1
|
Raab SA, Pan H, Woodall DW, Hales DA, Sharon EM, Clemmer DE. Laser-Induced Denaturation of Cytochrome c in Electrospray Droplets. Anal Chem 2025; 97:9151-9158. [PMID: 40257962 DOI: 10.1021/acs.analchem.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Structural transitions of the model system cytochrome c (Cyt c) were monitored by ion mobility spectrometry (IMS) and mass spectrometry (MS) paired with two methods to heat proteins: a variable-temperature electrospray ionization (vT-ESI) source to heat the bulk protein solution and a 10.6 μm CO2 laser to rapidly heat ESI droplets containing the protein. Previous evidence from our group suggests that information about time-dependent protein structural transitions can be accessed by irradiating protein droplets of different sizes. In this paper, a new method to control droplet sizes is introduced where the distance between the ESI emitter and laser path is altered to produce larger or smaller droplets, yielding a simple and robust means of accessing different protein unfolding timescales. Herein, increasing the temperature of a solution of Cyt c in water at pH 4 via vT-ESI (from 27 to 80 °C) shifts the distribution of states from a relatively folded ensemble consisting of low charge states to a distribution of elongated structures that are observed as highly charged species. Rapid heating of ESI droplets (containing Cyt c) with a variable-power CO2 laser yields a similar shift in the mass spectra with increasing laser power. To investigate the conformational changes accessible within the lifetime of the heated droplets, four different tip sizes as well as several different distances between the ESI emitter and laser path are studied. Slight changes in droplet size can greatly alter the response of the protein to the laser field. The maximum observable charge state upon laser heating appears to be limited by the size of the ESI droplet prior to entering the laser field. The dependence of these distributions on droplets sizes leads us to propose that laser-induced denaturation in ESI droplets is stopped before an equilibrium distribution of conformers can be reached─providing a means of kinetically trapping ensembles of states. Therefore, we provide a simple correlation between droplet size, percent protein folded, and appropriate experimental distance to suggest a framework for robust studies of protein denaturation in ESI droplets.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Hua Pan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Jordan JS, Chen CJ, Lee KJ, Williams ER. Temperature Induced Unfolding and Compaction of Cytochrome c in the Same Aqueous Solutions. J Am Chem Soc 2025; 147:3412-3420. [PMID: 39772572 DOI: 10.1021/jacs.4c14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome c. Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein. However, one conformer that is more compact than the native state of the protein is also formed from this same solution upon heating. The abundance of this compact conformer increases with temperatures up to 90 °C. Rapid mixing and collision-induced gas-phase unfolding experiments demonstrate that formation of this compact conformer is not an artifact of rapid refolding during the ESI process or structural rearrangement in the gas-phase, and therefore the compact conformer must be formed in bulk solution at higher temperatures. The main folded conformer at 90 °C has a cross section that is ∼30 Å2 larger than that at 27 °C. Results from collision-induced unfolding experiments indicate that they have different gas-phase stabilities that are not directly related to differences in their initial internal energies upon transitioning into the gas phase and therefore have different structures. These results demonstrate the advantage of mass and ion mobility measurements for investigating protein conformational landscapes and provide the first evidence for formation of both unfolded and more compact conformations of a protein from the same solution upon heating.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Casey J Chen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
3
|
Butalewicz JP, Sipe SN, Juetten KJ, James VK, Kim K, Zhang YJ, Meek TD, Brodbelt JS. Insights into the Main Protease of SARS-CoV-2: Thermodynamic Analysis, Structural Characterization, and the Impact of Inhibitors. Anal Chem 2024; 96:15898-15906. [PMID: 39319663 PMCID: PMC11499983 DOI: 10.1021/acs.analchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for coronaviral maturation and is the target of Paxlovid, which is currently the standard-of-care treatment for COVID-19. There remains a need to identify new inhibitors of Mpro as viral resistance to Paxlovid emerges. Here, we report the use of native mass spectrometry coupled with 193 nm ultraviolet photodissociation (UVPD) and integrated with other biophysical tools to structurally characterize Mpro and its interactions with potential covalent inhibitors. The overall energy landscape was obtained using variable temperature nanoelectrospray ionization (vT-nESI), thus providing quantitative evaluation of inhibitor binding on the stability of Mpro. Thermodynamic parameters extracted from van't Hoff plots revealed that the dimeric complexes containing each inhibitor showed enhanced stability through increased melting temperatures as well as overall lower average charge states, giving insight into the basis for inhibition mechanisms.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kangsan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Lutomski CA, El-Baba TJ, Clemmer DE, Jarrold MF. Thermal Remodeling of Human HDL Particles Reveals Diverse Subspecies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2002-2007. [PMID: 39051481 PMCID: PMC11311237 DOI: 10.1021/jasms.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
High-density lipoproteins (HDL) are micelle-like particles consisting of a core of triglycerides and cholesteryl esters surrounded by a shell of phospholipid, cholesterol, and apolipoproteins. HDL is considered "good" cholesterol, and its concentration in plasma is used clinically in assessing cardiovascular health. However, these particles vary in structure, composition, and therefore function, and thus can be resolved into subpopulations, some of which have specific cardioprotective properties. Mass measurements of HDL by charge detection mass spectrometry (CD-MS) previously revealed seven distinct subpopulations which could be delineated by mass and charge [Lutomski, C. A. et al. Anal. Chem. 2018]. Here, we investigate the thermal stabilities of these subpopulations; upon heating, the particles within each subpopulation undergo structural rearrangements with distinct transition temperatures. In addition, we find evidence for many new families of structures within each subpopulation; at least 15 subspecies of HDL are resolved. These subspecies vary in size, charge, and thermal stability. While this suggests that these new subspecies have unique molecular compositions, we cannot rule out the possibility that we have found evidence for new structural forms within the known subpopulations. The ability to resolve new subspecies of HDL particles may be important in understanding and delineating the role of unique particles in cardiovascular health and disease.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Tarick J. El-Baba
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Henderson LW, Gautam AKS, Sharon EM, Johnson CR, Rommel NG, Anthony AJ, Russell DH, Jarrold MF, Matouschek A, Clemmer DE. Bortezomib Inhibits Open Configurations of the 20S Proteasome. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1063-1068. [PMID: 38748611 PMCID: PMC11886992 DOI: 10.1021/jasms.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.
Collapse
Affiliation(s)
- Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Colin R Johnson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Nicholas G Rommel
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
6
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
7
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
8
|
Pan H, Raab SA, El-Baba TJ, Schrecke SR, Laganowsky A, Russell DH, Clemmer DE. Variation of CI-2 Conformers upon Addition of Methanol to Water: An IMS-MS-Based Thermodynamic Analysis. J Phys Chem A 2023; 127:9399-9408. [PMID: 37934510 PMCID: PMC11212803 DOI: 10.1021/acs.jpca.3c03651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Chymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source. A thermodynamic analysis of these states revealed large changes in enthalpy (ΔH) and entropy (ΔS) at different temperatures, and it was suggested that such variation might arise because of temperature-dependent conformational changes of the protein in response to changes in the conformational entropy and the dielectric permeability of water, which drops from a value of ε ∼ 79 at 24 °C to ∼ 60 at 82 °C. Herein, we examine how adding methanol to water influences the distributions of CI-2 conformers and their ensuing stabilities. The dielectric constant of a 60:40 water:methanol (MeOH) drops from ε ∼ 60 at 24 °C to ∼ 51 at 64 °C. Although the same set of conformers observed in water appears to be present in 60:40 water:MeOH, the abundance of each is substantially altered by the presence of methanol. Relative free energy values (ΔG) and thermodynamic values [ΔH and ΔS and heat capacities (ΔCp)] are derived from a Gibbs-Helmholtz analysis. A comparison of these data from water and water:MeOH systems allows rare insight into how variations in solvation and temperature affect many-state protein equilibria. While these studies confirm that variations in solvent dielectric constant with temperature affect the distributions of conformers that are observed, our findings suggest that other solvent differences may also affect abundances.
Collapse
Affiliation(s)
- Hua Pan
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Samantha R Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
9
|
Lossio CF, Osterne VJS, Pinto-Junior VR, Chen S, Oliveira MV, Verduijn J, Verbeke I, Serna S, Reichardt NC, Skirtach A, Cavada BS, Van Damme EJM, Nascimento KS. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. Int J Mol Sci 2023; 24:15966. [PMID: 37958949 PMCID: PMC10649158 DOI: 10.3390/ijms242115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.
Collapse
Affiliation(s)
- Claudia F. Lossio
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Vinicius J. S. Osterne
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Vanir R. Pinto-Junior
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Department of Physics, Federal University of Ceara, Fortaleza 60440-970, Brazil
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Messias V. Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Joost Verduijn
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Sonia Serna
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Niels C. Reichardt
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER-BBN), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Andre Skirtach
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Benildo S. Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kyria S. Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| |
Collapse
|
10
|
Mansoor S, Adeyemi SA, Kondiah PPD, Choonara YE. A Closed Loop Stimuli-Responsive Concanavalin A-Loaded Chitosan-Pluronic Hydrogel for Glucose-Responsive Delivery of Short-Acting Insulin Prototyped in RIN-5F Pancreatic Cells. Biomedicines 2023; 11:2545. [PMID: 37760986 PMCID: PMC10526345 DOI: 10.3390/biomedicines11092545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The optimal treatment of diabetes (in particular, type 1 diabetes-T1D) remains a challenge. Closed-loop systems (implants/inserts) provide significant advantages for glucose responsivity and providing real-time sustained release of rapid-acting insulin. Concanavalin A (ConA), a glucose affinity agent, has been used to design closed-loop insulin delivery systems but not without significant risk of leakage of ConA from the matrices and poor mechanical strength of the hydrogels impacting longevity and control of insulin release. Therefore, this work focused on employing a thermoresponsive co-forming matrix between Pluronic F-127 (PL) and structurally robust chitosan (CHT) via EDC/NHS coupling (i.e., covalent linkage of -NH2 from CHT and ConA to the -COOH of PL). The system was characterized for its chemical structure stability and integrity (FTIR, XRD and TGA), injectability, rheological parameters and hydrogel morphology (Texture Analysis, Elastosens TM Bio2 and SEM). The prepared hydrogels demonstrated shear-thinning for injectability with a maximum force of 4.9 ± 8.3 N in a 26G needle with sol-gel transitioning from 25 to 38 °C. The apparent yield stress value of the hydrogel was determined to be 67.47 Pa. The insulin loading efficiency within the hydrogel matrix was calculated to be 46.8%. Insulin release studies revealed glucose responsiveness in simulated glycemic media (4 and 10 mg/mL) over 7 days (97%) (305 nm via fluorescence spectrophotometry). The MTT studies were performed over 72 h on RIN-5F pancreatic cells with viability results >80%. Results revealed that the thermoresponsive hydrogel is a promising alternative to current closed-loop insulin delivery systems.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2093, South Africa; (S.M.); (S.A.A.); (P.P.D.K.)
| |
Collapse
|
11
|
Sharon EM, Henderson LW, Clemmer DE. Resolving Hidden Solution Conformations of Hemoglobin Using IMS-IMS on a Cyclic Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1559-1568. [PMID: 37418419 PMCID: PMC10916761 DOI: 10.1021/jasms.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.
Collapse
Affiliation(s)
- Edie M Sharon
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Henderson LW, Sharon EM, Gautam AKS, Anthony AJ, Jarrold MF, Russell DH, Matouschek A, Clemmer DE. Stability of 20S Proteasome Configurations: Preopening the Axial Gate. J Phys Chem Lett 2023; 14:5014-5017. [PMID: 37224454 PMCID: PMC10916758 DOI: 10.1021/acs.jpclett.3c01040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.
Collapse
Affiliation(s)
- Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
13
|
Lin CW, Oney-Hawthorne SD, Kuo ST, Barondeau DP, Russell DH. Mechanistic Insights into IscU Conformation Regulation for Fe-S Cluster Biogenesis Revealed by Variable Temperature Electrospray Ionization Native Ion Mobility Mass Spectrometry. Biochemistry 2022; 61:2733-2741. [PMID: 36351081 PMCID: PMC10009881 DOI: 10.1021/acs.biochem.2c00429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Iron-sulfur (Fe-S) cluster (ISC) cofactors are required for the function of many critical cellular processes. In the ISC Fe-S cluster biosynthetic pathway, IscU assembles Fe-S cluster intermediates from iron, electrons, and inorganic sulfur, which is provided by the cysteine desulfurase enzyme IscS. IscU also binds to Zn, which mimics and competes for binding with the Fe-S cluster. Crystallographic and nuclear magnetic resonance spectroscopic studies reveal that IscU is a metamorphic protein that exists in multiple conformational states, which include at least a structured form and a disordered form. The structured form of IscU is favored by metal binding and is stable in a narrow temperature range, undergoing both cold and hot denaturation. Interestingly, the form of IscU that binds IscS and functions in Fe-S cluster assembly remains controversial. Here, results from variable temperature electrospray ionization (vT-ESI) native ion mobility mass spectrometry (nIM-MS) establish that IscU exists in structured, intermediate, and disordered forms that rearrange to more extended conformations at higher temperatures. A comparison of Zn-IscU and apo-IscU reveals that Zn(II) binding attenuates the cold/heat denaturation of IscU, promotes refolding of IscU, favors the structured and intermediate conformations, and inhibits the disordered high charge states. Overall, these findings provide a structural rationalization for the role of Zn(II) in stabilizing IscU conformations and IscS in altering the IscU active site to prepare for Zn(II) release and cluster synthesis. This work highlights how vT-ESI-nIM-MS can be applied as a powerful tool in mechanistic enzymology by providing details of relationships among temperature, protein conformations, and ligand/protein binding.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Shelby D Oney-Hawthorne
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Syuan-Ting Kuo
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - David P Barondeau
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Jordan JS, Williams ER. Laser Heating Nanoelectrospray Emitters for Fast Protein Melting Measurements with Mass Spectrometry. Anal Chem 2022; 94:16894-16900. [DOI: 10.1021/acs.analchem.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jacob S. Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Kostelic MM, Ryan JP, Brown LS, Jackson TW, Hsieh CC, Zak CK, Sanders HM, Liu Y, Chen VS, Byrne M, Aspinwall CA, Baker ES, Marty MT. Stability and Dissociation of Adeno-Associated Viral Capsids by Variable Temperature-Charge Detection-Mass Spectrometry. Anal Chem 2022; 94:11723-11727. [PMID: 35981215 DOI: 10.1021/acs.analchem.2c02378] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adeno-associated viral (AAV) vectors have emerged as gene therapy and vaccine delivery systems. Differential scanning fluorimetry or differential scanning calorimetry is commonly used to measure the thermal stability of AAVs, but these global methods are unable to distinguish the stabilities of different AAV subpopulations in the same sample. To address this challenge, we combined charge detection-mass spectrometry (CD-MS) with a variable temperature (VT) electrospray source that controls the temperature of the solution prior to electrospray. Using VT-CD-MS, we measured the thermal stabilities of empty and filled capsids. We found that filled AAVs ejected their cargo first and formed intermediate empty capsids before completely dissociating. Finally, we observed that pH stress caused a major decrease in thermal stability. This new approach better characterizes the thermal dissociation of AAVs, providing the simultaneous measurement of the stabilities and dissociation pathways of different subpopulations.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jack P Ryan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Levi S Brown
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Tyler W Jackson
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Chih-Chieh Hsieh
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Henry M Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Yang Liu
- REGENXBIO Inc., 9804 Medical Center Dr., Rockville, Maryland 20850, United States
| | - Victor Shugui Chen
- REGENXBIO Inc., 9804 Medical Center Dr., Rockville, Maryland 20850, United States
| | - Michael Byrne
- REGENXBIO Inc., 9804 Medical Center Dr., Rockville, Maryland 20850, United States
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Ivanova B, Spiteller M. Mass spectrometric stochastic dynamic 3D structural analysis of mixture of steroids in solution - Experimental and theoretical study. Steroids 2022; 181:109001. [PMID: 35257712 DOI: 10.1016/j.steroids.2022.109001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
There is explored, herein, functional relation: Experimental mass spectrometric phenomenon, obeying a certain scientific law ⇔ 3D molecular conformations and electronic structures of analytes obtained for quantum chemical theories. The paper answers to questions: (a) What evidence claims these actual relations among measurable and theoretical parameters, experimental factors and molecular properties; (b) how the provided evidence is collected and used; and (c) how empirical proof relates to assign and explain mass spectrometric phenomena of steroids afforded by our innovative stochastic dynamic mass spectrometric formula, D″SD = 2.6388.10-17.(<I2>-<I>2), quantum chemical 3D conformations, electronic structures and energetics of molecules, respectively. The paper address issue concerning empirical evidence at very high-to-exact level of assignment of 3D molecular conformations of steroids to experimental mass spectrometric fragment ions, accounting precisely for (i) effect of protonation; (ii) intramolecular rearrangement for A-D rings of steroidal skeleton and proton transfer effect, if any; in addition to (iii) examination of enantiomers of steroids in mixture with different stereochemistry, (R) and (S), of a set of six atoms of the molecular backbone of hydrocortisone (1), deoxycorticosterone (2), progesterone (3) and methyltestosterone (4), respectively. Results from testosterone (5) are discussed, as well. There are used ultra-high resolution atmospheric pressure chemical ionization mass spectrometric data on analytes (1)-(4) at ng.(mL)-1 concentration levels in mixtures in solution obtained for positive operation mode. High accuracy static and molecular dynamic quantum chemical computations and chemometrics are also utilized. Experimental 3D structural parameters of steroids obtained for stochastic dynamic diffusion theory are correlated with available crystallographic data.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany.
| | - Michael Spiteller
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
17
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Alexander Harrison J, Pruška A, Oganesyan I, Bittner P, Zenobi R. Temperature-Controlled Electrospray Ionization: Recent Progress and Applications. Chemistry 2021; 27:18015-18028. [PMID: 34632657 PMCID: PMC9298390 DOI: 10.1002/chem.202102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/11/2022]
Abstract
Native electrospray ionization (ESI) and nanoelectrospray ionization (nESI) allow researchers to analyze intact biomolecules and their complexes by mass spectrometry (MS). The data acquired using these soft ionization techniques provide a snapshot of a given biomolecules structure in solution. Over the last thirty years, several nESI and ESI sources capable of controlling spray solution temperature have been developed. These sources can be used to elucidate the thermodynamics of a given analyte, as well as provide structural information that cannot be readily obtained by other, more commonly used techniques. This review highlights how the field of temperature-controlled mass spectrometry has developed.
Collapse
Affiliation(s)
| | - Adam Pruška
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Irina Oganesyan
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Philipp Bittner
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|
19
|
Laganowsky A, Clemmer DE, Russell DH. Variable-Temperature Native Mass Spectrometry for Studies of Protein Folding, Stabilities, Assembly, and Molecular Interactions. Annu Rev Biophys 2021; 51:63-77. [PMID: 34932911 PMCID: PMC9086101 DOI: 10.1146/annurev-biophys-102221-101121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structures and conformational dynamics of proteins, protein complexes, and their noncovalent interactions with other molecules are controlled specifically by the Gibbs free energy (entropy and enthalpy) of the system. For some organisms, temperature is highly regulated, but the majority of biophysical studies are carried out at room, nonphysiological temperature. In this review, we describe variable-temperature electrospray ionization (vT-ESI) mass spectrometry (MS)-based studies with unparalleled sensitivity, dynamic range, and selectivity for studies of both cold- and heat-induced chemical processes. Such studies provide direct determinations of stabilities, reactivities, and thermodynamic measurements for native and non-native structures of proteins and protein complexes and for protein-ligand interactions. Highlighted in this review are vT-ESI-MS studies that reveal 40 different conformers of chymotrypsin inhibitor 2, a classic two-state (native → unfolded) unfolder, and thermochemistry for a model membrane protein system binding lipid and its regulatory protein. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| |
Collapse
|
20
|
El-Baba TJ, Raab SA, Buckley RP, Brown CJ, Lutomski CA, Henderson LW, Woodall DW, Shen J, Trinidad JC, Niu H, Jarrold MF, Russell DH, Laganowsky A, Clemmer DE. Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Anal Chem 2021; 93:8484-8492. [PMID: 34101419 PMCID: PMC8546744 DOI: 10.1021/acs.analchem.1c00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The thermal stabilities of endogenous, intact proteins and protein assemblies in complex mixtures were characterized in parallel by means of variable-temperature electrospray ionization coupled to mass spectrometry (vT-ESI-MS). The method is demonstrated by directly measuring the melting transitions of seven proteins from a mixture of proteins derived from ribosomes. A proof-of-concept measurement of a fraction of an Escherichia coli lysate is provided to extend this approach to characterize the thermal stability of a proteome. As the solution temperature is increased, proteins and protein complexes undergo structural and organizational transitions; for each species, the folded ↔ unfolded and assembled ↔ disassembled populations are monitored based on changes in vT-ESI-MS charge state distributions and masses. The robustness of the approach illustrates a step toward the proteome-wide characterization of thermal stabilities and structural transitions-the stabilitome.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rachel P Buckley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Christopher J Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Corinne A Lutomski
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
21
|
McCabe JW, Shirzadeh M, Walker TE, Lin CW, Jones BJ, Wysocki VH, Barondeau DP, Clemmer DE, Laganowsky A, Russell DH. Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding. Anal Chem 2021; 93:6924-6931. [PMID: 33904705 DOI: 10.1021/acs.analchem.1c00870] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. Here, we describe a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Benjamin J Jones
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
23
|
Fouque KJD, Garabedian A, Leng F, Tse-Dinh YC, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Anal Chem 2021; 93:2933-2941. [PMID: 33492949 PMCID: PMC8327357 DOI: 10.1021/acs.analchem.0c04556] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
24
|
Woodall DW, Henderson LW, Raab SA, Honma K, Clemmer DE. Understanding the Thermal Denaturation of Myoglobin with IMS-MS: Evidence for Multiple Stable Structures and Trapped Pre-equilibrium States. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:64-72. [PMID: 32539412 PMCID: PMC7790998 DOI: 10.1021/jasms.0c00075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Thermal denaturation of holomyoglobin (hMb) in solution (10 mM ammonium acetate at pH = 4.5, 6.8, and 9.0) was monitored by ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques to characterize the stability and investigate structural changes involved in unfolding. We utilize two experimental approaches to induce thermal denaturation: a variable-temperature electrospray ionization (vT-ESI) source that heats the bulk solution in the ESI emitter, and a variable-power 10.6 μm CO2 laser that rapidly heats nanodroplets produced by ESI. These two approaches sample different time scales of the denaturation process; long time scales (seconds to minutes) where the system is at equilibrium using the vT-ESI approach and shorter time scales (μs) by rapid droplet heating in which the system is in a pre-equilibrium state. Increasing the solution temperature (from 28 to 95 °C in the vT-ESI experiments) shifts the charge state distribution from low charge states ([M + 7H]7+ to [M + 9H]9+) to more highly charged species. This is accompanied by loss of the heme group to yield the apomyoglobin (aMb) species, indicating that the protein has unfolded. Monitoring the formation of aMb and the shift in average charge states of aMb and hMb with solution temperature allows for relative quantitation of their individual stabilities, highlighting the stabilizing effects of heme binding. We compare the degree of unfolding induced by heating the bulk solution (using vT-ESI) to the laser droplet heating approach and find that the rapid nature of the laser heating approach allows for transient pre-equilibrium states to be sampled.
Collapse
Affiliation(s)
- Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kenji Honma
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kohto, Kamigori, Hyogo 678-1297, Japan
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
McCabe JW, Mallis CS, Kocurek KI, Poltash ML, Shirzadeh M, Hebert MJ, Fan L, Walker TE, Zheng X, Jiang T, Dong S, Lin CW, Laganowsky A, Russell DH. First-Principles Collision Cross Section Measurements of Large Proteins and Protein Complexes. Anal Chem 2020; 92:11155-11163. [PMID: 32662991 PMCID: PMC7967297 DOI: 10.1021/acs.analchem.0c01285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rotationally averaged collision cross section (CCS) values for a series of proteins and protein complexes ranging in size from 8.6 to 810 kDa are reported. The CCSs were obtained using a native electrospray ionization drift tube ion mobility-Orbitrap mass spectrometer specifically designed to enhance sensitivity while having high-resolution ion mobility and mass capabilities. Periodic focusing (PF)-drift tube (DT)-ion mobility (IM) provides first-principles determination of the CCS of large biomolecules that can then be used as CCS calibrants. The experimental, first-principles CCS values are compared to previously reported experimentally determined and computationally calculated CCS using projected superposition approximation (PSA), the Ion Mobility Projection Approximation Calculation Tool (IMPACT), and Collidoscope. Experimental CCS values are generally in agreement with previously reported CCSs, with values falling within ∼5.5%. In addition, an ion mobility resolution (CCS centroid divided by CCS fwhm) of ∼60 is obtained for pyruvate kinase (MW ∼ 233 kDa); however, ion mobility resolution for bovine serum albumin (MW ∼ 68 kDa) is less than ∼20, which arises from sample impurities and underscores the importance of sample quality. The high resolution afforded by the ion mobility-Orbitrap mass analyzer provides new opportunities to understand the intricate details of protein complexes such as the impact of post-translational modifications (PTMs), stoichiometry, and conformational changes induced by ligand binding.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Klaudia I Kocurek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xueyun Zheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ting Jiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
26
|
Jeanne Dit Fouque K, Fernandez-Lima F. Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. J Phys Chem B 2020; 124:6257-6265. [PMID: 32560586 PMCID: PMC8341290 DOI: 10.1021/acs.jpcb.0c04276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The behavior of biomolecules as a function of the solution temperature is often crucial to assessing their biological activity and function. While heat-induced changes of biomolecules are traditionally monitored using optical spectroscopy methods, their conformational changes and unfolding transitions remain challenging to interpret. In the present work, the structural transitions of bovine serum albumin (BSA) in native conditions (100 mM aqueous ammonium acetate) were investigated as a function of the starting solution temperature (T ∼ 23-70 °C) using a temperature-controlled nanoelectrospray ionization source (nESI) coupled to a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) instrument. The charge state distribution of the monomeric BSA changed from a native-like, narrow charge state ([M + 12H]12+ to [M + 16H]16+ at ∼23 °C) and narrow mobility distribution toward an unfolded-like, broad charge state (up to [M + 46H]46+ at ∼70 °C) and broad mobility distribution. Inspection of the average charge state and collision cross section (CCS) distribution suggested a two-state unfolding transition with a melting temperature Tm ∼ 56 ± 1 °C; however, the inspection of the CCS profiles at the charge state level as a function of the solution temperature showcases at least six structural transitions (T1-T7). If the starting solution concentration is slightly increased (from 2 to 25 μM), this method can detect nonspecific BSA dimers and trimers which dissociate early (Td ∼ 34 ± 1 °C) and may disturb the melting curve of the BSA monomer. In a single experiment, this technology provides a detailed view of the solution, protein structural landscape (mobility vs solution temperature vs relative intensity for each charge state).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
27
|
Woodall DW, Brown CJ, Raab SA, El-Baba TJ, Laganowsky A, Russell DH, Clemmer DE. Melting of Hemoglobin in Native Solutions as measured by IMS-MS. Anal Chem 2020; 92:3440-3446. [PMID: 31990187 PMCID: PMC7480357 DOI: 10.1021/acs.analchem.9b05561] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermally induced structural transitions of the quaternary structure of the hemoglobin tetramer (human) in aqueous solution (150 mM ammonium acetate) were investigated using a variable temperature electrospray ionization (vt-ESI) technique in combination with ion mobility spectrometry (IMS) and mass spectrometry (MS) measurements. At low solution temperatures (28 to ∼40 °C), a heterotetrameric (α2β2) complex is the most abundant species that is observed. When the solution temperature is increased, this assembly dissociates into heterodimers (holo αβ forms) before ultimately forming insoluble aggregates at higher temperatures (>60 °C). In addition to the holo αβ forms, a small population of αβ dimers containing only a single heme ligand and having a dioxidation modification mapping to the β subunit are observed. The oxidized heterodimers are less stable than the unmodified holo-heterodimer. The Cys93 residue of the β subunit is the primary site of dioxidation. The close proximity of this post translational modification to both the αβ subunit interface and the heme binding site suggests that this modification is coupled to the loss of the heme and decreased protein stability. Changes in the charge state and collision cross sections of these species indicate that the tetramers and dimers favor less compact structures at elevated temperatures (prior to temperatures where dissociation dominates).
Collapse
Affiliation(s)
- Daniel W Woodall
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Christopher J Brown
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Shannon A Raab
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Tarick J El-Baba
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A & M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A & M University , College Station , Texas 77843 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
28
|
Brown CJ, Woodall DW, El-Baba TJ, Clemmer DE. Characterizing Thermal Transitions of IgG with Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2438-2445. [PMID: 31363989 PMCID: PMC6866664 DOI: 10.1007/s13361-019-02292-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 06/02/2023]
Abstract
Variable temperature electrospray ionization (ESI) is coupled with mass spectrometry techniques in order to investigate structural transitions of monoclonal antibody immunoglobulin G (IgG) in a 100-mM ammonium acetate (pH 7.0) solution from 26 to 70 °C. At 26 °C, the mass spectrum for intact IgG shows six charge states + 22 to + 26. Upon increasing the solution temperature, the fraction of low-charge states decreases and new, higher-charge state ions are observed. Upon analysis, it appears that heating the solution aids in desolvation of the intact IgG precursor. Above ~ 50 °C, a cleavage event between the light and heavy chains is observed. An analysis of the kinetics for these processes at different temperatures yields transition state thermochemistry of ΔH‡ = 95 ± 10 kJ mol-1, ΔS‡ = 8 ± 1 J mol-1 K-1, and ΔG‡ = 92 ± 11 kJ mol-1. The mechanism for light chain dissociation appears to involve disulfide bond scrambling that ultimately results in a non-native Cys199-Cys217 disulfide bond in the light chain product. Above ~ 70 °C, we are unable to produce a stable ESI signal. The loss of signal is ascribed to aggregation that is primarily associated with the remaining portion of the antibody after having lost the light chain. Graphical Abstract.
Collapse
Affiliation(s)
- Christopher J Brown
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA.
| |
Collapse
|