of critically important antimicrobials, and antimicrobial prescription in clean surgical procedures, which can contribute to AMR. In the present study, an online cross-sectional survey among randomly selected pet practitioners (n = 104) of various Indian provinces and union territories was conducted using a questionnaire comprising 33 closed-ended questions on different parameters, viz., the dosage regimen and level of compliance towards guidelines of the World Health Organization (WHO), other relevant veterinary associations, and their opinion while prescribing antimicrobials. Almost every practitioner of the 104 respondents had revealed the difficulties with owner compliance; i.e., incomplete course of the antibiotics, inappropriate follow-ups, and improper care of the sick animals. The majority of practitioners (95%) reported self-prescription of antimicrobials by the owner before presenting the pet(s) to the veterinary clinic, whereas more than half of the respondents (64%) revealed unavailability of antibiogram facilities. Furthermore, a large number (76%) of practitioners stated empirical treatment based on their experience as the main criteria for antimicrobial choice in the absence of timely results from the laboratory. Although non-necessitated use of antimicrobials in clean surgical procedures has been claimed, surprisingly, the majority of pet practitioners (97%) reported their use to reduce the post-operative complications. The use of the highest priority, critically important antimicrobials (HPCIA) listed by the WHO for humans, particularly quinolones and third-generation cephalosporin, also has been reported for different infections. The treatment durations were nearly as per the recommended guidelines issued by the Danish Small Animal Veterinary Association (DSAVA) for different ailments. Analysis using chi-square tests exhibited a significant correlation between less experienced veterinarians (less than 5 years) and prescription of antimicrobials restricted for critically important infections in human medicine. However, there seems to be no association between the experience of the practitioner and the further studied parameters, namely, antimicrobial regimen prescription, weighing the animals before prescription, dose rate calculation, and antimicrobial selection and use after clean surgical operations. The findings suggest periodic awareness campaigns among practitioners regarding the implementation of the official guidelines, the need for systematic surveillance of AMR, awareness among pet owners about antimicrobial resistance, and the importance of rational use of antimicrobials on their pets.
Collapse
Affiliation(s)
- Kushal Grakh
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
- Correspondence:
| | - Tarun Kumar
- Department of Veterinary Clinical Complex (VCC), Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Swati Thakur
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Diksha Panwar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Lokender Singh
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| |
Collapse
|
23
|
Dawan J, Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10071385. [PMID: 35889104 PMCID: PMC9322497 DOI: 10.3390/microorganisms10071385] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
24
|
Qi Z, Li G, Wang M, Chen C, Xu Z, An T. Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water. WATER RESEARCH 2022; 215:118240. [PMID: 35287060 DOI: 10.1016/j.watres.2022.118240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The occurrence and proliferation of antibiotic-resistance genes (ARGs) / antibiotic-resistant bacteria (ARB) have been currently aggravating due to the increase of antibiotic residues in the aquatic environment. The interaction of ARB/ARGs with antibiotics inevitably occurred during water purification, yet their synergistic purification mechanism remains unclear. Herein, a systematic approach was developed to understand, in-depth, the synergistic mechanism in the coexisted E. coli DH5α (TET) inactivation and tetracycline hydrochloride (TET) degradation using photoelectrocatalysis (PEC) as a model technology. Results showed that low dosage (0 - 40 ppm) of TET exerted a negative influence on ARB inactivation with prolonged bactericidal time from 60 to 160 min. Addition of TET in environmental concentration (5 - 60 ppm) resulted in sub-lethal damage and prolonged PEC treatment time (100 - 160 min), accounting for inhibition effects on ARB inactivation. The major reactive species (RSs) involved in ARB inactivation and TET degradation were evidenced as photogenerated hole, •OH and O2•-, whereas hole and O2•- were demonstrated to be the major disinfectants for ARB/ARG inactivation. The bacterial defense system displayed increased antioxidative activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to protect ARB cells against oxidative stress. Exposure to 60 ppm TET was a threshold where certain ARB cells were induced into viable but nonculturable bacterial cell (VBNC) state, as evidenced by plate counting and ATP activity analysis, together with the integral cell membranes observed by flow cytometry (FCM) and scanning electron microscope (SEM). These findings appeal for appropriate technical adjustments for water and wastewater treatment to ensure safety of water.
Collapse
Affiliation(s)
- Zhenlian Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Miao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunliang Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhe Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Kaushik S, Yadav J, Das S, Karthikeyan D, Chug R, Jyoti A, Srivastava VK, Jain A, Kumar S, Sharma V. Identification of Protein Drug Targets of Biofilm Formation and Quorum
Sensing in Multidrug Resistant Enterococcus faecalis. Curr Protein Pept Sci 2022; 23:248-263. [DOI: 10.2174/1389203723666220526155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Enterococcus faecalis (E. faecalis) is an opportunistic multidrug-resistant (MDR) pathogen
found in the guts of humans and farmed animals. Due to the occurrence of (MDR) strain there is an
urgent need to look for an alternative treatment approach. E. faecalis is a Gram-positive bacterium,
which is among the most prevalent multidrug resistant hospital pathogens. Its ability to develop quorum
sensing (QS) mediated biofilm formation further exacerbates the pathogenicity and triggers lifethreatening
infections. Therefore, developing a suitable remedy for curing E. faecalis mediated enterococcal
infections is an arduous task. Several putative virulence factors and proteins are involved in the
development of biofilms in E. faecalis. Such proteins often play important roles in virulence, disease,
and colonization by pathogens. The elucidation of the structure-function relationship of such protein
drug targets and the interacting compounds could provide an attractive paradigm towards developing
structure-based drugs against E. faecalis. This review provides a comprehensive overview of the current
status, enigmas that warrant further studies, and the prospects toward alleviating the antibiotic resistance
in E. faecalis. Specifically, the role of biofilm and quorum sensing (QS) in the emergence of
MDR strains had been elaborated along with the importance of the protein drug targets involved in both
the processes.
Collapse
Affiliation(s)
- Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Structural Biology Lab, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Ravneet Chug
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology,
Chandigarh University, Chandigarh, India
| | | | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, VIT
University, Vellore-632014, Tamil Nadu, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
26
|
Wang L, Chai B. Fate of Antibiotic Resistance Genes and Changes in Bacterial Community With Increasing Breeding Scale of Layer Manure. Front Microbiol 2022; 13:857046. [PMID: 35356511 PMCID: PMC8959713 DOI: 10.3389/fmicb.2022.857046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
The use of antimicrobials in intensive poultry production is becoming increasingly common because of its high throughput of meat and egg products. However, the profile of antibiotic resistance genes (ARGs) and the underlying mechanisms in different breeding scale farms were not fully explored. The study examined the profiles of ARGs in layer manure from three free-range and 12 intensive layer farms with different scales (N500, N5000, N10000, and N20000). A quantitative PCR (qPCR) array was used to quantify ARGs, and microbial community structure was analyzed by 16S rRNA gene sequencing. A total of 48 ARGs, belonging to seven major types, were identified in the layer manure samples, with sul2, tetM-01, and ermB being the predominant ones. The abundance, diversity, and mobility potential of ARGs in layer manure changed significantly with the increasing of the breeding scale. The abundances of total ARGs had significantly positive correlations with mobile genetic elements (MGEs), suggesting the mobility potential of ARGs in layer manure samples. Bacterial abundance did not show significant differences among the five group manure samples. However, bacterial diversity showed an increasing trend along the breeding scale. Pathogenic Bacteroidetes increased in the largest-scale layer manure samples and showed significant positive correlations with most ARGs. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating ARGs had a wide range of bacterial hosts. Proteobacteria and Firmicutes were potential hosts for tetracycline and macrolide-lincosamide-streptogramin B (MLSB) resistant genes. Our results indicated that the expansion of the breeding scale of a farm promotes the abundance, diversity, and mobility potential of ARGs in layer manure.
Collapse
|
27
|
Villapún VM, Balacco DL, Webber MA, Hall T, Lowther M, Addison O, Kuehne SA, Grover LM, Cox SC. Repeated exposure of nosocomial pathogens to silver does not select for silver resistance but does impact ciprofloxacin susceptibility. Acta Biomater 2021; 134:760-773. [PMID: 34329788 DOI: 10.1016/j.actbio.2021.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
The rise of antimicrobial resistant bacteria coupled with a void in antibiotic development marks Antimicrobial Resistance as one of the biggest current threats to modern medicine. Antimicrobial metals are being developed and used as alternative anti-infectives, however, the existence of known resistance mechanisms and limited data regarding bacterial responses to long-term metal exposure are barriers to widespread implementation. In this study, a panel of reference and clinical strains of major nosocomial pathogens were subjected to serial dosage cycles of silver and ciprofloxacin. Populations exposed to silver initially showed no change in sensitivity, however, increasingly susceptibility was observed after the 25th cycle. A control experiment with ciprofloxacin revealed a selection for resistance over time, with silver treated bacteria showing faster adaptation. Morphological analysis revealed filamentation in Gram negative species suggesting membrane perturbation, while sequencing of isolated strains identified mutations in numerous genes. These included those encoding for efflux systems, chemosensory systems, stress responses, biofilm formation and respiratory chain processes, although no consistent locus was identified that correlated with silver sensitivity. These results suggest that de novo silver resistance is hard to select in a range of nosocomial pathogens, although silver exposure may detrimentally impact sensitivity to antibiotics in the long term. STATEMENT OF SIGNIFICANCE: The adaptability of microbial life continuously calls for the development of novel antibiotic molecules, however, the cost and risk associated with their discovery have led to a drying up in the pipeline, causing antimicrobial resistance (AMR) to be a major threat to healthcare. From all available strategies, antimicrobial metals and, more specifically, silver showcase large bactericidal spectrum and limited toxic effect which coupled with a large range of processes available for their delivery made these materials as a clear candidate to tackle AMR. Previous reports have shown the ability of this metal to enact a synergistic effect with other antimicrobial therapies, nevertheless, the discovery of Ag resistance mechanisms since the early 70s and limited knowledge on the long term influence of silver on AMR poses a threat to their applicability. The present study provides quantitative data on the influence of silver based therapies on AMR development for a panel of reference and clinical strains of major nosocomial pathogens, revealing that prolonged silver exposure may detrimentally impact sensitivity to antibiotics.
Collapse
Affiliation(s)
- Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| | - Dario L Balacco
- School of Dentistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, United Kingdom; Norwich Medical School, University of East Anglia. Norwich Research Park, NR4 7TJ, United Kingdom
| | - Thomas Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sarah A Kuehne
- School of Dentistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
28
|
Abramavicius S, Stundziene A, Jankauskaite L, Vitkauskiene A, Kowalski IM, Wojtkiewicz J, Stankevicius E. Novel approach towards antimicrobial chemotherapy optimization in lower respiratory tract infections in children: An observational study. Medicine (Baltimore) 2021; 100:e26585. [PMID: 34596107 PMCID: PMC8483859 DOI: 10.1097/md.0000000000026585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/23/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The use of local antibiogram in guiding clinical decisions is an integral part of the antimicrobial stewardship program. Conventional antibiograms are not disease-specific, ignore the distribution of microorganisms, obscure the in-vitro efficacy interrelationships, and have limited use in polymicrobial infections.We aimed to develop an in-house empiric, disease-specific, antimicrobial prescription auxiliary for the treatment of hospitalized pediatric pneumonia patients and to present the methods which help to choose the first and the second line antimicrobial therapy, while accounting for cost and safety aspects.A retrospective single center observational study was conducted on bronchoscopy obtained sputum culture. Analysis of probabilities, variance minimization, Boolean network modeling, and dominance analysis were applied to analyze antibiogram data. The Kirby-Bauer disk diffusion method was used to test the susceptibility of all isolates. Final optimization analysis included local drug acquisition cost (standardized to price per DDD) and safety profile.Data of 145 pediatric patients hospitalized with pneumonia with 218 isolates over 5 years was collected. A combination of statistical methods such as probabilities of drug efficacy, variance minimization, Boolean network modeling, and dominance analysis can help to choose the optimal first-line and the second-line antimicrobial treatment and optimize patient care. This research reveals that ampicillin is the optimal choice as the first-line drug and piperacillin-tazobactam is the second-line antimicrobial drug if the first one is not effective, while accounting for cost and safety aspects.The paper proposes a new methodology to adapt empiric antimicrobial therapy recommendations based on real world data and accout for costs and risk of adverse events.
Collapse
Affiliation(s)
| | - Alina Stundziene
- School of Economics and Business, Kaunas University of Technology
| | | | - Astra Vitkauskiene
- Department of Laboratory medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | | |
Collapse
|
29
|
Mulinti P, Shreffler J, Hasan R, Dea M, Brooks AE. Infection Responsive Smart Delivery of Antibiotics Using Recombinant Spider Silk Nanospheres. Pharmaceutics 2021; 13:1358. [PMID: 34575434 PMCID: PMC8467577 DOI: 10.3390/pharmaceutics13091358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/26/2023] Open
Abstract
Frequent and inappropriate usage of antibiotics has changed the natural evolution of bacteria by reducing susceptibility and increasing resistance towards antibacterial agents. New resistance mechanisms evolved in the response to host defenses and pharmaceutical interventions are threatening our ability to treat common infections, resulting in increased mortality. In the face of this rising epidemic, antibiotic drug discovery, which has long been overlooked by big pharma, is reaching a critical low. Thus, the development of an infection-responsive drug delivery system, which may mitigate multidrug resistance and preserve the lifetime of our current antibiotic arsenal, has garnered the attention of both popular science and funding agencies. The present work describes the development of a thrombin-sensitive linker embedded into a recombinant spider silk copolymer to create a nanosphere drug delivery vehicle. Recent studies have suggested that there is an increase in thrombin-like activity during Staphylococcus aureus infection; thus, drug release from this new "smart" nanosphere can be triggered in the presence of infection. A thrombin sensitive peptide (TSP) was synthesized, and the thrombin cleavage sensitivity was determined by HPLC. The results showed no cleavage of the peptide when exposed to human serum whereas the peptide was cleaved when incubated with S. aureus exudate. Subsequently, the peptide was coupled with a silk copolymer via EDC-NHS chemistry and formulated into nanospheres encapsulating antibiotic vancomycin. These nanospheres were evaluated for in vitro infection-responsive drug release and antimicrobial activity. Finally, the drug responsive nanospheres were assessed for efficacy in an in vivo septic arthritis model. Our study provides evidence that the protein conjugate was enzyme responsive and can be used to formulate targeted drug release to combat infections against multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (P.M.); (J.S.); (R.H.)
| | - Jacob Shreffler
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (P.M.); (J.S.); (R.H.)
| | - Raquib Hasan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (P.M.); (J.S.); (R.H.)
| | - Michael Dea
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84734, USA;
| | - Amanda E. Brooks
- Department of Molecular Biology, Rocky Vista University, Ivins, UT 84734, USA
| |
Collapse
|
30
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
31
|
Hall TJ, Villapún VM, Addison O, Webber MA, Lowther M, Louth SET, Mountcastle SE, Brunet MY, Cox SC. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater Sci 2021; 8:4951-4974. [PMID: 32820747 DOI: 10.1039/d0bm01160f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global surge of antimicrobial resistance (AMR) is a major concern for public health and proving to be a key challenge in modern disease treatment, requiring action plans at all levels. Microorganisms regularly and rapidly acquire resistance to antibiotic treatments and new drugs are continuously required. However, the inherent cost and risk to develop such molecules has resulted in a drying of the pipeline with very few compounds currently in development. Over the last two decades, efforts have been made to tackle the main sources of AMR. Nevertheless, these require the involvement of large governmental bodies, further increasing the complexity of the problem. As a group with a long innovation history, the biomaterials community is perfectly situated to push forward novel antimicrobial technologies to combat AMR. Although this involvement has been felt, it is necessary to ensure that the field offers a united front with special focus in areas that will facilitate the development and implementation of such systems. This paper reviews state of the art biomaterials strategies striving to limit AMR. Promising broad-spectrum antimicrobials and device modifications are showcased through two case studies for different applications, namely topical and implantables, demonstrating the potential for a highly efficacious physical and chemical approach. Finally, a critical review on barriers and limitations of these methods has been developed to provide a list of short and long-term focus areas in order to ensure the full potential of the biomaterials community is directed to helping tackle the AMR pandemic.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Colney, NR4 7UQ, UK
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E T Louth
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E Mountcastle
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
32
|
Wu L, Wu ZC, Todosiichuk T, Korneva O. Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2021. [DOI: 10.20535/ibb.2021.5.2.228970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background. The fight against the spread of infectious diseases creates the problem of resistance to pathogens and the most resistant of them – the propagators of nosocomial infections – are formed in hospitals because of a number of reasons. The solution of the problem lies in different areas, but the search of new effective means for the treatment of such diseases remains relevant right today. The shortest way to do this is to find the "pain points" of the pathogens themselves, i.e. the factors of their pathogenicity and resistance to which the action of novel antiseptics should be directed.
Objective. We aimed to analyse and evaluate the main factors of pathogenicity and resistance of pathogens of nosocomial infections to determine modern approaches to the development of novel antimicrobials.
Methods. Search and systematization of new scientific data and results concerning pathogenic factors of microbial pathogens that can be used as targets for the action of drugs.
Results. Over the last 10–20 years, due to the development of new research methods in biology, it has become possible to clarify the features and additional conditions for the detection of pathogenic factors of nosocomial infections. Additional mechanisms of manifestation of resistance, adhesiveness, invasiveness, transmission of signs, secretion of toxins by pathogens are shownthat determines the general increase of their resistance to the action of currently used means. The general idea of creating antiseptics that will not increase the resistance of pathogens can now be implemented by using substances with multidirectional or indirect mechanisms of action that minimally affect the metabolism of the cell and significantly reduce its resistance and pathogenicity.
Conclusions. Factors of pathogenicity of propagators of nosocomial infections and mechanisms of their implementation can be considered as the main targets for the action of novel antiseptics that will inhibit the spread of pathogens without increasing their resistance. The promising substances for such drugs, among other things, are bacteriophages and their modifications, enzybiotics, immunobiotics, autoinducer inhibitors, quorum sensing-system inhibitors, b-lactamase inhibitors and others. Some of these substances in combination with the new generation of antibiotics significantly enhance their effectiveness and together they are able to overcome the resistance of even multidrug-resistant pathogens.
Collapse
|
33
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Ferreira M, Ogren M, Dias JNR, Silva M, Gil S, Tavares L, Aires-da-Silva F, Gaspar MM, Aguiar SI. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules 2021; 26:2047. [PMID: 33918529 PMCID: PMC8038399 DOI: 10.3390/molecules26072047] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial drugs are key tools to prevent and treat bacterial infections. Despite the early success of antibiotics, the current treatment of bacterial infections faces serious challenges due to the emergence and spread of resistant bacteria. Moreover, the decline of research and private investment in new antibiotics further aggravates this antibiotic crisis era. Overcoming the complexity of antimicrobial resistance must go beyond the search of new classes of antibiotics and include the development of alternative solutions. The evolution of nanomedicine has allowed the design of new drug delivery systems with improved therapeutic index for the incorporated compounds. One of the most promising strategies is their association to lipid-based delivery (nano)systems. A drug's encapsulation in liposomes has been demonstrated to increase its accumulation at the infection site, minimizing drug toxicity and protecting the antibiotic from peripheral degradation. In addition, liposomes may be designed to fuse with bacterial cells, holding the potential to overcome antimicrobial resistance and biofilm formation and constituting a promising solution for the treatment of potential fatal multidrug-resistant bacterial infections, such as methicillin resistant Staphylococcus aureus. In this review, we aim to address the applicability of antibiotic encapsulated liposomes as an effective therapeutic strategy for bacterial infections.
Collapse
Affiliation(s)
- Magda Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Ogren
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| | - Joana N. R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| | - Marta Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| | - Solange Gil
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| | - Luís Tavares
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Sandra Isabel Aguiar
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (M.F.); (M.O.); (J.N.R.D.); (M.S.); (S.G.); (L.T.); (F.A.-d.-S.)
| |
Collapse
|
35
|
Cai M, Zhang C, Wang W, Peng Q, Song X, Tyler BM, Liu X. Stepwise accumulation of mutations in CesA3 in Phytophthora sojae results in increasing resistance to CAA fungicides. Evol Appl 2021; 14:996-1008. [PMID: 33897816 PMCID: PMC8061276 DOI: 10.1111/eva.13176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
Flumorph is a carboxylic acid amide (CAA) fungicide with high activity against oomycetes. However, evolution to CAAs from low resistance to high resistance has never been reported. This study investigated the basis of resistance evolution of flumorph in Phytophthora sojae. Total of 120 P. sojae isolates were collected and their sensitivity to flumorph was evaluated. Although no spontaneous resistance was found among the field isolates, adaptation on flumorph-amended media resulted in the selection of five stable mutant types exhibiting varying degrees of resistance to CAAs. Type I, which exhibited the lowest resistance level, was obtained when the wild-type isolate was exposed to a low concentration of flumorph, but no resistant mutants were obtained by direct exposure to higher concentrations. However, the more resistant types (Type II, III, IV and V) were obtained when Type I were exposed to higher concentrations of flumorph. Similar results were obtained when the entire screening process was repeated, which implied that evolution of resistance to flumorph in P. sojae could be a two-step process, where high resistance phenotypes could develop gradually from low resistance ones. Further investigation into molecular mechanism strongly confirmed that evolution of isolates highly resistant to flumorph occurs in a stepwise process with Type I as intermediary, through accumulation of mutations in their target protein of CAAs (CesA3). Together, our findings indicate that application of low rates of flumorph in field could result in selection of low resistance Type I isolates, but that raising dosage to maintain comparable levels of control could elicit rapid evolution of more resistant Type II, III, IV and V isolates with stepwise accumulation of mutations in CesA3, which would render flumorph ineffective as a control method. Precautionary resistance management strategy should be implemented. The phenomenon described in the study could have broader biological significance.
Collapse
Affiliation(s)
- Meng Cai
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
- College of ChemistryKey Laboratory of Pesticide & Chemical Biology of Ministry of EducationCentral China Normal UniversityWuhanChina
| | - Can Zhang
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Weizhen Wang
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qin Peng
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xi Song
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Brett M. Tyler
- Department of Botany & Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Xili Liu
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
36
|
Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms 2021; 9:microorganisms9030592. [PMID: 33805695 PMCID: PMC8000395 DOI: 10.3390/microorganisms9030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.
Collapse
|
37
|
Cherny SS, Nevo D, Baraz A, Baruch S, Lewin-Epstein O, Stein GY, Obolski U. Revealing antibiotic cross-resistance patterns in hospitalized patients through Bayesian network modelling. J Antimicrob Chemother 2021; 76:239-248. [PMID: 33020811 DOI: 10.1093/jac/dkaa408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/29/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Microbial resistance exhibits dependency patterns between different antibiotics, termed cross-resistance and collateral sensitivity. These patterns differ between experimental and clinical settings. It is unclear whether the differences result from biological reasons or from confounding, biasing results found in clinical settings. We set out to elucidate the underlying dependency patterns between resistance to different antibiotics from clinical data, while accounting for patient characteristics and previous antibiotic usage. METHODS Additive Bayesian network modelling was employed to simultaneously estimate relationships between variables in a dataset of bacterial cultures derived from hospitalized patients and tested for resistance to multiple antibiotics. Data contained resistance results, patient demographics and previous antibiotic usage, for five bacterial species: Escherichia coli (n = 1054), Klebsiella pneumoniae (n = 664), Pseudomonas aeruginosa (n = 571), CoNS (n = 495) and Proteus mirabilis (n = 415). RESULTS All links between resistance to the various antibiotics were positive. Multiple direct links between resistance of antibiotics from different classes were observed across bacterial species. For example, resistance to gentamicin in E. coli was directly linked with resistance to ciprofloxacin (OR = 8.39, 95% credible interval 5.58-13.30) and sulfamethoxazole/trimethoprim (OR = 2.95, 95% credible interval 1.97-4.51). In addition, resistance to various antibiotics was directly linked with previous antibiotic usage. CONCLUSIONS Robust relationships among resistance to antibiotics belonging to different classes, as well as resistance being linked to having taken antibiotics of a different class, exist even when taking into account multiple covariate dependencies. These relationships could help inform choices of antibiotic treatment in clinical settings.
Collapse
Affiliation(s)
- Stacey S Cherny
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Nevo
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Avi Baraz
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Shoham Baruch
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Lewin-Epstein
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Y Stein
- Internal Medicine "A", Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Obolski
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Gonçalves J, Luís Â, Gradillas A, García A, Restolho J, Fernández N, Domingues F, Gallardo E, Duarte AP. Ayahuasca Beverages: Phytochemical Analysis and Biological Properties. Antibiotics (Basel) 2020; 9:antibiotics9110731. [PMID: 33114334 PMCID: PMC7690887 DOI: 10.3390/antibiotics9110731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ayahuasca is a psychoactive beverage, originally consumed by indigenous Amazon tribes, of which consumption has been increasing worldwide. The aim of this study was to evaluate the phytochemical profile, as well as the antioxidant, anti-inflammatory and antimicrobial properties of decoctions of four individual plants, a commercial mixture and four mixtures of two individual plants used in the Ayahuasca preparation. For this purpose, a phytochemical characterization was performed, determining the content of flavonoids, total phenolic compounds, and analyzing the phenolic profile. Besides, 48 secondary metabolites were investigated by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS) and their concentration estimated with real standards when present. The antioxidant activity was evaluated by both the β-carotene bleaching test and DPPH free radical scavenging assay, and the anti-inflammatory activity was determined by a protein denaturation method. Finally, the antimicrobial properties were evaluated using the disc diffusion assay, resazurin microtiter method, anti-quorum sensing and anti-biofilm activity assays. The obtained results showed that, in general, the samples have a high content of phenolic compounds and flavonoids with noticeable differences, reflecting on remarkable antioxidant and anti-inflammatory activities. Significant antimicrobial properties were also observed, with emphasis on the effect of B. caapi and P. harmala on planktonic and biofilm cells of A. baumannii, inhibiting both the biofilm formation and the production of violacein pigment.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: (Â.L.); (E.G.); Tel.: +351-275-329-002/3 (Â.L.); +351-275-329-002/3 (E.G.)
| | - Ana Gradillas
- CEMBIO, Center for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain; (A.G.); (A.G.)
| | - Antonia García
- CEMBIO, Center for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain; (A.G.); (A.G.)
| | - José Restolho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
| | - Nicolás Fernández
- Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina;
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: (Â.L.); (E.G.); Tel.: +351-275-329-002/3 (Â.L.); +351-275-329-002/3 (E.G.)
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| |
Collapse
|
39
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
40
|
Phenolic contents and in vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
42
|
|
43
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
44
|
Mittal RP, Rana A, Jaitak V. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr Drug Targets 2020; 20:605-624. [PMID: 30378496 DOI: 10.2174/1389450119666181031122917] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 01/21/2023]
Abstract
Antimicrobial resistance (AMR) is an emerging problem in the world that has a significant impact on our society. AMR made conventional drugs futile against microorganisms and diseases untreatable. Plant-derived medicines are considered to be safe alternatives as compared to synthetic drugs. Active ingredients and the mixtures of these natural medicines have been used for centuries, due to their easy availability, low cost, and negligible side effects. Essential oils (EOs) are the secondary metabolites that are produced by aromatic plants to protect them from microorganisms. However, these EOs and their constituents have shown good fighting potential against drug-resistant pathogens. These oils have been proved extremely effective antimicrobial agents in comparison to antibiotics. Also, the combination of synthetic drugs with EOs or their components improve their efficacy. So, EOs can be established as an alternative to synthetic antimicrobial agents to eradicate tough form of infectious microorganisms. EO's can interact with multiple target sites, like the destruction of cytoplasm membrane or inhibition of protein synthesis and efflux pump, etc. The purpose of this review is to provide information about the antimicrobial activity of EOs attained from different plants, their combination with synthetic antimicrobials. In addition, mechanism of antimicrobial activity of several EOs and their constituents was reported.
Collapse
Affiliation(s)
- Rajinder Pal Mittal
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Abhilash Rana
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| |
Collapse
|
45
|
Gu Y, Shen S, Han B, Tian X, Yang F, Zhang K. Family livestock waste: An ignored pollutant resource of antibiotic resistance genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110567. [PMID: 32289631 DOI: 10.1016/j.ecoenv.2020.110567] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The random discharge of livestock waste from family farms without utilization and treatment has caused great pressure on the rural ecological environment and gravely increased the environmental pollution. In this study, we targeted 26 family livestock farms to assess the occurrence characteristics of antibiotic resistance genes (ARGs) in livestock waste and its receiving farmland environment in Erhai Lake basin of China by real-time fluorescence quantitative PCR. The results showed that various common ARGs and some high-risk ARGs (i.e., blaampC, blaOXA-1 and blaTEM-1) were prevalent in family livestock waste, and the pollution of tetracycline resistance genes was the most serious in these family livestock farms. Meanwhile, we also found that the ARG levels were higher in family chicken farms than that in pig and cattle farms, and ARGs pollution in layer waste and sow waste was more severe than that in broiler waste and piglet/fattening pig waste, respectively. Troublesomely, significant ARGs levels could be discharged via manure application, further causing the increase of ARGs abundance in soil environment (approximately 11-36 times). This study demonstrated the high prevalence and severity of ARGs contamination in family livestock farms, also emphasizing that family livestock waste was a non-ignored important pollutant resource of ARGs in the environment.
Collapse
Affiliation(s)
- Yanru Gu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150036, China
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150036, China.
| |
Collapse
|
46
|
Valiakos G, Pavlidou E, Zafeiridis C, Tsokana CN, Del Rio Vilas VJ. Antimicrobial practices among small animal veterinarians in Greece: a survey. ONE HEALTH OUTLOOK 2020; 2:7. [PMID: 33829129 PMCID: PMC7993541 DOI: 10.1186/s42522-020-00013-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The inappropriate use of antibiotics is a major issue in clinical practice in Greece with serious implications for public health and animal health. The purpose of the present study was to provide a first insight into the use of antibiotics by small animal practitioners in Greece and assess their compliance with general rules for the rational use of antibiotics. This is the first survey of its kind in Greece. METHODS A questionnaire was designed to collect basic information on the use of antibiotics by pet veterinarians. The questionnaire was sent to a total of 70 veterinarians mainly operating in the region of Attica, a region that comprises almost 50% of the Greek population and where veterinarians are engaged solely in small animal practice. The questionnaire consisted of 37 closed questions dealing with various aspects on the use of antibiotics. RESULTS The majority of practitioners report cases where the pet owner initiated antibiotic treatment without veterinary prescription. Almost every clinician reported owner-compliance challenges. Regarding microbiological analysis, 73% of respondents initiate empirical treatment while waiting for laboratory results or use antibiogram only when the treatment is unsuccessful. Eighty-eight per cent declared to use antimicrobials postoperatively in clean surgical procedures. Different types of antimicrobials and treatment durations than the ones proposed by guidelines on rational use of antibiotics are preferred for various organ systems e.g. in urinary and gastrointestinal infections. CONCLUSIONS Our findings suggest the need for guidelines on antibiotic use in small animal practice in Greece, and the deployment of systematic surveillance on antimicrobials use and resistance to inform the initial choice of antibiotics upon local antimicrobial resistance profiles. Targeting the other end of the problem, pet owners, our findings indicate the need to educate them on the rational use of antibiotics and, critically, stop antibiotic availability without prescription.
Collapse
Affiliation(s)
- George Valiakos
- Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | - Eleni Pavlidou
- Centre for Universal Health, Chatham House, London, UK
- Asclepius One Health Platform, Athens, Greece
| | | | | | | |
Collapse
|
47
|
Jamie K, Sharples G. The Social and Material Life of Antimicrobial Clay: Exploring Antimicrobial Resistance, Medicines' Materiality, and Medicines Optimization. FRONTIERS IN SOCIOLOGY 2020; 5:26. [PMID: 33869434 PMCID: PMC8022547 DOI: 10.3389/fsoc.2020.00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/25/2020] [Indexed: 06/12/2023]
Abstract
While sociologists have made significant theoretical contributions to the antimicrobial resistance (AMR) debate, little attention has been given to the antimicrobial products themselves. Here we advocate a significant new direction which centers on the social and material life of antimicrobials, specifically on what they are made from and how this affects their use. This focus is timely because, in the context of declining efficacy of biomedical antibiotics, diverse materials are increasingly taking center stage in research and drug discovery as potential agents for new antimicrobial treatments. Of particular significance are natural antimicrobials, such as plants, honey and clay, whose antimicrobial potential is well-documented and which are increasingly moving into mainstream antimicrobial research. Alongside this biomedical focus, we suggest that the social and material lives of these antimicrobial materials require attention to (i) highlight the ways they have been, and continue to be, used in diverse cultures globally, (ii) explore ways we might theorize these materials within wider AMR debates, and (iii) examine the impact of antimicrobials' materiality on their use by patients. This article takes the example of clay, whose antimicrobial properties are well-established and which has been used to treat wounds and gastrointestinal problems for millennia. We first locate clay as an exemplar of a wider shift toward natural products drug discovery in pharmaceutical science and antimicrobial research. We then offer a number of theoretical "ways in" for sociologists to begin making sense of clay as it comes under the western biomedical gaze. We map these conceptual lenses on to clay's physical and symbolic mobility from its use in the global south into western biomedical research and commercialization. We particularly concentrate on post-colonial theory as a means to understand clay's movement from global south to north; laboratory studies to examine its symbolic transformation to a black-boxed antimicrobial artifact; and valuation practices as a lens to capture its movement from the margins to the mainstream. We finish by reflecting on the importance of materiality in addressing optimal use of medicines and by advocating an interdisciplinary approach to AMR which positions sociology as a key contributor to AMR solutions.
Collapse
Affiliation(s)
- Kimberly Jamie
- Department of Sociology, Durham University, Durham, United Kingdom
| | - Gary Sharples
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
48
|
Singh AK, Bhunia AK. Animal-Use Antibiotics Induce Cross-Resistance in Bacterial Pathogens to Human Therapeutic Antibiotics. Curr Microbiol 2019; 76:1112-1117. [PMID: 31346691 DOI: 10.1007/s00284-019-01744-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
Abstract
Exposure of bacteria to a sub-lethal dosage of antibiotic is one the major causes for the onset of antibiotic resistance. Therefore, we aimed to assess the emergence of antibiotic cross-resistance in bacteria after exposure to a sub-lethal dose of veterinary feed directive (VFD) antibiotics, tilmicosin, and florfenicol. The minimum inhibitory concentrations (MICs) of tilmicosin and florfenicol against Salmonella enterica serovar Enteritidis, Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes were determined. Next, the pathogens were exposed to a sub-inhibitory concentration of tilmicosin (0.5, 5, 20 µg/ml) and florfenicol (1, 20 µg/ml) for 24 h and 48 h, and acquired cross-resistance to human therapeutic antibiotics was measured by determining the increase in MIC values. MICs of ampicillin, tetracycline, nalidixic acid, and meropenem against Salmonella and Klebsiella were in the range of 20-1000 µg/ml, 5-62.5 µg/ml, 5-125 µg/ml, and 0.05-0.1 µg/ml, respectively, whereas MICs against Staphylococcus and Listeria were 2.5-10 µg/ml, 2.5 µg/ml, 62.5-500 µg/ml, and 0.1-0.2 µg/ml, respectively. Pre-exposure of these bacteria to a sub-inhibitory concentration of tilmicosin and florfenicol, increased cross-resistance against ampicillin, tetracycline, and nalidixic acid from 1.25- to 40-fold compared to the antibiotic unexposed bacteria with the exception of meropenem, which did not show increased resistance. This study could serve as a foundation to understand the mechanisms of acquired cross-resistance to traditional therapeutic antibiotics, and to develop strategies to alleviate such problem by using alternative antimicrobials.
Collapse
Affiliation(s)
- Atul K Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Clear Labs, 3565 Haven Ave., Menlo Park, CA, USA.
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
49
|
BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Migliorini LB, Brüggemann H, de Sales RO, Koga PCM, de Souza AV, Martino MDV, Galhardo RS, Severino P. Mutagenesis Induced by Sub-Lethal Doses of Ciprofloxacin: Genotypic and Phenotypic Differences Between the Pseudomonas aeruginosa Strain PA14 and Clinical Isolates. Front Microbiol 2019; 10:1553. [PMID: 31354657 PMCID: PMC6636244 DOI: 10.3389/fmicb.2019.01553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Bacterial resistance is a severe threat to global public health. Exposure to sub-lethal concentrations has been considered a major driver of mutagenesis leading to antibiotic resistance in clinical settings. Ciprofloxacin is broadly used to treat infections caused by Pseudomonas aeruginosa, whereas increased mutagenesis induced by sub-lethal concentrations of ciprofloxacin has been reported for the reference strain, PAO1, in vitro. In this study we report increased mutagenesis induced by sub-lethal concentrations of ciprofloxacin for another reference strain, PA14-UCBPP, and lower mutagenesis for clinical isolates when compared to the reference strain. This unexpected result may be associated with missense mutations in imuB and recX, involved in adaptive responses, and the presence of Pyocin S2, which were found in all clinical isolates but not in the reference strain genome. The genetic differences between clinical isolates of P. aeruginosa and the reference PA14-UCBPP, often used to study P. aeruginosa phenotypes in vitro, may be involved in reduced mutagenesis under sub-lethal concentrations of CIP, a scenario that should be further explored for the understanding of bacterial fitness in hospital environments. Moreover, we highlight the presence of a complete umuDC operon in a P. aeruginosa clinical isolate. Even though the presence of umuDC did not contribute to a significant increase in mutagenesis, it highlights the dynamic exchange of genetic material between bacterial species in the hospital environment.
Collapse
Affiliation(s)
- Letícia Busato Migliorini
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Romario Oliveira de Sales
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Andrea Vieira de Souza
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Rodrigo S Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Severino
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| |
Collapse
|