1
|
Jiang D, Xu Y, Jiang H, Xiang X, Wang L. A biomimetic skin microtissue biosensor for the detection of fish parvalbumin. Bioelectrochemistry 2025; 161:108805. [PMID: 39265374 DOI: 10.1016/j.bioelechem.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
In this paper, a biomimetic skin microtissue biosensor was developed based on three-dimensional (3D) bioprinting to precisely and accurately determine fish parvalbumin (FV). Based on the principle that allergens stimulate cells to produce ONOO- (peroxynitrite anion), a screen-printed electrode for the detection nanomolar level ONOO- was innovatively prepared to indirectly detect FV based on the level of ONOO- release. Gelatin methacryloyl (GelMA), RBL-2H3 cells, and MS1 cells were used as bio-ink for 3D bioprinting. The high-throughput and standardized preparation of skin microtissue was achieved using stereolithography 3D bioprinting technology. The printed skin microtissues were put into the self-designed 3D platform that integrated cell culture and electrochemical detection. The experimental results showed that the sensor could effectively detect FV when the optimized ratio of RBL-2H3 to MS1 cells and allergen stimulation time were 2:8 and 2 h, respectively. The linear detection range was 0.125-3.0 μg/mL, and the calculated lowest detection limit was 0.122 μg/mL. In addition, the sensor had excellent selectivity, specificity, stability, and reliability. Thus, this study successfully constructed a biomimetic skin microtissue electrochemical sensor for PV detection.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Yang Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
2
|
Wang Y, Nagase H, Tagawa YI, Taki S, Takamoto M. Endogenous IFN-γ facilitates Pneumocystis infection and downregulates carbohydrate receptors in CD4 + T cell-depleted mice. FEBS Lett 2024; 598:1633-1643. [PMID: 38631897 DOI: 10.1002/1873-3468.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 04/19/2024]
Abstract
IFN-γ plays a critical role in host defense against intracellular pathogens. IFN-γ is produced in the bronchoalveolar lavage fluid of mice infected with Pneumocystis, but the role of IFN-γ in host defense against Pneumocystis remains controversial. It has been previously reported that although exogenous IFN-γ has beneficial effects on eradication of Pneumocystis, endogenous IFN-γ has a negative impact on innate immunity in immunocompromised hosts. Surprisingly, CD4+ T cell-depleted IFN-γ deficient (GKO) mice exhibit resistance to Pneumocystis. Alveolar macrophages (AM) from GKO mice exhibit higher expression of macrophage mannose receptor (MMR) and Dectin-1. Concomitantly, they exhibited greater ability to phagocytize Pneumocystis, and this activity was suppressed by inhibitors of these receptors. Incubation with IFN-γ resulted in a reduction in both the expression of these receptors on AM and their Pneumocystis-phagocytic activity. These results indicate that endogenous IFN-γ facilitates Pneumocystis to escape from host innate immunity by attenuating the phagocytic activity of AM via downregulation of MMR and Dectin-1.
Collapse
MESH Headings
- Animals
- Mice
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Down-Regulation
- Immunity, Innate
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Depletion
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Phagocytosis
- Pneumocystis/immunology
- Pneumocystis Infections/immunology
- Pneumocystis Infections/metabolism
- Pneumocystis Infections/microbiology
- Pneumocystis Infections/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/immunology
Collapse
Affiliation(s)
- Yi Wang
- Department of Infection and Host Defense, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisashi Nagase
- Department of Infection and Host Defense, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichi Tagawa
- Department of Biomolecular Functional Engineering, Graduate School of Bioscience and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense, Shinshu University School of Medicine, Matsumoto, Japan
- Community Health Care Research Center, Nagano University of Health and Medicine, Japan
| |
Collapse
|
3
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Rodrigues TS, Alvarez ARP, Gembre AF, Forni MFPDAD, de Melo BMS, Alves Filho JCF, Câmara NOS, Bonato VLD. Mycobacterium tuberculosis-infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. J Leukoc Biol 2020; 108:1225-1238. [PMID: 32557929 DOI: 10.1002/jlb.3ma0520-113r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis kills more than 1 million people every year, and its control depends on the effective mechanisms of innate immunity, with or without induction of adaptive immune response. We investigated the interaction of type II alveolar epithelial cells (AEC-II) infected by Mycobacterium tuberculosis with dendritic cells (DCs). We hypothesized that the microenvironment generated by this interaction is critical for the early innate response against mycobacteria. We found that AEC-II infected by M. tuberculosis induced DC maturation, which was negatively regulated by HIF-1α-inducible NOS2 axis, and switched DC metabolism from an early and short peak of glycolysis to a low energetic status. However, the infection of DCs by M. tuberculosis up-regulated NOS2 expression and inhibited AEC-II-induced DC maturation. Our study demonstrated, for the first time, that HIF-1α-NOS2 axis plays a negative role in the maturation of DCs during M. tuberculosis infection. Such modulation might be useful for the exploitation of molecular targets to develop new therapeutic strategies against tuberculosis.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Bruno Marcel Silva de Melo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Transplantation Immunology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
5
|
Farrokhpour M, Kiani A, Mortaz E, Taghavi K, Farahbod AM, Fakharian A, Kazempour-Dizaji M, Abedini A. Procalcitonin and Proinflammatory Cytokines in Early Diagnosis of Bacterial Infections after Bronchoscopy. Open Access Maced J Med Sci 2019; 7:913-919. [PMID: 30976333 PMCID: PMC6454165 DOI: 10.3889/oamjms.2019.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND: Fiberoptic bronchoscopy (FOB) guided bronchoalveolar lavage (BAL) remains as the chief diagnostic tool in respiratory disorders. 1.2-16% of patients frequently experience fever after bronchoscopy. To exclude the need for multiple antibiotic prescribing in patients with post-bronchoscopy fever, the presence of the self-limiting inflammatory responses should be excluded. AIM: The current study was conducted to test the serum of patients undergoing bronchoscopy for some proinflammatory cytokines including Tumor Necrosis Factor-alpha (TNF-ɑ), Interleukin-1beta (IL-1β), Interleukin-8 (IL-8) and Interleukin-6 (IL-6) and the value of Procalcitonin (PCT). MATERIAL AND METHODS: Current case-control study was conducted at the National Research Institute of Tuberculosis and Lung Disease in Iran. Nineteen patients (48.72%) that attended with a reasonable sign for a diagnostic bronchoscopy from January 2016 to December 2017 were included in the case group. The control group consisted of 20 patients who underwent a simple bronchoscopy and without FOB-BAL. The laboratory findings for PCT concentrations and cytokine levels in the three serum samples (before FOB-BAL (t0), after 6 hr. (t1), and at 24 hr. past (t2) FOB-BAL) were compared between two groups. RESULTS: The frequency of post-bronchoscopy fever was 5.12, and the prevalence of post-bronchoscopy infectious fever was 2.56%. PCT level was considerably higher in the patient with a confirmed bacterial infection when compared to other participants (p-value < 0. 05). Interestingly, IL-8 level in the bacterial infection proven fever patient was higher than in other patients (p < 0.001). IL-8 levels displayed a specificity of 72.7% and a sensitivity of 100%, at the threshold point of 5.820 pg/ml. PCT levels had a specificity of 84% and a sensitivity of 81%, at the threshold point of 0.5 ng/ml. CONCLUSION: The present findings show that in patients with fever after bronchoscopy, PCT levels and IL-8 levels are valuable indicators for antibiotic therapy, proving adequate proof for bacterial infection. The current findings also illustrate that to monitor the serum levels of PCT and proinflammatory cytokines in the patients undergoing FOB-BAL, the best time is the 24-hour postoperative bronchoscopy.
Collapse
Affiliation(s)
- Mohsen Farrokhpour
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arda Kiani
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Taghavi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Masoud Farahbod
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Fakharian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kazempour-Dizaji
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Bu X, Lian X, Wang Y, Luo C, Tao S, Liao Y, Yang J, Chen A, Yang Y. Dietary yeast culture modulates immune response related to TLR2-MyD88-NF-kβ signaling pathway, antioxidant capability and disease resistance against Aeromonas hydrophila for Ussuri catfish (Pseudobagrus ussuriensis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:711-718. [PMID: 30359752 DOI: 10.1016/j.fsi.2018.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to investigate effects of dietary yeast culture on immune response related to TLR2-MyD88-NF-kβ signaling pathway, antioxidant capability and disease resistance against Aeromonas hydrophila for Ussuri catfish (Pseudobagrus ussuriensis). A total of 240 Ussuri catfish (mean weight of 7.39 ± 0.32 g) were randomly distributed into four groups that fed diets containing 0 (Y0), 10 (Y1), 20 (Y2) and 30 (Y3) g kg-1 yeast culture for 8 weeks. The results indicated that dietary 10 g kg-1 yeast culture supplementation significantly down-regulated mRNA levels of TLR2, MyD88, NF-kβ p65, IL-1β and IL-8 in the liver tissue compared with the control group (P < 0.05). Simultaneously, serum lysozyme (LZM) activity, respiratory burst activity (RBA) of phagocytes, plasma alkaline phosphatase (AKP) activity and immunoglobulin M (IgM) content were significantly improved in fish fed Y1 diet (P < 0.05). Fish fed Y1 diet had significantly higher serum alternative complement pathway activity (ACH50) and plasma complement 3 (C3) content than the Y3 group (P < 0.05). However, no significant differences were observed in plasma acid phosphatase (ACP) activity and complement 4 (C4) content among the groups (P > 0.05). Fish cumulative mortality rate (CMR) in the Y1 and Y2 groups were significantly lower than that in Y0 and Y3 groups (P < 0.05), and the lowest CMR was observed in the Y1 group after challenge by A. hydrophila. The highest hepatic superoxide dismutase and glutathione peroxidase activities, total antioxidant capacity and the lowest malondialdehyde content were found in Y1 group, but no significant difference was found in hepatic catalase activity among the groups (P > 0.05). These results demonstrate that dietary 10 g kg-1 yeast culture could effectively improve the immunity, antioxidant capability and disease resistance against A. hydrophila for Ussuri catfish and could down-regulate the mRNA expression levels of pro-inflammatory cytokines modulated by TLR2-MyD88-NF-kβ signaling pathway.
Collapse
Affiliation(s)
- Xianyong Bu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuqiu Lian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chengzeng Luo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengqiang Tao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilu Liao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaming Yang
- Harbin Jiaming Fisheries Technology Co., Ltd., Harbin, 150030, PR China
| | - Aijing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Zhang CN, Zhang JL, Guan WC, Zhang XF, Guan SH, Zeng QH, Cheng GF, Cui W. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. FISH & SHELLFISH IMMUNOLOGY 2017; 68:84-91. [PMID: 28698125 DOI: 10.1016/j.fsi.2017.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate effects of dietary Lactobacillus delbrueckii (L. delbrueckii) on immune response, disease resistance against Aeromonas hydrophila (A. hydrophila), antioxidant capability and growth performance of Cyprinus carpio Huanghe var. 450 fish (mean weight of 1.05 ± 0.03 g) were randomly distributed into five groups that fed diets containing different levels of L. delbrueckii (0, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 CFU g-1) for 8 weeks. The results showed that intestinal immune parameters such as lysozyme, acid phosphatase, and myeloperoxidase activities, immunoglobulin M content, and the survival rate were improved in fish fed with 1 × 106 and 1 × 107 CFU g-1L. delbrueckii. In addition, 1 × 107 CFU g-1L. delbrueckii supplementation down-regulated mRNA levels of TNF-α, IL-8, IL-1β and NF-κBp65, and up-regulated IL-10 and TGF-β mRNA levels in the intestine. The survival rate was significantly (P < 0.05) higher (68.33%) in fish fed 1 × 106 CFU g-1L. delbrueckii than the control diet-fed group (40%) after challenge by A. hydrophila. Fish fed with diet containing 1 × 106 CFU g-1L. delbrueckii showed higher antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and total antioxidant capacity (T-AOC) and lower MDA concentrations than those of the control group (P < 0.05). The relative gene expression (SOD, CAT, GPX) showed the same trend with their activities. In addition, the growth performance was significantly improved in fish fed with the diet containing 1 × 106 and 1 × 107 CFU g-1L. delbrueckii (P < 0.05). These results demonstrated that dietary optimal levels of L. delbrueckii enhanced immunity, disease resistance against A. hydrophila antioxidant capability and growth performance in Cyprinus carpio Huanghe var.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Wen-Chao Guan
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Xiao-Fei Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Su-Hua Guan
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qing-Hui Zeng
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Gao-Feng Cheng
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| |
Collapse
|
8
|
Pleiotropic regulations of neutrophil receptors response to sepsis. Inflamm Res 2016; 66:197-207. [DOI: 10.1007/s00011-016-0993-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
|
9
|
Tanner R, O'Shea MK, Fletcher HA, McShane H. In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 2016; 34:4656-4665. [PMID: 27527814 DOI: 10.1016/j.vaccine.2016.07.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 07/29/2016] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) continues to pose a serious global health threat, and the current vaccine, BCG, has variable efficacy. However, the development of a more effective vaccine is severely hampered by the lack of an immune correlate of protection. Candidate vaccines are currently evaluated using preclinical animal models, but experiments are long and costly and it is unclear whether the outcomes are predictive of efficacy in humans. Unlike measurements of single immunological parameters, mycobacterial growth inhibition assays (MGIAs) represent an unbiased functional approach which takes into account a range of immune mechanisms and their complex interactions. Such a controlled system offers the potential to evaluate vaccine efficacy and study mediators of protective immunity against Mycobacterium tuberculosis (M.tb). This review discusses the underlying principles and relative merits and limitations of the different published MGIAs, their demonstrated abilities to measure mycobacterial growth inhibition and vaccine efficacy, and what has been learned about the immune mechanisms involved.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK.
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Shao Y, Wang Z, Lv Z, Li C, Zhang W, Li Y, Duan X. NF-κB/Rel, not STAT5, regulates nitric oxide synthase transcription in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:42-47. [PMID: 27005898 DOI: 10.1016/j.dci.2016.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Nitric oxide (NO) is an important signaling molecular in the immune system of all vertebrates and invertebrates for pathologic and physiologic process, and it is largely produced by inducible nitric oxide synthase (iNOS). To uncover key mechanisms regulating NOS expression in sea cucumber Apostichopus japonicus, we amplified a fragment of the NOS promoter by genome walking approach and characterized putative transcription factor binding motifs using luciferase assay. Transient transfection of EPC cells using 5'-deletion constructs linked to luciferase reporter revealed that the region -614/+39 contributed importantly to expression of the AjNOS gene, and the -614 bp of the 5'-flanking region of the AjNOS gene responded well to LPS. Analysis of the functional promoter region revealed the presence of two potential NF-κB (-375 bp to -366 bp, -76 bp to -67 bp) and three STAT binding sites (-284 bp to -276 bp, -95 bp to 87 bp, -81 bp to -73 bp). When luciferase reporter vector and expression vector co-transfected revealed that NF-κB/Rel, but not STAT5, activate the AjNOS promoter fragment. Furthermore, two truncated reporter vectors co-transfected with vector expressing NF-κB/Rel revealed that the first NF-κB binding site (-375 bp to -366 bp) was essential for the ability of this promoter to induce AjNOS transcription. In addition, blocking the AjRel by SN50 (NF-κB inhibitory peptide) depressed the AjNOS expression and NO production both in vivo and in vitro, respectively, revealing that AjRel might directly modulate AjNOS. All our findings confirmed that NF-κB dependent mechanisms regulating expression of AjNOS and suggested a means of linking NO production to the immune response.
Collapse
Affiliation(s)
- Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuemei Duan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
11
|
Zeng YY, Jiang WD, Liu Y, Wu P, Zhao J, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Dietary alpha-linolenic acid/linoleic acid ratios modulate intestinal immunity, tight junctions, anti-oxidant status and mRNA levels of NF-κB p65, MLCK and Nrf2 in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 51:351-364. [PMID: 26615102 DOI: 10.1016/j.fsi.2015.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
This study was conducted to investigate the effects of dietary alpha-linolenic acid/linoleic acid (ALA/LNA) ratios on the immune response, tight junctions, antioxidant status and immune-related signaling molecules mRNA levels in the intestine of juvenile grass carp (Ctenopharyngodon idella). A total of 1260 juvenile grass carp with an average initial weight of 8.78 ± 0.03 g were fed diets with different ALA/LNA ratios (0.01, 0.34, 0.68, 1.03, 1.41, 1.76 and 2.15) for 60 days. Results indicated that ALA/LNA ratio of 1.03 significantly increased acid phosphatase, lysozyme activities and complement C3 contents, promoted interleukin 10, transforming growth factor β1 and κB inhibitor α mRNA abundance, whereas suppressed pro-inflammatory cytokines (interleukin 1β, interleukin 8, tumor necrosis factor α and interferon γ2) and signal molecules (IκB kinase β, IκB kinase γ and nuclear factor κB p65) mRNA levels in the intestine (P < 0.05), suggesting that optimal dietary ALA/LNA ratio improved intestinal immune response of juvenile fish. Additionally, ALA/LNA ratio of 1.03 significantly promoted Claudin-3, Claudin-b, Claudin-c, Occludin and ZO-1 gene transcription, whereas reduced Claudin-15a and myosin light-chain kinase mRNA levels in the intestine, suggesting that appropriate dietary ALA/LNA ratio strengthened tight junctions in the intestine of juvenile fish. Meanwhile, ALA/LNA ratio of 1.03 noticeably elevated glutathione contents, copper/zinc superoxide dismutase, glutathione peroxidase, glutathione S-transferase and glutathione reductase activities and mRNA levels, as well as signaling molecule nuclear factor erythoid 2-related factor 2 gene transcriptional abundance in the intestine, suggesting that proper ratio of dietary ALA/LNA ameliorate the intestinal antioxidant status of juvenile fish. Based on the quadratic regression analysis of the complement C3 content in the distal intestine and malondialdehyde content in the whole intestine, optimal ALA/LNA ratio for maximum growth of juvenile grass carp (8.78-72.00 g) were estimated to be 1.13 and 1.12, respectively.
Collapse
Affiliation(s)
- Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|