1
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
2
|
Fatima F, Kumar S, Das A. Vaccines against sexually transmitted infections: an update. Clin Exp Dermatol 2022; 47:1454-1463. [DOI: 10.1111/ced.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Farhat Fatima
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Satarupa Kumar
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Anupam Das
- Department of Dermatology, Venereology, and Leprosy; KPC Medical College & Hospital Kolkata India
| |
Collapse
|
3
|
Mabaso N, Abbai NS. A review on Trichomonas vaginalis infections in women from Africa. S Afr J Infect Dis 2021; 36:254. [PMID: 34485502 PMCID: PMC8377975 DOI: 10.4102/sajid.v36i1.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Trichomoniasis is the most common sexually transmitted infection (STI) with an estimated annual incidence of 276.4 million cases globally and about 30 million cases in sub-Saharan Africa. Trichomoniasis has been found to be associated with various health complications including pelvic inflammatory disease (PID), significant pregnancy complications, cervical cancer, prostatitis, infertility and the acquisition of human immunodeficiency virus (HIV). Aim Despite being a highly prevalent infection in the African continent, there is no review article published that solely focusses on Trichomonas vaginalis (T. vaginalis) infections in women from Africa. This review aims to fill this gap in the literature. Method An electronic search of online databases was used to identify and extract relevant research articles related to the epidemiology, health complications and treatment associated with T. vaginalis in women from Africa. Results Within the African continent, South Africa has reported the highest prevalence rate for this infection. A combination of sociodemographic, behavioural and biological factors has been shown to be associated with infection. Trichomonas vaginalis infection is associated with the acquisition of HIV, cervical cancer and PIDs in various female populations across the continent. Emerging patterns of resistance to metronidazole have been reported in women from South Africa. Currently, there is no effective vaccine against this pathogen despite efforts at vaccine development. Conclusion Based on the high prevalence and health consequences associated with T. vaginalis, there is a need for improved screening programmes that will lead to early diagnosis, detection of asymptomatic infections and effective treatment regimens.
Collapse
Affiliation(s)
- Nonkululeko Mabaso
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nathlee S Abbai
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Nemati M, Malla N, Yadav M, Khorramdelazad H, Jafarzadeh A. Humoral and T cell-mediated immune response against trichomoniasis. Parasite Immunol 2018; 40. [PMID: 29266263 DOI: 10.1111/pim.12510] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Trichomonas vaginalis (T. vaginalis) infection leads to the synthesis of specific antibodies in the serum and local secretions. The profile of T. vaginalis-specific antibodies and T cell-mediated immune responses may influence the outcome of infection, towards parasite elimination, persistence or pathological reactions. Studies have indicated that Th1-, Th17- and Th22 cell-related cytokines may be protective or pathogenic, whereas Th2- and Treg cell-related cytokines can exert anti-inflammatory effects during T. vaginalis infection. A number of T. vaginalis-related components such as lipophosphoglycan (TvLPG), α-actinin, migration inhibitory factor (TvMIF), pyruvate:ferredoxin oxidoreductase (PFO), legumain-1 (TvLEGU-1), adhesins and cysteine proteases lead to the induction of specific antibodies. T. vaginalis has acquired several strategies to evade the humoral immune responses such as degradation of immunoglobulins by cysteine proteases, antigenic variation and killing of antibody-producing B cells. The characterization of the T. vaginalis-specific antibodies to significant immunogenic molecules and formulation of strategies to promote their induction in vaginal mucosa may reveal their potential protective effects against trichomoniasis. In this review, we discuss the current understanding of antibody and T cell-mediated immune responses to T. vaginalis and highlight novel insights into the possible role of immune responses in protection against parasite.
Collapse
Affiliation(s)
- M Nemati
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - N Malla
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - H Khorramdelazad
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - A Jafarzadeh
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis. Parasit Vectors 2017; 10:83. [PMID: 28209207 PMCID: PMC5312525 DOI: 10.1186/s13071-017-2009-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. Methods Two selected coding regions of α-actinin (ACT-F, 14–469 aa and ACT-T, 462–844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund’s adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. Results We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated stimulation with the corresponding antigens in vitro. Conclusions Immunization with both ACT-F and ACT-T could confer partial to complete protection and trigger strong Th1/Th2 mixed humoral and cellular immune responses in the mouse host. This suggested that recombinant α-actinin subunit antigens may be promising vaccine candidates against trichomoniasis.
Collapse
|
6
|
Tada R, Muto S, Iwata T, Hidaka A, Kiyono H, Kunisawa J, Aramaki Y. Attachment of class B CpG ODN onto DOTAP/DC-chol liposome in nasal vaccine formulations augments antigen-specific immune responses in mice. BMC Res Notes 2017; 10:68. [PMID: 28126014 PMCID: PMC5270218 DOI: 10.1186/s13104-017-2380-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 01/09/2017] [Indexed: 01/18/2023] Open
Abstract
Background To overcome infectious diseases, the development of mucosal vaccines would be an effective strategy, since mucosal surfaces are the entry site for most pathogens. In general, protein antigens show inherently poor immunogenicity when administered by the mucosal route. Therefore, co-administration of an appropriate mucosal adjuvant is required to exert immune responses toward pathogen-derived antigens effectively. However, the development of a safe and effective mucosal adjuvant system is still challenging. Although, recent studies reported that oligodeoxynucleotides (ODNs) containing immunostimulatory CpG motifs (CpG ODNs) act as potent mucosal adjuvants and are useful in the formulation of nasal vaccines, there are some disadvantages. For instance, the administration of phosphorothioate (PS)-modified CpG ODNs can induce adverse systemic effects, such as splenomegaly, in a dose-dependent manner. Therefore, a reduced dose of CpG ODN might be crucial when used as vaccine adjuvant for clinical purposes. Therefore, we prepared a CpG ODN-loaded cationic liposome, and evaluated its mucosal adjuvant activity. Results We prepared a CpG ODN-loaded DOTAP/DC-chol liposome that was stable during our experiments, by mixing CpG ODNs and liposomes at an N/P ratio of 4. Further, we demonstrated that the attachment of class B CpG ODN to the DOTAP/DC-chol liposomes synergistically enhanced antigen-specific IgA production in the nasal area than that induced by CpG ODN and DOTAP/DC-chol liposomes alone. The endpoint titers were more than tenfolds higher than that induced by either single CpG ODN or single DOTAP/DC-chol liposomes. Additionally, although serum IgG1 responses (indicated as a Th2 response) remained unchanged for DOTAP/DC-chol liposomes and CpG ODN-loaded DOTAP/DC-chol liposomes, the CpG ODN-loaded DOTAP/DC-chol liposomes synergistically induced the production of serum IgG2a (indicated as a Th1 response) than that by the individual liposomes. Conclusions We conclude that the advantage of using DOTAP/DC-chol liposome harboring CpG ODN is it induces both antigen-specific mucosal IgA responses and balanced Th1/Th2 responses. Therefore, such a combination enables us to resolve the adverse effects of using CpG ODNs (as a mucosal adjuvant) by reducing the overall dose of CpG ODNs. Further, the biodegradable and essentially non-antigenic nature of the liposomes makes it superior than the other existing mucosal adjuvants.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Shoko Muto
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoko Iwata
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
7
|
On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers. Parasitology 2016; 143:1713-1722. [PMID: 27609526 DOI: 10.1017/s0031182016001396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blastocystis spp. pathogenic potential remains unclear as these anaerobic parasitic protozoa are frequently isolated from stools of both symptomatic and asymptomatic subjects. In silico analysis of the whole genome sequence of Blastocystis subtype 7 revealed the presence of numerous proteolytic enzymes including cysteine proteases predicted to be secreted. To assess the potential impact of proteases on intestinal cells and gut function, we focused our study on two cysteine proteases, a legumain and a cathepsin B, which were previously identified in Blastocystis subtype 7 culture supernatants. Both cysteine proteases were produced as active recombinant proteins. Activation of the recombinant legumain was shown to be autocatalytic and triggered by acidic pH, whereas proteolytic activity of the recombinant cathepsin B was only recorded after co-incubation with the legumain. We then measured the diffusion of 4-kDa FITC-labelled dextran across Caco-2 cell monolayers following exposition to either Blastocystis culture supernatants or each recombinant protease. Both Blastocystis culture supernatants and recombinant activated cathepsin B induced an increase of Caco-2 cell monolayer permeability, and this effect was significantly inhibited by E-64, a specific cysteine protease inhibitor. Our results suggest that cathepsin B might play a role in pathogenesis of Blastocystis by increasing intestinal cell permeability.
Collapse
|
8
|
Malla N, Goyal K, Dhanda RS, Yadav M. Immunity in urogenital protozoa. Parasite Immunol 2014; 36:400-8. [PMID: 25201404 DOI: 10.1111/pim.12114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
Abstract
Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated.
Collapse
Affiliation(s)
- N Malla
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
9
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
10
|
Smith J, Garber GE. Current status and prospects for development of a vaccine against Trichomonas vaginalis infections. Vaccine 2013; 32:1588-94. [PMID: 23916988 DOI: 10.1016/j.vaccine.2013.07.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/19/2013] [Accepted: 07/22/2013] [Indexed: 12/20/2022]
Abstract
Trichomonas vaginalis is a sexually transmitted pathogen with an annual worldwide incidence of over 276 million infections, the highest of all curable and non-viral STI. A large proportion of cases are asymptomatic and under-diagnosed with conventional diagnostic tools. Infection has important maternal and fetal health consequences and can lead to a higher probability of HIV transmission and susceptibility. Lack of affordable accurate diagnostic tests globally and metronidazole resistance hinder T. vaginalis control efforts. Based on data from current vaccination studies in animal models, a human vaccine is achievable to intervene on the substantial incidence of infection.
Collapse
Affiliation(s)
- Jeffrey Smith
- University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Gary E Garber
- University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada; Ottawa Hospital Research Institute, Division of Infectious Disease and Public Health Ontario, Ottawa, ON, Canada.
| |
Collapse
|
11
|
|
12
|
Trichomonas vaginalis 62 kDa proteinase as a possible virulence factor. Parasitol Res 2010; 108:241-5. [DOI: 10.1007/s00436-010-2078-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/08/2010] [Indexed: 11/30/2022]
|
13
|
Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv Rev 2009; 61:248-55. [PMID: 19272313 DOI: 10.1016/j.addr.2008.12.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 01/14/2023]
Abstract
Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs act as immune adjuvants, accelerating and boosting antigen-specific immune responses. CpG motifs promote the induction of Th1 and pro-inflammatory cytokines and support the maturation/activation of professional antigen presenting cells (particularly plasmacytoid dendritic cells). These effects are optimized by maintaining close physical contact between the CpG ODN and the immunogen. Co-administering CpG ODN with a variety of vaccines has improved the resultant humoral and/or cellular immune responses, culminating in enhanced protective immunity in rodent and primate challenge models. Ongoing clinical studies indicate that CpG ODN are safe and well-tolerated when administered as adjuvants to humans, and that they can support increased vaccine-specific immune responses.
Collapse
Affiliation(s)
- Dennis M Klinman
- Laboratory of Experimental Immunology, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| | | | | | | |
Collapse
|
14
|
Perkins SD, Williams AJ, O'Brien LM, Laws TR, Phillpotts RJ. CpG used as an adjuvant for an adenovirus-based Venezuelan equine encephalitis virus vaccine increases the immune response to the vector, but not to the transgene product. Viral Immunol 2009; 21:451-7. [PMID: 19115934 DOI: 10.1089/vim.2008.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An adenovirus-based (ad-based) vaccine delivering antigens from the Alphavirus Venezuelan equine encephalitis virus (VEEV) is a strategy that offers clinical potential. A vaccine against VEEV is desirable because of the re-emerging nature of this virus, and also the potential that it may be used as a biological weapon. This study was designed to investigate whether the co-administration of CpG oligodeoxynucleotides (ODNs) with an ad-based VEEV vaccine could enhance the protective efficacy of the vaccine. We report that the co-administration of CpG ODN was unable to increase VEEV-specific antibody responses in mice, and was unable to increase the protective efficacy of the vaccine against aerosol challenge with virulent VEEV. However, it was noted that antibody responses directed against the adenovirus vaccine vector were increased, which may be detrimental, particularly in the context of homologous boosting.
Collapse
Affiliation(s)
- Stuart D Perkins
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Wiltshire, UK.
| | | | | | | | | |
Collapse
|
15
|
Rivero LR, Fernández FAN, Robertson LJ. Cuban parasitology in review: a revolutionary triumph. Trends Parasitol 2008; 24:440-8. [DOI: 10.1016/j.pt.2008.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/11/2008] [Accepted: 06/24/2008] [Indexed: 11/16/2022]
|
16
|
Cornelissen CN. Identification and characterization of gonococcal iron transport systems as potential vaccine antigens. Future Microbiol 2008; 3:287-98. [PMID: 18505395 PMCID: PMC2657661 DOI: 10.2217/17460913.3.3.287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gonorrhea is the second most commonly reported infectious disease in the USA, and incidence has been increasing in recent years. Antibiotic resistance among clinical isolates has reached a critical point at which the CDC currently recommends only a single class of antibiotic for treatment. These developments have hastened the search for a vaccine to protect against gonococcal infections. Vaccine efforts have been thwarted by the ability of the gonococcus to antigenically vary most surface structures. The transferrin-iron transport system is not subject to high-frequency phase or antigenic variation and is expressed by all pathogenic Neisseria. Vaccine formulations comprised of epitopes of the transferrin-binding proteins complexed with inactivated cholera toxin generated antibodies with potentially protective characteristics. These antigens, and others predicted from genome sequence data, could be developed into a vaccine that protects against neisserial infections.
Collapse
Affiliation(s)
- C N Cornelissen
- Department of Microbiology & Immunology, Virginia Commonwealth University, PO Box 980678, Richmond, VA 23298-0678, USA.
| |
Collapse
|
17
|
Comparative study of epitopes recognized by two monoclonal antibodies that protects mice against Trichomonas vaginalis challenge. Exp Parasitol 2008; 118:583-6. [DOI: 10.1016/j.exppara.2007.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 10/01/2007] [Accepted: 10/08/2007] [Indexed: 12/27/2022]
|
18
|
|
19
|
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs directly stimulate human B cells and plasmacytoid dendritic cells (pDCs), thereby promoting the production of Th1 and proinflammatory cytokines and the maturation/activation of professional antigen-presenting cells. These activities enable CpG ODNs to act as immune adjuvants, accelerating and boosting antigen-specific immune responses by 5- to 500-fold. The CpG motifs present in bacterial DNA plasmids may contribute to the immunogenicity of DNA vaccines. Ongoing clinical studies indicate that CpG ODNs are safe and well tolerated when administered as adjuvants to humans and can improve vaccine-induced immune responses.
Collapse
Affiliation(s)
- Dennis M Klinman
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA.
| |
Collapse
|