1
|
Hong Y, Wang Y. Causal Relationship Between Antibody-Mediated Immune Responses of Chlamydia trachomatis Infection and Reproductive Tract Complications: A Bidirectional Mendelian Randomization Study. Am J Reprod Immunol 2025; 93:e70036. [PMID: 39777772 DOI: 10.1111/aji.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/24/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Characterized as a prevalent sexually transmitted infection, Chlamydia trachomatis is intimately associated with reproductive tract complications, including pelvic inflammatory disease (PID) and infertility. However, the causal relationships between C. trachomatis infection and reproductive tract complications remain elusive. METHODS To investigate the causal relationships between C. trachomatis antibodies and seven reproductive tract complications, we conducted a bidirectional Mendelian randomization (MR) analysis. The fundamental data were originated from the genome-wide association studies (GWAS) database. While the influences of C. trachomatis antibodies on reproductive tract complications such as tubal factor infertility (TFI) and PID have been assessed, the reverse MR analysis examined how these complications impacted C. trachomatis antibodies. RESULTS The forward MR analysis revealed that the upregulation of MOMP A antibodies was significantly associated with a reduced risk of TFI (OR = 0.932, p = 0.007), while MOMP D antibodies were associated with a reduced risk of ectopic pregnancy (EP) (OR = 0.923, p = 0.005). However, no significant causal interactions were identified for other reproductive complications. Moreover, the reverse MR analysis indicated that cervicitis was significantly correlated with lower MOMP A antibody levels (OR = 0.900, p = 0.016). CONCLUSIONS This study demonstrates the protective effects of C. trachomatis antibodies, particularly MOMP A and MOMP D, against TFI and EP, respectively. It also emphasizes the potential role of cervical inflammation in shaping immune responses to C. trachomatis. These insights provide a foundation for future research to develop immune-targeted therapies and integrated approaches for preventing and managing C. trachomatis-related reproductive tract complications.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Kumagai K, Sakai S, Ueno M, Kataoka M, Kobayashi S, Hanada K. Chlamydial Infection-Dependent Synthesis of Sphingomyelin as a Novel Anti-Chlamydial Target of Ceramide Mimetic Compounds. Int J Mol Sci 2022; 23:14697. [PMID: 36499025 PMCID: PMC9735676 DOI: 10.3390/ijms232314697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis is the major causative agent of bacterial sexually transmitted diseases worldwide. In infected cells, the ceramide transport protein (CERT) is recruited to inclusions, where C. trachomatis replicates using host-synthesized ceramide. The ceramide is converted to sphingomyelin (SM) by a chlamydial infection-dependent SM synthesis (cidSM-synthesis) pathway, which occurs even in the absence of the SM synthases (SMS)-1 and -2 of host cells. The ceramide mimetic compound (1R,3S)-HPA-12 and the nonmimetic compound E16A, both of which are potent inhibitors of CERT, repressed the proliferation of C. trachomatis in HeLa cells. Unexpectedly, (1R,3R)-HPA-12, a ceramide mimetic compound that lacks CERT inhibitory activity, also exhibited potent anti-chlamydial activity. Using endogenous SMS-knockout mutant HeLa cells, we revealed that (1R,3R)-HPA-12 mildly inhibited cidSM-synthesis. In addition, LC-MS analysis revealed that (1R,3R)-HPA-12 is converted to a phosphocholine-conjugated metabolite in an infection-dependent manner. Imaging analysis with a fluorescent analog of ceramide suggested that cidSM-synthesis occurs in the bacterial bodies and/or inclusions. Collectively, these results suggested that (1R,3R)-HPA-12 exerts its anti-chlamydia activity not only as an inhibitor of cidSM-synthesis, but also via putative toxic effects of its phosphocholine adduct, which is most likely produced by the cidSM-synthesis route.
Collapse
Affiliation(s)
- Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masaharu Ueno
- Department of Natural Science, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-jousanjima, Tokushima 770-8506, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 110-0033, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
4
|
Differential Effects of Small Molecule Inhibitors on the Intracellular Chlamydia Infection. mBio 2022; 13:e0107622. [PMID: 35703434 PMCID: PMC9426518 DOI: 10.1128/mbio.01076-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria that reside within a membrane-bound compartment called the chlamydial inclusion inside a eukaryotic host cell. These pathogens have a complex biphasic developmental cycle, which involves conversion between a replicating, but noninfectious, reticulate body (RB) and an infectious elementary body (EB). Small molecule inhibitors have been reported to have deleterious effects on the intracellular Chlamydia infection, but these studies have typically been limited in terms of assays and time points of analysis. We compared published and novel inhibitors and showed that they can differentially alter inclusion size, chlamydial number and infectious EB production, and that these effects can vary over the course of the intracellular infection. Our results provide the justification for analysis with multiple assays performed either at the end of the infection or over a time course. We also show that this approach has the potential to identify the particular step in the developmental cycle that is impacted by the inhibitor. We furthermore propose that the magnitude of inhibitor-induced progeny defects are best quantified and compared by using a new value called maximal progeny production (Progenymax). As a demonstration of the validity of this systematic approach, we applied it to inhibitors of Akt and AMPK, which are host kinases involved in lipid synthesis and cholesterol trafficking pathways. Both inhibitors reduced EB production, but Akt disruption primarily decreased RB-to-EB conversion while AMPK inhibition paradoxically enhanced RB replication.
Collapse
|
5
|
Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. mBio 2021; 12:e0239721. [PMID: 34903051 PMCID: PMC8669492 DOI: 10.1128/mbio.02397-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways.
Collapse
|
6
|
Phillips P, Parkhurst JM, Kounatidis I, Okolo C, Fish TM, Naismith JH, Walsh MA, Harkiolaki M, Dumoux M. Single Cell Cryo-Soft X-ray Tomography Shows That Each Chlamydia Trachomatis Inclusion Is a Unique Community of Bacteria. Life (Basel) 2021; 11:life11080842. [PMID: 34440586 PMCID: PMC8399160 DOI: 10.3390/life11080842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Chlamydiae are strict intracellular pathogens residing within a specialised membrane-bound compartment called the inclusion. Therefore, each infected cell can, be considered as a single entity where bacteria form a community within the inclusion. It remains unclear as to how the population of bacteria within the inclusion influences individual bacterium. The life cycle of Chlamydia involves transitioning between the invasive elementary bodies (EBs) and replicative reticulate bodies (RBs). We have used cryo-soft X-ray tomography to observe individual inclusions, an approach that combines 40 nm spatial resolution and large volume imaging (up to 16 µm). Using semi-automated segmentation pipeline, we considered each inclusion as an individual bacterial niche. Within each inclusion, we identifyed and classified different forms of the bacteria and confirmed the recent finding that RBs have a variety of volumes (small, large and abnormal). We demonstrate that the proportions of these different RB forms depend on the bacterial concentration in the inclusion. We conclude that each inclusion operates as an autonomous community that influences the characteristics of individual bacteria within the inclusion.
Collapse
Affiliation(s)
- Patrick Phillips
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- Division of Structural Biology Department, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Fermi Road, Didcot OX11 0FA, UK
| | - Ilias Kounatidis
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
| | - Chidinma Okolo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
| | - Thomas M. Fish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
| | - James H. Naismith
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Fermi Road, Didcot OX11 0FA, UK
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Maud Dumoux
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Fermi Road, Didcot OX11 0FA, UK
- Correspondence:
| |
Collapse
|
7
|
Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Infect Immun 2021; 89:e0009421. [PMID: 33875478 PMCID: PMC8208519 DOI: 10.1128/iai.00094-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections. This obligate intracellular bacterium develops within a membrane-bound vacuole called an inclusion, which sequesters the chlamydiae from the host cytoplasm. Host-pathogen interactions at this interface are mediated by chlamydial inclusion membrane proteins (Incs). However, the specific functions of most Incs are poorly characterized. Previous work from our laboratories indicated that expressing an IncF fusion protein at high levels in C. trachomatis L2 negatively impacted inclusion expansion and progeny production. We hypothesize that some Incs function in the structure and organization of the inclusion membrane and that overexpression of those Incs will alter the composition of endogenous Incs within the inclusion membrane. Consequently, inclusion biogenesis and chlamydial development are negatively impacted. To investigate this, C. trachomatis L2 was transformed with inducible expression plasmids encoding IncF-, CT813-, or CT226-FLAG. Overexpression of IncF-FLAG or CT813-FLAG, but not CT226-FLAG, altered chlamydial development, as demonstrated by smaller inclusions, fewer progeny, and increased plasmid loss. The overexpression of CT813-FLAG reduced the detectable levels of endogenous IncE and IncG in the inclusion membrane. Notably, recruitment of sorting nexin-6, a eukaryotic protein binding partner of IncE, was also reduced after CT813 overexpression. Gene expression studies and ultrastructural analysis of chlamydial organisms demonstrated that chlamydial development was altered when CT813-FLAG was overexpressed. Overall, these data indicate that disrupting the expression of specific Incs changed the composition of Incs within the inclusion membrane and the recruitment of associated host cell proteins, which negatively impacted C. trachomatis development.
Collapse
|
8
|
The Small Molecule H89 Inhibits Chlamydia Inclusion Growth and Production of Infectious Progeny. Infect Immun 2021; 89:e0072920. [PMID: 33820812 PMCID: PMC8373235 DOI: 10.1128/iai.00729-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chlamydia is an obligate intracellular bacterium and the most common reportable cause of human infection in the United States. This pathogen proliferates inside a eukaryotic host cell, where it resides within a membrane-bound compartment called the chlamydial inclusion. It has an unusual developmental cycle, marked by conversion between a replicating form, the reticulate body (RB), and an infectious form, the elementary body (EB). We found that the small molecule H89 slowed inclusion growth and decreased overall RB replication by 2-fold but caused a 25-fold reduction in infectious EBs. This disproportionate effect on EB production was mainly due to a defect in RB-to-EB conversion and not to the induction of chlamydial persistence, which is an altered growth state. Although H89 is a known inhibitor of specific protein kinases and vesicular transport to and from the Golgi apparatus, it did not cause these anti-chlamydial effects by blocking protein kinase A or C or by inhibiting protein or lipid transport. Thus, H89 is a novel anti-chlamydial compound that has a unique combination of effects on an intracellular Chlamydia infection.
Collapse
|
9
|
Genome copy number regulates inclusion expansion, septation, and infectious developmental form conversion in Chlamydia trachomatis. J Bacteriol 2021; 203:JB.00630-20. [PMID: 33431433 PMCID: PMC8095454 DOI: 10.1128/jb.00630-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA replication is essential for the growth and development of Chlamydia trachomatis, however it is unclear how this process contributes to and is controlled by the pathogen's biphasic lifecycle. While inhibitors of transcription, translation, cell division, and glucose-6-phosphate transport all negatively affect chlamydial intracellular development, the effects of directly inhibiting DNA polymerase have never been examined. We isolated a temperature sensitive dnaE mutant (dnaEts ) that exhibits a ∼100-fold reduction in genome copy number at the non-permissive temperature (40°C), but replicates similarly to the parent at the permissive temperature of 37°C. We measured higher ratios of genomic DNA nearer the origin of replication than the terminus in dnaEts at 40°C, indicating that this replication deficiency is due to a defect in DNA polymerase processivity. dnaEts formed fewer and smaller pathogenic vacuoles (inclusions) at 40°C, and the bacteria appeared enlarged and exhibited defects in cell division. The bacteria also lacked both discernable peptidoglycan and polymerized MreB, the major cell division organizing protein in Chlamydia responsible for nascent peptidoglycan biosynthesis. We also found that absolute genome copy number, rather than active genome replication, was sufficient for infectious progeny production. Deficiencies in both genome replication and inclusion expansion reversed when dnaEts was shifted from 40°C to 37°C early in infection, and intragenic suppressor mutations in dnaE also restored dnaEts genome replication and inclusion expansion at 40°C. Overall, our results show that genome replication in C. trachomatis is required for inclusion expansion, septum formation, and the transition between the microbe's replicative and infectious forms.SIGNIFICANCE Chlamydiae transition between infectious, extracellular elementary bodies (EBs) and non-infectious, intracellular reticulate bodies (RBs). Some checkpoints that govern transitions in chlamydial development have been identified, but the extent to which genome replication plays a role in regulating the pathogen's infectious cycle has not been characterized. We show that genome replication is dispensable for EB to RB conversion, but is necessary for RB proliferation, division septum formation, and inclusion expansion. We use new methods to investigate developmental checkpoints and dependencies in Chlamydia that facilitate the ordering of events in the microbe's biphasic life cycle. Our findings suggest that Chlamydia utilizes feedback inhibition to regulate core metabolic processes during development, likely an adaptation to intracellular stress and a nutrient-limiting environment.
Collapse
|
10
|
Castellanos Hernández N, Castañeda Franco YM, Caro Burgos PA, Sánchez Mora RM. Perspectivas en investigación:. NOVA 2020. [DOI: 10.22490/24629448.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) es una bacteria Gram negativa inmóvil, caracterizada por ser un microorganismo intracelular obligado y por poseer un ciclo reproductivo en el que puede distinguirse una forma infecciosa extracelular metabólicamente inerte (cuerpo elemental - EB’s), y una forma no infecciosa intracelular y activa (cuerpo reticulado - RB’s). C trachomatis se caracteriza por causar infección en humanos, está relacionada con enfermedades de transmisión sexual e infecciones oculares; por lo que puede conllevar a secuelas de interés, si no se da un tratamiento oportuno. El objetivo de este estudio fue optimizar el modelo de infección de C. trachomatis en células HEp-2 con cuerpos elementales (EB’s) de C. trachomatis serovar L2. Inicialmente, se establecieron las condiciones para el crecimiento adecuado de las células HEp-2 en tiempo y con una confluencia del 90%, para continuar con la optimización de un protocolo de infección. La infección fue confirmada a partir de la coloración con Giemsa permitiendo evaluar características morfológicas tanto de las células HEp-2 sin infectar e infectadas, y así mismo, de los cuerpos elementales de C. trachomatis. Finalmente, se corroboró la infección con la técnica de inmunofluorescencia directa que detecta la proteína de membrana MOMP de C. trachomatis. Tras los ensayos realizados se evidenció la presencia de cuerpos elementales próximos y dentro del citoplasma celular, así como células vacuoladas y daño celular causado por la infección.
Collapse
|
11
|
Capmany A, Gambarte Tudela J, Alonso Bivou M, Damiani MT. Akt/AS160 Signaling Pathway Inhibition Impairs Infection by Decreasing Rab14-Controlled Sphingolipids Delivery to Chlamydial Inclusions. Front Microbiol 2019; 10:666. [PMID: 31001235 PMCID: PMC6456686 DOI: 10.3389/fmicb.2019.00666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular bacterium, intercepts different trafficking pathways of the host cell to acquire essential lipids for its survival and replication, particularly from the Golgi apparatus via a Rab14-mediated transport. Molecular mechanisms underlying how these bacteria manipulate intracellular transport are a matter of intense study. Here, we show that C. trachomatis utilizes Akt/AS160 signaling pathway to promote sphingolipids delivery to the chlamydial inclusion through Rab14-controlled vesicular transport. C. trachomatis provokes Akt phosphorylation along its entire developmental life cycle and recruits phosphorylated Akt (pAkt) to the inclusion membrane. As a consequence, Akt Substrate of 160 kDa (AS160), also known as TBC1D4, a GTPase Activating Protein (GAP) for Rab14, is phosphorylated and therefore inactivated. Phosphorylated AS160 (pAS160) loses its ability to promote GTP hydrolysis, favoring Rab14 binding to GTP. Akt inhibition by an allosteric isoform-specific Akt inhibitor (iAkt) prevents AS160 phosphorylation and reduces Rab14 recruitment to chlamydial inclusions. iAkt further impairs sphingolipids acquisition by C. trachomatis-inclusion and provokes lipid retention at the Golgi apparatus. Consequently, treatment with iAkt decreases chlamydial inclusion size, bacterial multiplication, and infectivity in a dose-dependent manner. Similar results were found in AS160-depleted cells. By electron microscopy, we observed that iAkt generates abnormal bacterial forms as those reported after sphingolipids deprivation or Rab14 silencing. Taken together, our findings indicate that targeting the Akt/AS160/Rab14 axis could constitute a novel strategy to limit chlamydial infections, mainly for those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Anahí Capmany
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Julián Gambarte Tudela
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Mariano Alonso Bivou
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - María T Damiani
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| |
Collapse
|
12
|
Jolly AL, Rau S, Chadha AK, Abdulraheem EA, Dean D. Stromal Fibroblasts Drive Host Inflammatory Responses That Are Dependent on Chlamydia trachomatis Strain Type and Likely Influence Disease Outcomes. mBio 2019; 10:e00225-19. [PMID: 30890604 PMCID: PMC6426598 DOI: 10.1128/mbio.00225-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 01/11/2023] Open
Abstract
Chlamydia trachomatis ocular strains cause a blinding disease known as trachoma. These strains rarely cause urogenital infections and are not found in the upper genital tract or rectum. Urogenital strains are responsible for a self-limited conjunctivitis and the sequelae of infertility, ectopic pregnancy, and hemorrhagic proctitis. However, the differential cellular responses that drive these clinically observed disease outcomes are not completely understood. Primary conjunctival, endocervical, and endometrial epithelial and stromal fibroblast cells, HeLa229 cells, and immortalized conjunctival epithelial (HCjE) cells were infected with the ocular A/Har-13 (A) and Ba/Apache-2 (Ba) strains and urogenital D/UW-3 (D) and E/Bour (E) strains. Infection rates, progeny production, and cytokine/chemokine secretion levels were evaluated in comparison with those in uninfected cells. All strain types infected all cell types with similar levels of efficacy and development. However, progeny production levels differed among primary cells: Ba produced significantly more progeny than E in endocervical and endometrial fibroblasts, while A progeny were less abundant than E progeny. C.trachomatis infection of primary epithelial cells elicited an increase in pro- and anti-inflammatory mediators compared to levels in uninfected cells, but there were no significant differences by strain type. In contrast, for primary fibroblasts, ocular strains elicited significant increases in the pro- and anti-inflammatory mediators macrophage inflammatory protein (MIP)-1β, thymus- and activation-regulated chemokine (TARC), interleukin (IL)-2, IL-12p70, and interferon gamma-induced protein 10 (IP-10) compared to levels in urogenital strains, while urogenital strains elicited a distinct and significant increase in the proinflammatory mediators IL-1α, IL-1β, IL-8, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Our data indicate that primary fibroblasts, not epithelial cells, drive host inflammatory responses that are dependent on strain type and likely influence disease outcomes, establishing their importance as a novel model for studies of C. trachomatis disease pathogenesis.IMPORTANCEChlamydia trachomatis is a human pathogen and the leading cause of preventable blindness and sexually transmitted diseases in the world. Certain C. trachomatis strains cause ocular disease, while others cause upper genital tract pathology. However, little is known about the cellular or immunologic basis for these differences. Here, we compared the abilities of the strain types to infect, replicate, and initiate an immune response in primary human ocular and urogenital epithelial cells, as well as in fibroblasts from the underlying stroma. While there were no significant differences in infection rates or intracellular growth for any strain in any cell type, proinflammatory responses were driven not by the epithelial cells but by fibroblasts and were distinct between ocular and urogenital strains. Our findings suggest that primary fibroblasts are a novel and more appropriate model for studies of immune responses that will expand our understanding of the differential pathological disease outcomes caused by various C. trachomatis strain types.
Collapse
Affiliation(s)
- Amber Leah Jolly
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Sameeha Rau
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Anmol K Chadha
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Ekhlas Ahmed Abdulraheem
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, USA
- Department of Medicine and Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Liang P, Rosas-Lemus M, Patel D, Fang X, Tuz K, Juárez O. Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation. J Biol Chem 2017; 293:510-522. [PMID: 29123027 DOI: 10.1074/jbc.m117.797209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an "energy parasite" that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient.
Collapse
Affiliation(s)
- Pingdong Liang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Mónica Rosas-Lemus
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Dhwani Patel
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Karina Tuz
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Oscar Juárez
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| |
Collapse
|
14
|
Good JAD, Kulén M, Silver J, Krishnan KS, Bahnan W, Núñez-Otero C, Nilsson I, Wede E, de Groot E, Gylfe Å, Bergström S, Almqvist F. Thiazolino 2-Pyridone Amide Isosteres As Inhibitors of Chlamydia trachomatis Infectivity. J Med Chem 2017; 60:9393-9399. [DOI: 10.1021/acs.jmedchem.7b00716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James A. D. Good
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Martina Kulén
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Jim Silver
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department
of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - K. Syam Krishnan
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Wael Bahnan
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department
of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Carlos Núñez-Otero
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
- Clinical
microbiology, Umeå University, 901 85 Umeå, Sweden
| | - Ingela Nilsson
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department
of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Emma Wede
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department
of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Esmee de Groot
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department
of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Åsa Gylfe
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
- Clinical
microbiology, Umeå University, 901 85 Umeå, Sweden
| | - Sven Bergström
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department
of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Laboratory
for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Fredrik Almqvist
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå
Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
15
|
Good JAD, Silver J, Núñez-Otero C, Bahnan W, Krishnan KS, Salin O, Engström P, Svensson R, Artursson P, Gylfe Å, Bergström S, Almqvist F. Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity. J Med Chem 2016; 59:2094-108. [PMID: 26849778 DOI: 10.1021/acs.jmedchem.5b01759] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 ≤ 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 μM. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.
Collapse
Affiliation(s)
- James A D Good
- Department of Chemistry, Umeå University , 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden
| | - Jim Silver
- Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden.,Department of Molecular Biology, Umeå University , 901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , 901 87 Umeå, Sweden
| | - Carlos Núñez-Otero
- Department of Clinical Microbiology, Umeå University , 901 85 Umeå, Sweden
| | - Wael Bahnan
- Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden.,Department of Molecular Biology, Umeå University , 901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , 901 87 Umeå, Sweden
| | - K Syam Krishnan
- Department of Chemistry, Umeå University , 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden
| | - Olli Salin
- Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , 901 87 Umeå, Sweden.,Department of Clinical Microbiology, Umeå University , 901 85 Umeå, Sweden
| | - Patrik Engström
- Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden.,Department of Molecular Biology, Umeå University , 901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , 901 87 Umeå, Sweden
| | - Richard Svensson
- Department of Pharmacy, Uppsala University , SE-751 23 Uppsala, Sweden.,The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University , SE-751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University , SE-751 23 Uppsala, Sweden.,The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University , SE-751 23 Uppsala, Sweden
| | - Åsa Gylfe
- Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , 901 87 Umeå, Sweden.,Department of Clinical Microbiology, Umeå University , 901 85 Umeå, Sweden
| | - Sven Bergström
- Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden.,Department of Molecular Biology, Umeå University , 901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , 901 87 Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University , 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University , 901 87 Umeå, Sweden
| |
Collapse
|
16
|
Leonard CA, Schoborg RV, Borel N. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro. PLoS One 2015; 10:e0134943. [PMID: 26248286 PMCID: PMC4527707 DOI: 10.1371/journal.pone.0134943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022] Open
Abstract
Persistence, more recently termed the chlamydial stress response, is a viable but non-infectious state constituting a divergence from the characteristic chlamydial biphasic developmental cycle. Damage/danger associated molecular patterns (DAMPs) are normal intracellular components or metabolites that, when released from cells, signal cellular damage/lysis. Purine metabolite DAMPs, including extracellular ATP and adenosine, inhibit chlamydial development in a species-specific manner. Viral co-infection has been shown to reversibly abrogate Chlamydia inclusion development, suggesting persistence/chlamydial stress. Because viral infection can cause host cell DAMP release, we hypothesized DAMPs may influence chlamydial development. Therefore, we examined the effect of extracellular ATP, adenosine, and cyclic AMP exposure, at 0 and 14 hours post infection, on C. pecorum and C. trachomatis serovar E development. In the absence of de novo host protein synthesis, exposure to DAMPs immediately post or at 14 hours post infection reduced inclusion size; however, the effect was less robust upon 14 hours post infection exposure. Additionally, upon exposure to DAMPs immediately post infection, bacteria per inclusion and subsequent infectivity were reduced in both Chlamydia species. These effects were reversible, and C. pecorum exhibited more pronounced recovery from DAMP exposure. Aberrant bodies, typical in virus-induced chlamydial persistence, were absent upon DAMP exposure. In the presence of de novo host protein synthesis, exposure to DAMPs immediately post infection reduced inclusion size, but only variably modulated chlamydial infectivity. Because chlamydial infection and other infections may increase local DAMP concentrations, DAMPs may influence Chlamydia infection in vivo, particularly in the context of poly-microbial infections.
Collapse
Affiliation(s)
- Cory Ann Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|