1
|
Jiang Y, Wang Y, Bai Y, Yuan L, Dai QB, Zhu Q, Zhao R, Liu MF, Liu P. Genomic and phenotypic adaptations of methicillin resistant Staphylococcus aureus during vancomycin therapy. Sci Rep 2025; 15:15346. [PMID: 40316685 PMCID: PMC12048576 DOI: 10.1038/s41598-025-99639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant global health challenge, particularly associated with serious infections such as bacteremia. Lipoglycopeptide antibiotics, including vancomycin, dalbavancin, and daptomycin, are critical in MRSA treatment. In this study, we analyzed two MRSA isolates (XF1 and XF2) from a bacteremia patient treated with vancomycin. Antimicrobial susceptibility testing revealed that XF1 was sensitive to vancomycin, dalbavancin, and daptomycin, whereas XF2 exhibited 8- to 16-fold higher minimum inhibitory concentrations for these antibiotics, alongside a 4- to 8-fold reduction in resistance to β-lactam antibiotics, demonstrating the "β-lactam seesaw effect". Whole-genome sequencing confirmed their isogenic nature (ST59-SCCmecIV-t172), identifying seven mutations in XF2, including those in walK (G223S), vraR (D88Y), clpX (P64L), and ltaS (L62P), as well as a frameshift mutation in mgt (S39fs), likely contributing to resistance. Transmission electron microscopy and autolysis assays demonstrated that XF2 had a thicker cell wall and a slower autolysis rate compared to XF1. Phenotypic analysis showed that XF2 exhibited reduced growth rate, diminished virulence, and enhanced biofilm formation compared to XF1. Gene expression analysis supported these findings, revealing significant alterations in pathways related to cell wall metabolism, autolysis, and virulence regulation. These adaptations highlight the genomic and phenotypic plasticity of MRSA under antibiotic pressure, enabling resistance and persistence. This study underscores the urgent need for enhanced surveillance and alternative therapeutic strategies, including exploiting the β-lactam seesaw effect, to combat lipoglycopeptide-nonsusceptible MRSA.
Collapse
Affiliation(s)
- Yiyue Jiang
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ying Wang
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - YunXue Bai
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lei Yuan
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qian-Bin Dai
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Rui Zhao
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mei-Fang Liu
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Peng Liu
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Zhu L, Huang D, Tan J, Huang J, Zhang R, Liao J, Wang J, Jin X. Comparative metabolomics reveals streptophenazines with anti-methicillin-resistant Staphylococcus aureus activity derived from Streptomyces albovinaceus strain WA10-1-8 isolated from Periplaneta americana. BMC Microbiol 2025; 25:77. [PMID: 39962376 PMCID: PMC11831851 DOI: 10.1186/s12866-025-03789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Streptophenazines, a class of phenazine compounds with a variety of alkyl side chains and activity against methicillin-resistant Staphylococcus aureus (MRSA), are mainly derived from soil or marine microbial secondary metabolites. However, the discovered phenazine compounds still do not meet the needs of the development of anti-MRSA lead compounds. Here, we examined secondary metabolites of Streptomyces albovinaceus WA10-1-8 isolated from Periplaneta americana, for streptophenazines with anti-MRSA activity. RESULTS In this study, a guidance method combining high-performance liquid chromatography-ultraviolet (HPLC-UV) with molecular networking analysis was used to isolate and identify a series of streptophenazines (A-T) from S. albovinaceus WA10-1-8. Among them, a new streptophenazine containing a dihydroxyalkyl chain structure named streptophenazine T was isolated and identified for the first time. The results of bioactivity assays showed that streptophenazine T had anti-MRSA activity with a minimum inhibitory concentration (MIC) of 150.23 µM, while the MICs of streptophenazine A, B, G, and F were 37.74-146.12 µM. CONCLUSIONS This study was the first to report multiple streptophenazine compounds with anti-MRSA activity expressed by Streptomyces isolated from insect niches. These results provided a valuable reference for future exploration of new streptophenazine compounds with activity against drug-resistant bacteria.
Collapse
Affiliation(s)
- Liuchong Zhu
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Dan Huang
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jinli Tan
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiaxuan Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ruyu Zhang
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jingyang Liao
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jie Wang
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xiaobao Jin
- School of basic medical sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
4
|
Fait A, Silva SF, Abrahamsson JÅH, Ingmer H. Staphylococcus aureus response and adaptation to vancomycin. Adv Microb Physiol 2024; 85:201-258. [PMID: 39059821 DOI: 10.1016/bs.ampbs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Antibiotic resistance is an increasing challenge for the human pathogen Staphylococcus aureus. Methicillin-resistant S. aureus (MRSA) clones have spread globally, and a growing number display decreased susceptibility to vancomycin, the favoured antibiotic for treatment of MRSA infections. These vancomycin-intermediate S. aureus (VISA) or heterogeneous vancomycin-intermediate S. aureus (hVISA) strains arise from accumulation of a variety of point mutations, leading to cell wall thickening and reduced vancomycin binding to the cell wall building block, Lipid II, at the septum. They display only minor changes in vancomycin susceptibility, with varying tolerance between cells in a population, and therefore, they can be difficult to detect. In this review, we summarize current knowledge of VISA and hVISA. We discuss the role of genetic strain background or epistasis for VISA development and the possibility of strains being 'transient' VISA with gene expression changes mediated by, for example, VraTSR, GraXSR, or WalRK signal transduction systems, leading to temporary vancomycin tolerance. Additionally, we address collateral susceptibility to other antibiotics than vancomycin. Specifically, we estimate how mutations in rpoB, encoding the β-subunit of the RNA polymerase, affect overall protein structure and compare changes with rifampicin resistance. Ultimately, such in-depth analysis of VISA and hVISA strains in terms of genetic and transcriptional changes, as well as changes in protein structures, may pave the way for improved detection and guide antibiotic therapy by revealing strains at risk of VISA development. Such tools will be valuable for keeping vancomycin an asset also in the future.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Stephanie Fulaz Silva
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
5
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
6
|
Crozier D, Gray JM, Maltas JA, Bonomo RA, Burke ZDC, Card KJ, Scott JG. The evolution of diverse antimicrobial responses in vancomycin-intermediate Staphylococcus aureus and its therapeutic implications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569373. [PMID: 38077036 PMCID: PMC10705500 DOI: 10.1101/2023.11.30.569373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Staphylococcus aureus causes endocarditis, osteomyelitis, and bacteremia. Clinicians often prescribe vancomycin as an empiric therapy to account for methicillin-resistant S. aureus (MRSA) and narrow treatment based on culture susceptibility results. However, these results reflect a single time point before empiric treatment and represent a limited subset of the total bacterial population within the patient. Thus, while they may indicate that the infection is susceptible to a particular drug, this recommendation may no longer be accurate during therapy. Here, we addressed how antibiotic susceptibility changes over time by accounting for evolution. We evolved 18 methicillin-susceptible S. aureus (MSSA) populations under increasing vancomycin concentrations until they reached intermediate resistance levels. Sequencing revealed parallel mutations that affect cell membrane stress response and cell-wall biosynthesis. The populations exhibited repeated cross-resistance to daptomycin and varied responses to meropenem, gentamicin, and nafcillin. We accounted for this variability by deriving likelihood estimates that express a population's probability of exhibiting a drug response following vancomycin treatment. Our results suggest antistaphylococcal penicillins are preferable first-line treatments for MSSA infections but also highlight the inherent uncertainty that evolution poses to effective therapies. Infections may take varied evolutionary paths; therefore, considering evolution as a probabilistic process should inform our therapeutic choices.
Collapse
|
7
|
Li Y, Pan T, Cao R, Li W, He Z, Sun B. Nitrate Reductase NarGHJI Modulates Virulence via Regulation of agr Expression in Methicillin-Resistant Staphylococcus aureus Strain USA300 LAC. Microbiol Spectr 2023; 11:e0359622. [PMID: 37199609 PMCID: PMC10269880 DOI: 10.1128/spectrum.03596-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium with a widespread distribution that can cause diverse severe diseases. The membrane-bound nitrate reductase NarGHJI serves respiratory function. However, little is known about its contribution to virulence. In this study, we demonstrated that narGHJI disruption results in the downregulation of virulence genes (e.g., RNAIII, agrBDCA, hla, psmα, and psmβ) and reduces the hemolytic activity of the methicillin-resistant S. aureus (MRSA) strain USA300 LAC. Moreover, we provided evidence that NarGHJI participates in regulating host inflammatory response. A mouse model of subcutaneous abscess and Galleria mellonella survival assay demonstrated that the ΔnarG mutant was significantly less virulent than the wild type. Interestingly, NarGHJI contributes to virulence in an agr-dependent manner, and the role of NarGHJI differs between different S. aureus strains. Our study highlights the novel role of NarGHJI in regulating virulence, thereby providing a new theoretical reference for the prevention and control of S. aureus infection. IMPORTANCE Staphylococcus aureus is a notorious pathogen that poses a great threat to human health. The emergence of drug-resistant strains has significantly increased the difficulty of preventing and treating S. aureus infection and enhanced the pathogenic ability of the bacterium. This indicates the importance of identifying novel pathogenic factors and revealing the regulatory mechanisms through which they regulate virulence. The nitrate reductase NarGHJI is mainly involved in bacterial respiration and denitrification, which can enhance bacterial survival. We demonstrated that narGHJI disruption results in the downregulation of the agr system and agr-dependent virulence genes, suggesting that NarGHJI participates in the regulation of S. aureus virulence in an agr-dependent manner. Moreover, the regulatory approach is strain specific. This study provides a new theoretical reference for the prevention and control of S. aureus infection and reveals new targets for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yujie Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ting Pan
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ruobing Cao
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
8
|
Dong W, Peng Q, Tang X, Zhong T, Lin S, Zhi Z, Ye J, Yang B, Sun N, Yuan W. Identification and Characterization of a Vancomycin Intermediate-Resistant Staphylococcus haemolyticus Isolated from Guangzhou, China. Infect Drug Resist 2023; 16:3639-3647. [PMID: 37313263 PMCID: PMC10259589 DOI: 10.2147/idr.s411860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Background Staphylococcus haemolyticus is an opportunistic pathogen that belongs to coagulase-negative Staphylococci (CoNS). Increasing infection and multi-drug resistance cases caused by this strain have been reported and thus it poses a great health threat. Methods The third-generation sequencing technology was performed on a S. haemolyticus SH-1 isolated from a clinical sample to analyze the drug resistance genes, which included vancomycin resistance related genes. In addition, antimicrobial susceptibility tests, transmission electron microscopy and Triton X-100 stimulated autolysis were conducted to understand its biological characteristics. Results The study shows that this clinical isolate is a vancomycin intermediate-resistant strain. Genome comparison also revealed that WalK(N70K) and WalK(R280Q) mutations may contribute to the vancomycin resistant phenotype. Besides, S. haemolyticus SH-1 exhibit common features of thicker cell wall and decreased autolytic activity. Conclusion S. haemolyticus SH-1 with WalKR mutations shows typical characteristics of vancomycin resistant strains. Combining the genome features and biological properties, our findings may provide important information for the understanding of the molecular mechanism of S. haemolyticus to vancomycin intermediate-resistance.
Collapse
Affiliation(s)
- Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Third Affiliated Hospital of Guangzhou Medical University, Department of Clinical Laboratory, Guangzhou, 510150, People’s Republic of China
| | - Tian Zhong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Shunan Lin
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Jingyi Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Bixia Yang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Ning Sun
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
9
|
Jiang K, Chen X, Zhang W, Guo Y, Liu G. Nonribosomal antibacterial peptides isolated from Streptomyces agglomeratus 5-1-3 in the Qinghai-Tibet Plateau. Microb Cell Fact 2023; 22:5. [PMID: 36609255 PMCID: PMC9824969 DOI: 10.1186/s12934-023-02018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND New antibiotics are urgently needed in clinical treatment of superdrug-resistant bacteria. Nonribosomal peptides (NRPs) are a major source of antibiotics because they exhibit structural diversity, and unique antibacterial mechanisms and resistance. Analysis of gene clusters of S. agglomeratus 5-1-3 showed that Clusters 3, 6, 12, 21, and 28 were used to synthesize NRPs. Here, we examined secondary metabolites of S. agglomeratus 5-1-3 isolated from soils in the Qinghai-Tibet Plateau, China, for NRPs with antibacterial activity. RESULTS We isolated a total of 36 Streptomyces strains with distinct colony morphological characteristics from 7 soil samples. We screened 8 Streptomyces strains resistant to methicillin-resistant Staphylococcus aureus (MRSA). We then selected S. agglomeratus 5-1-3 for further study based on results of an antibacterial activity test. Here, we isolated three compounds from S. agglomeratus 5-1-3 and characterized their properties. The crude extract was extracted with ethyl acetate and purified with column chromatography and semipreparative high-performance liquid chromatography (HPLC). We characterized the three compounds using NMR analyses as echinomycin (1), 5,7,4'-trihydroxy-3.3',5'-trimethoxy flavone (2), and 2,6,2', 6'-tetramethoxy-4,4-bis(2,3-epoxy-1-hydroxypropyl)-biphenyl (3). We tested the antibacterial activity of pure compounds from strain 5-1-3 with the Oxford cup method. NRP echinomycin (1) showed excellent anti-MRSA activity with a minimum inhibitory concentration (MIC) of 2.0 μg/mL. Meanwhile, MIC of compound 2 and 3 was 128.0 μg/mL for both. In addition, 203 mg of echinomycin was isolated from 10 L of the crude extract broth of strain 5-1-3. CONCLUSION In this study, S. agglomeratus 5-1-3 with strong resistance to MRSA was isolated from the soils in the Qinghai-Tibet Plateau. Strain 5-1-3 had a high yield of echinomycin (1) an NRP with a MIC of 2 μg/mL against MRSA. We propose that echinomycin derived from S. agglomeratus 5-1-3 may be a potent antibacterial agent for pharmaceutical use.
Collapse
Affiliation(s)
- Kan Jiang
- grid.411734.40000 0004 1798 5176College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Ximing Chen
- grid.496923.30000 0000 9805 287XKey Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030 Gansu China ,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730030 Gansu China
| | - Wei Zhang
- grid.496923.30000 0000 9805 287XKey Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030 Gansu China ,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730030 Gansu China
| | - Yehong Guo
- grid.411734.40000 0004 1798 5176College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Guangxiu Liu
- grid.496923.30000 0000 9805 287XKey Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030 Gansu China ,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730030 Gansu China
| |
Collapse
|
10
|
Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes. Microbiol Spectr 2022; 10:e0256722. [PMID: 36173303 PMCID: PMC9603734 DOI: 10.1128/spectrum.02567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Interestingly, all characterized CmR mutants harbored a combination of mutations in walK and clpP or clpC. In vitro and in vivo analyses showed that the mutations in the Clp proteins abolished ClpP or ClpC activity, and the deletion of clpP rendered S. aureus but not all Bacillus subtilis strains cervimycin-resistant. The essential gene walK was the second mutational hotspot in the CmR S. aureus strains, which decreased WalK activity in vitro and generated a vancomycin-intermediate resistant phenotype, with a thickened cell wall, a lower growth rate, and reduced cell lysis. Transcriptomic and proteomic analyses revealed massive alterations in the CmR strains compared to the parent strain S. aureus SG511, with major shifts in the heat shock regulon, the metal ion homeostasis, and the carbohydrate metabolism. Taken together, mutations in the heat shock genes clpP, clpC, and dnaK, and the walK kinase gene in CmR mutants induced a vancomycin-intermediate resistant phenotype in S. aureus, suggesting cell wall metabolism or the Clp protease system as primary target of cervimycin. IMPORTANCE Staphylococcus aureus is a frequent cause of infections in both the community and hospital setting. Resistance development of S. aureus to various antibiotics is a severe problem for the treatment of this pathogen worldwide. New powerful antimicrobial agents against Gram-positives are needed, since antibiotics like vancomycin fail to cure vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-resistant enterococci (VRE) infections. One candidate substance with promising activity against these organisms is cervimycin, which is an antibiotic complex with a yet unknown mode of action. In our study, we provide first insights into the mode of action of cervimycins. By characterizing cervimycin-resistant S. aureus strains, we revealed the Clp system and the essential kinase WalK as mutational hotspots for cervimycin resistance in S. aureus. It further emerged that cervimycin-resistant S. aureus strains show a VISA phenotype, indicating a role of cervimycin in perturbing the bacterial cell envelope.
Collapse
|
11
|
Kong L, Su M, Sang J, Huang S, Wang M, Cai Y, Xie M, Wu J, Wang S, Foster SJ, Zhang J, Han A. The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Front Microbiol 2022; 13:820089. [PMID: 35558126 PMCID: PMC9087282 DOI: 10.3389/fmicb.2022.820089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.
Collapse
Affiliation(s)
- Lingyuan Kong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanshan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Min Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingquan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shida Wang
- State Key Laboratory for Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Florey Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Yang D, Zheng X, Jiang L, Ye M, He X, Jin Y, Wu R. Functional Mapping of Phenotypic Plasticity of Staphylococcus aureus Under Vancomycin Pressure. Front Microbiol 2021; 12:696730. [PMID: 34566908 PMCID: PMC8458881 DOI: 10.3389/fmicb.2021.696730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Phenotypic plasticity is the exhibition of various phenotypic traits produced by a single genotype in response to environmental changes, enabling organisms to adapt to environmental changes by maintaining growth and reproduction. Despite its significance in evolutionary studies, we still know little about the genetic control of phenotypic plasticity. In this study, we designed and conducted a genome-wide association study (GWAS) to reveal genetic architecture of how Staphylococcus aureus strains respond to increasing concentrations of vancomycin (0, 2, 4, and 6 μg/mL) in a time course. We implemented functional mapping, a dynamic model for genetic mapping using longitudinal data, to map specific loci that mediate the growth trajectories of abundance of vancomycin-exposed S. aureus strains. 78 significant single nucleotide polymorphisms were identified following analysis of the whole growth and development process, and seven genes might play a pivotal role in governing phenotypic plasticity to the pressure of vancomycin. These seven genes, SAOUHSC_00020 (walR), SAOUHSC_00176, SAOUHSC_00544 (sdrC), SAOUHSC_02998, SAOUHSC_00025, SAOUHSC_00169, and SAOUHSC_02023, were found to help S. aureus regulate antibiotic pressure. Our dynamic gene mapping technique provides a tool for dissecting the phenotypic plasticity mechanisms of S. aureus under vancomycin pressure, emphasizing the feasibility and potential of functional mapping in the study of bacterial phenotypic plasticity.
Collapse
Affiliation(s)
- Dengcheng Yang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuyang Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Department of Public Health Sciences and Statistics, Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
13
|
Baseri N, Najar-Peerayeh S, Bakhshi B. Investigating the effect of an identified mutation within a critical site of PAS domain of WalK protein in a vancomycin-intermediate resistant Staphylococcus aureus by computational approaches. BMC Microbiol 2021; 21:240. [PMID: 34474665 PMCID: PMC8414773 DOI: 10.1186/s12866-021-02298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Vancomycin-intermediate resistant Staphylococcus aureus (VISA) is becoming a common cause of nosocomial infections worldwide. VISA isolates are developed by unclear molecular mechanisms via mutations in several genes, including walKR. Although studies have verified some of these mutations, there are a few studies that pay attention to the importance of molecular modelling of mutations. Method For genomic and transcriptomic comparisons in a laboratory-derived VISA strain and its parental strain, Sanger sequencing and reverse transcriptase quantitative PCR (RT-qPCR) methods were used, respectively. After structural protein mapping of the detected mutation, mutation effects were analyzed using molecular computational approaches and crystal structures of related proteins. Results A mutation WalK-H364R was occurred in a functional zinc ion coordinating residue within the PAS domain in the VISA strain. WalK-H364R was predicted to destabilize protein and decrease WalK interactions with proteins and nucleic acids. The RT-qPCR method showed downregulation of walKR, WalKR-regulated autolysins, and agr locus. Conclusion Overall, WalK-H364R mutation within a critical metal-coordinating site was presumably related to the VISA development. We assume that the WalK-H364R mutation resulted in deleterious effects on protein, which was verified by walKR gene expression changes.. Therefore, molecular modelling provides detailed insight into the molecular mechanism of VISA development, in particular, where allelic replacement experiments are not readily available. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02298-9.
Collapse
Affiliation(s)
- Neda Baseri
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|