1
|
Cheng X, Li Y, Wang H. Activation of Wnt/β-catenin signal induces DCs to differentiate into immune tolerant regDCs in septic mice. Mol Immunol 2024; 172:38-46. [PMID: 38870636 DOI: 10.1016/j.molimm.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Sepsis is a common complication among patients in intensive care units, and has a high mortality rate, with no effective therapies to date. As immunosuppression has become the research focus of sepsis, the regulatory role of dendritic cells (DCs) in the immune response to sepsis has received attention. OBJECTIVE To investigate the role of the Wnt/β-catenin signaling pathway in inducing the differentiation of splenic DCs in mice with sepsis caused by cecal ligation and puncture (CLP). METHODS C57bl/6 mice were randomly divided into three groups, namely the sham, 24 h post-CLP, and 72 h post-CLP groups. Levels of regulatory T cells (Tregs) among splenic mononuclear cells, suppressor T cells (TSs), and surface markers, such as major histocompatibility complex class II (MHC-II), co-stimulatory molecules (CD80 and CD86), negative co-stimulatory molecule death-ligand 1 (PD-L1), CC chemokine receptor-5 (CCR5), and CC chemokine receptor-7 (CCR7), were analyzed via flow cytometry for each group of mice post-surgery. CD11c+ DCs were purified from the splenic mononuclear cells of each group, and the expression of β-catenin, Wnt5a, and Wnt3a was detected using RT-PCR and western blotting.Each group of DCs was incubated with LPS-containing culture solution, and the supernatant of the culture solution was collected after 24 hours to detect the level of Tumor necrosis factor-α(TNF-α), interleukin (IL)-6, IL-12, and IL-10. RESULTS Compared with that in the sham group, the expression of β-catenin, Wnt5a, and Wnt3a in splenic DCs of the other two groups of mice increased with prolonged CLP exposure (P<0.05). Meanwhile, the proportion of Tregs and TSs increased in the mouse spleens after CLP, and levels of DC surface molecules, such as CCR5, CCR7, CD80, CD86, and MHC-II, decreased to different degrees, whereas those of PD-L1 increased. These results suggested that DCs differentiate towards regulatory DCs (regDCs) after CLP in mice. The results of ELISA showed that the longer the exposure time after CLP, the lower the ability of DCs to secrete TNF-α and IL-12, but the higher the level of IL-10 and IL-6. CONCLUSION The Wnt/β-catenin signaling pathway activates and induces regDCs differentiation in the splenic DCs of mice with sepsis and participates in the regulation of immune tolerance in the organism.
Collapse
Affiliation(s)
- Xia Cheng
- Graduate Training Base of Jinzhou Medical University (Department of Pathology, Fourth Medical Center, General Hospital of Chinese People's Liberation Army), Beijing 100048, China; Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yazhuo Li
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
2
|
Siemińska I, Arent Z. What we know about alterations in immune cells during sepsis in veterinary animals? Vet Immunol Immunopathol 2024; 274:110804. [PMID: 39002363 DOI: 10.1016/j.vetimm.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Sepsis is still one of the most common causes of death of animals and humans. It is marked by an aberrant immune response to infection, resulting in extensive inflammation, organ dysfunction, and, in severe instances, organ failure. Recognizable symptoms and markers of sepsis encompass substantial elevations in body temperature, respiratory rate, hemoglobin levels, and alterations in immune cell counts, including neutrophils, monocytes, and basophils, along with increases in certain acute-phase proteins. In contrast to human medicine, veterinarians must take into account some species differences. This article provides a comprehensive overview of changes in the immune system during sepsis, placing particular emphasis on species variations and exploring potential future drugs and interventions. Hence, understanding the intricate balance of the immune responses during sepsis is crucial to develop effective treatments and interventions to improve the chances of recovery in animals suffering from this serious condition.
Collapse
Affiliation(s)
- Izabela Siemińska
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Redzina 1C, Krakow 30-248, Poland.
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Redzina 1C, Krakow 30-248, Poland
| |
Collapse
|
3
|
Jiang F, Wang J, Ren Z, Hu Y, Wang B, Li M, Yu J, Tang J, Guo G, Cheng Y, Han P, Shen H. Targeted Light-Induced Immunomodulatory Strategy for Implant-Associated Infections via Reversing Biofilm-Mediated Immunosuppression. ACS NANO 2024; 18:6990-7010. [PMID: 38385433 DOI: 10.1021/acsnano.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Wang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
4
|
Daba GM, Elkhateeb WA. Ribosomally synthesized bacteriocins of lactic acid bacteria: Simplicity yet having wide potentials - A review. Int J Biol Macromol 2024; 256:128325. [PMID: 38007012 DOI: 10.1016/j.ijbiomac.2023.128325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/02/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
Bacteriocins are ribosomally made bacterial peptides that have outstanding contributions in the field of food industry, as biopreservatives, and promising potentials in the medical field for improving human and animal health. Bacteriocins have many advantages over antibiotics such as being primary metabolites with relatively simpler biosynthetic mechanisms, which made their bioengineering for activity or specificity improving purposes much easier. Also, bacteriocins are degraded by proteolytic enzymes and do not stay in environment, which reduce chances of developing resistance. Bacteriocins can improve activity of some antibiotics, and some bacteriocins show potency against multidrug-resistant bacteria. Moreover, some potent bacteriocins have antiviral, antifungal, and antiprotozoal (antileishmanial) activities. On the other hand, bacteriocins have been introduced into the treatment of some ulcers and types of cancer. These potentials make bacteriocins attract extra attention as promising biotechnological tool. Hence, the history, characteristics, and classification of bacteriocins are described in this review. Furthermore, the main difference between bacteriocins and other antimicrobial peptides is clarified. Also, bacteriocins biosynthesis and identified modes of action are elucidated. Additionally, current and potential applications of bacteriocins in food and medical fields are highlighted. Finally, future perspectives concerning studying bacteriocins and their applications are discussed.
Collapse
Affiliation(s)
- Ghoson Mosbah Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Institute, National Research Centre, El Buhouth St., Egypt.
| | - Waill Ahmed Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Institute, National Research Centre, El Buhouth St., Egypt
| |
Collapse
|
5
|
Chen H, Zhang X, Su H, Zeng J, Chan H, Li Q, Liu X, Zhang L, Wu WKK, Chan MTV, Chen H. Immune dysregulation and RNA N6-methyladenosine modification in sepsis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1764. [PMID: 36149809 DOI: 10.1002/wrna.1764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by the host immune dysregulation to infection. It is a highly heterogeneous syndrome with complex pathophysiological mechanisms. The host immune response to sepsis can be divided into hyper-inflammatory and immune-suppressive phases which could exist simultaneously. In the initial stage, systemic immune response is activated after exposure to pathogens. Both innate and adaptive immune cells undergo epigenomic, transcriptomic, and functional reprogramming, resulting in systemic and persistent inflammatory responses. Following the hyper-inflammatory phase, the body is in a state of continuous immunosuppression, which is related to immune cell apoptosis, metabolic failure, and epigenetic reprogramming. Immunosuppression leads to increased susceptibility to secondary infections in patients with sepsis. RNA N6-Methyladenosine (m6A) has been recognized as an indispensable epitranscriptomic modification involved in both physiological and pathological processes. Recent studies suggest that m6A could reprogram both innate and adaptive immune cells through posttranscriptional regulation of RNA metabolism. Dysregulated m6A modifications contribute to the pathogenesis of immune-related diseases. In this review, we summarize immune cell changes and the potential role of m6A modification in sepsis. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Su
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Judeng Zeng
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Li
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|