1
|
Sobhani E, Arabkhazaeli F, Madani SA. Intraspecific Variations in Biology and Pathogenesis of Two Eimeria maxima Isolates From Distinct Geographic Locations. Vet Med Sci 2025; 11:e70235. [PMID: 40207378 PMCID: PMC11982699 DOI: 10.1002/vms3.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/17/2024] [Accepted: 01/17/2025] [Indexed: 04/11/2025] Open
Abstract
Eimeria maxima is one of the seven Eimeria species that infect poultry. Despite being highly immunogenic, this species also displays variability in terms of antigenic characteristics. The objective of this study was to examine the biopathological properties of two distinct Eimeria maxima isolates in Iran. Two mixed field samples, collected from backyard poultry droppings with the highest numbers of Eimeria maxima oocysts, were selected for experimental challenges. The birds were inoculated with an equal number of oocysts, and the biopathological indicators of Eimeria oocysts were evaluated. The findings revealed that the two strains exhibited differences in terms of pathological lesions and intestinal inflammatory reactions on the seventh day post-challenge (p > 0.05). Consequently, it was demonstrated that Eimeria maxima isolates from geographically distant regions possessed biological and pathogenic dissimilarities.
Collapse
Affiliation(s)
- Elham Sobhani
- Department of ParasitologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Fatemeh Arabkhazaeli
- Department of ParasitologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Seyed Ahmad Madani
- Department of Animal and Poultry Health and NutritionFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
2
|
McCaughan KJ, Scott Z, Rock C, Kniel KE. Evaluation of aqueous chlorine and peracetic acid sanitizers to inactivate protozoa and bacteria of concern in agricultural water. Appl Environ Microbiol 2025; 91:e0165324. [PMID: 39641604 PMCID: PMC11784247 DOI: 10.1128/aem.01653-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Agricultural water is a potential source of microbial contamination whereby Escherichia coli, Salmonella, Cryptosporidium, and Cyclospora cayetenensis can enter the food supply. To reduce this risk, effective sanitization of agricultural water may be critical to food safety. As such, it is important to investigate the effects of aqueous peracetic acid (PAA) and chlorine (Cl) on bacteria and protozoa at different treatment times and temperatures in agricultural water with respect to key water characteristics. Multiple concentrations of each sanitizer, ranging from 3 to 200 ppm, were prepared in recently collected agricultural water, the solution was brought to the desired temperature, and the target organisms were added and left for the desired contact time (5 or 10 minutes) when sodium metabisulfite was added to neutralize the sanitizers. Bacterial samples were enumerated on MacConkey or XLT4 agar. Samples with protozoa were added to mammalian cell culture (HCT-8 cells for Cryptosporidium parvum and MDBK cells for Eimeria tenella). After 48 hours, the infected cells were collected, DNA extracted and infectivity assessed by quantitative PCR (qPCR). Low and high concentrations of sanitizer were effective at eliminating bacteria with Cl being significantly (P < 0.05) more effective. The greatest reductions in E. coli and Salmonella (3.48 log and 2.5 log cfu/mL, respectively) were observed after 10 minutes of exposure to 10 ppm Cl. Concentrations of sanitizer 50 ppm and lower resulted in insignificant (P > 0.05) reductions in parasite infectivity of less than 1 log for both organisms. A 200 ppm PAA treatment reduced infectious oocyst populations by 3.8 log for C. parvum and 2.6 log for E. tenella, with Cl being significantly (P < 0.05) less effective against these organisms. IMPORTANCE This research is critical to inform decisions regarding the application and use of sanitizers in pre-harvest agricultural water settings to enhance food safety. Understanding the effectiveness of chlorine (Cl) and peracetic acid (PAA) on bacteria and protozoa will allow for the more efficient and practical use of these sanitizers, thus improving agricultural practices in ways that are beneficial to both growers and consumers.
Collapse
Affiliation(s)
- Kyle J. McCaughan
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Zoe Scott
- Department of Environmental Science, University of Arizona, Maricopa, Arizona, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona, Maricopa, Arizona, USA
| | - Kalmia E. Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Kruth PS, Lane T, Barta JR. Organellar genome dynamics of exogenous stages of Eimeria tenella. Parasit Vectors 2024; 17:428. [PMID: 39396981 PMCID: PMC11476305 DOI: 10.1186/s13071-024-06498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Coccidia are a group of intracellular protozoal parasites within the phylum Apicomplexa. Eimeria tenella, one of the species that cause intestinal coccidiosis in poultry, can cause significant mortality and morbidity. Diploid oocysts of Eimeria species are shed in the feces of an infected host and must sporulate to achieve infectivity. This process results in eight haploid infectious units, called sporozoites, held within a single oocyst. Each Eimeria spp. parasite possesses a single apicoplast and a single mitochondrion, both of which carry multiple copies of their respective organellar genomes. Reports of copy numbers of organellar genomes have varied widely. METHODS We report the application of quantitative polymerase chain reaction (qPCR), supported by next-generation sequencing, for the quantification of the extranuclear genomes relative to the nuclear genome over the course of sporulation and following its completion. RESULTS At 64 elapsed hours, 93.0% of oocysts were fully sporulated; no increase in percent sporulation was observed after this time. Apicoplast relative genome copy number showed several significant shifts up to 72 elapsed hours, after which no significant shifts were observed. Oocysts were shed with approximately 60% the amount of apicoplast DNA present at 72 h, after which point no significant shifts in apicoplast genome relative abundance occurred. Mitogenome relative copy number showed only two significant shifts, from 16 to 24 elapsed hours and from 24 to 32 elapsed hours. Oocysts were shed with approximately 28% the amount of mitochondrial DNA that was present at the time sporulation was deemed morphologically complete, at 64 elapsed hours. CONCLUSIONS The characterization of the dynamics of genome abundance in exogenous stages sheds new light on the basic biology of Eimeria spp. and supports the use of extranuclear targets for molecular modes of parasite quantification and identification with improved sensitivity and accuracy.
Collapse
|
4
|
Hussein MA, Khattak F, Vervelde L, Athanasiadou S, Houdijk JGM. Growth performance, caecal microbiome profile, short-chain fatty acids, and litter characteristics in response to placement on reused litter and combined threonine, arginine and glutamine supplementation to juvenile male broiler chickens. Anim Microbiome 2023; 5:18. [PMID: 36945017 PMCID: PMC10031934 DOI: 10.1186/s42523-023-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Exposure of broilers to litter microbiome may increase specific amino acid (AA) requirements towards activated immune responses. This may challenge the generality of the ideal protein (IP) concept, in which dietary essential AA to lysine ratios aimed to mimic presumably constant AA to lysine ratios in whole bird requirements. Therefore, we tested the effect of threonine, arginine and glutamine (TAG) supplementation to IP-based control diets (C) on performance, caecal microbiome composition, short-chain fatty acids and litter characteristics of broiler chickens placed on reused litter. RESULTS Thirty-two pens with ten male broiler chickens each were used in a 2 × 2 factorial arrangement of two diet treatments (with or without TAG supplementation) and two litter treatments (placement on clean or reused litter) for 21 days (n = 8). Caecal contents were analysed for microbiome profile using percent guanine + cytosine (%G + C profile) method and short chain fatty acids. TAG-supplemented birds underperformed compared to C birds (P = 0.002), whereas birds placed on reused litter outperformed those on clean litter (P = 0.047). Diet, reused litter and their interaction impacted the %G + C profile at different ranges. Whilst TAG supplementation reduced bacterial abundance at %G + C 51-56 (P < 0.05), reused litter placement tended to reduce %G + C 23-31 and increase %G + C 56-59 (P < 0.10). However, TAG supplementation reduced bacterial abundance at %G + C 47-51 (P < 0.05) and increased caecal branched chain fatty acids on clean litter only (P = 0.025). Greater levels of propionic acid were observed for C birds placed on reused litter only (P = 0.008). Litter pH was greater for reused litter pens than clean litter pens at day 21 (P < 0.001). In addition, litter moisture content was less for TAG birds and reused litter pens compared to C birds (P = 0.041) and clean litter pens (P < 0.001), respectively. CONCLUSIONS These data support the view that irrespective of performance benefits arising from bird placement on reused litter, TAG supplementation to IP-formulated baseline rations impaired growth, supported by the lowered abundance of caecal bacteria known to dominate in well-performing birds and greater levels of caecal branched chain fatty acids.
Collapse
Affiliation(s)
- Marwa A Hussein
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Nutrition and Nutritional Deficiency Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Jos G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
5
|
Carrisosa M, Terra-Long MT, Cline J, Macklin KS, Dormitorio T, Wang C, Hauck R. Multilocus Sequence Typing of Eimeria maxima in Commercial Broiler Flocks. Avian Dis 2022; 66:389-395. [PMID: 36715469 DOI: 10.1637/aviandiseases-d-22-00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
About 35% of all broiler flocks in the United States receive an anticoccidial vaccine, but it is not possible to easily differentiate Eimeria vaccine strains from Eimeria field isolates. Being able to do that would allow using vaccines in a more targeted way. The objective of this study was to collect Eimeria maxima isolates from broiler flocks that received anticoccidial feed additives and flocks that had been vaccinated against coccidia and then test them with a multilocus sequencing typing (MLST) scheme developed for this study. Fecal samples were obtained from commercial broiler flocks in Alabama and Tennessee. Oocyst counts in samples tended to be lower in flocks receiving anticoccidial feed additives and higher in vaccinated flocks. Selected samples were screened for presence of E. maxima by quantitative PCR, and Eimeria spp. composition was investigated by next-generation amplicon sequencing (NGAS) in 37 E. maxima positive samples. Other detected Eimeria spp. besides E. maxima were Eimeria acervulina in 35 samples, Eimeria praecox in 23 samples, Eimeria mitis or Eimeria mivati in 17 samples, and Eimeria necatrix or Eimeria tenella in 10 samples. Six partial E. maxima genes (dnaJ domain containing protein, 70-kDa heat shock protein, prolyl endopeptidase, regulator of chromosome condensation domain containing protein, serine carboxypeptidase, and vacuolar proton-translocating ATPase subunit) of 46 samples were sequenced. The MLST scheme was able to differentiate two vaccines from each other. Three of 17 samples from vaccinated flocks differed from the vaccine used in the flock, while 16 of 29 samples from unvaccinated flocks differed from the vaccine. However, there was also a large number of low-quality, ambiguous chromatograms and negative PCRs for the selected genes. If and when more advanced, possibly next-generation sequencing-based methods will be developed, the genes should be considered as targets.
Collapse
Affiliation(s)
- M Carrisosa
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - M T Terra-Long
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - J Cline
- Wayne Farms, Oakwood, GA 30566
| | - K S Macklin
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - T Dormitorio
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - C Wang
- Department of Pathobiology, Auburn University, Auburn, AL 36849
| | - R Hauck
- Department of Poultry Science, Auburn University, Auburn, AL 36849, .,Department of Pathobiology, Auburn University, Auburn, AL 36849
| |
Collapse
|
6
|
Cheng P, Wu Y, Guo S, Ma X, Fei C, Xue F, Zhu C, Wang M, Gu F. RPA assay coupled with CRISPR/Cas12a system for the detection of seven Eimeria species in chicken fecal samples. Vet Parasitol 2022; 311:109810. [PMID: 36183557 DOI: 10.1016/j.vetpar.2022.109810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Chicken coccidiosis is one of the most common and economically important diseases in the global poultry industry, and it is caused by at least one of the seven Eimeria species. A simple and reliable way to distinguish Eimeria species in infected chicken is critical for the surveillance, control, and eradication of chicken coccidiosis. In this study, a recombinase polymerase amplification (RPA) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system (RPA-CRISPR/Cas12a) was developed for the detection of Eimeria species in chicken fecal samples. This assay is highly specific to the seven Eimeria species and it does not cross react between species. Assessment of analytical sensitivity revealed that a single copy of plasmid DNA could be detected. Comparative analysis revealed strong agreement between RPA-CRISPR/Cas12a assays and real-time qPCR to reliably detect all seven Eimeria species in fecal chicken samples. Importantly, the cleavage products could be visualized under a blue light instrument, making it possible for the rapid detection of Eimeria species for on-site testing. Collectively, our study demonstrated that RPA-CRISPR/Cas12a assays offer a simple and reliable diagnostic method for Eimeria species.
Collapse
Affiliation(s)
- Peipei Cheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Yuting Wu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shuangshuang Guo
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chuangang Zhu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
7
|
Baron LF, da Fonseca FN, Maciag SS, Bellaver FAV, Ibeli AMG, Mores MAZ, de Almeida GF, Guterres SS, Bastos APA, Paese K. Toltrazuril-Loaded Polymeric Nanocapsules as a Promising Approach for the Preventive Control of Coccidiosis in Poultry. Pharmaceutics 2022; 14:pharmaceutics14020392. [PMID: 35214122 PMCID: PMC8878044 DOI: 10.3390/pharmaceutics14020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Coccidiosis is a disease caused by intracellular protozoan parasites of the genus Eimeria that affect the intestinal tract of poultry. However, strain resistance and drug residue in the carcass have drawn the attention of the productive sector. The nanotechnology can improve the biological effect of drugs, reducing of administered doses and toxic effects. Due to this, toltrazuril-load polymeric nanoparticles based on Eudragit® S100 (NCt) or poly-ε-caprolactone (LNCt) were developed to prevent coccidiosis in broilers. Nanoformulations were produced and showed homogeneous particle diameter distribution in the nanometer range (z-average and D (4.3) < 200 nm), negative zeta potential (<−8.93 mV), drug content ~100%, and encapsulation efficiency >90%. Cell viability assays using avian fibroblasts showed that LNCt presented no relevant toxicity up to 72 h. LNCt was then prophylactically administrated to chicken followed by challenge with Eimeria oocysts. The evaluation of the small intestine and cecum showed that the treatment with LNCt (3.5 mg/kg/day) in drinking water reduced the lesion scores and oocysts excretion, similar to the reference medicine containing toltrazuril (Baycox®, 7 mg/kg/day). The current study shows the potential protective use of nanoencapsulating anticoccidial drugs as a promising approach for the control of coccidiosis in poultry.
Collapse
Affiliation(s)
- Lana Flávia Baron
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil; (L.F.B.); (G.F.d.A.); (S.S.G.)
| | - Francisco Noé da Fonseca
- Embrapa Suínos e Aves, BR 153 Km 110 s/n, Concórdia 89715-899, SC, Brazil; (A.M.G.I.); (M.A.Z.M.); (A.P.A.B.)
- Correspondence: (F.N.d.F.); (K.P.); Tel.: +55-61-3448-4433 (F.N.d.F.); +55-51-3308-5514 (K.P.)
| | - Shaiana Salete Maciag
- Campus CEDETEG, Universidade Estadual do Centro-Oeste do Paraná, Al. Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil;
| | | | | | | | - Gabryelle Furtado de Almeida
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil; (L.F.B.); (G.F.d.A.); (S.S.G.)
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil; (L.F.B.); (G.F.d.A.); (S.S.G.)
| | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, BR 153 Km 110 s/n, Concórdia 89715-899, SC, Brazil; (A.M.G.I.); (M.A.Z.M.); (A.P.A.B.)
| | - Karina Paese
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil; (L.F.B.); (G.F.d.A.); (S.S.G.)
- Correspondence: (F.N.d.F.); (K.P.); Tel.: +55-61-3448-4433 (F.N.d.F.); +55-51-3308-5514 (K.P.)
| |
Collapse
|
8
|
Jarquín-Díaz VH, Balard A, Ferreira SCM, Mittné V, Murata JM, Heitlinger E. DNA-based quantification and counting of transmission stages provides different but complementary parasite load estimates: an example from rodent coccidia (Eimeria). Parasit Vectors 2022; 15:45. [PMID: 35120561 PMCID: PMC8815199 DOI: 10.1186/s13071-021-05119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Counting parasite transmission stages in faeces is the classical measurement to quantify “parasite load”. DNA-based quantifications of parasite intensities from faecal samples are relatively novel and often validated against such counts. When microscopic and molecular quantifications do not correlate, it is unclear whether oocyst counts or DNA-based intensity better reflects biologically meaningful concepts. Here, we investigate this issue using the example of Eimeria ferrisi (Coccidia), an intracellular parasite of house mice (Mus musculus). Methods We performed an infection experiment of house mice with E. ferrisi, in which the intensity of infection correlates with increased health impact on the host, measured as temporary weight loss during infection. We recorded the number of parasite transmissive stages (oocysts) per gram of faeces (OPG) and, as a DNA-based measurement, the number of Eimeria genome copies per gram of faeces for 10 days post-infection (dpi). We assessed weight loss relative to the day of experimental infection as a proxy of host health and evaluated whether DNA or oocyst counts are better predictors of host health. Results Absolute quantification of Eimeria DNA and oocyst counts showed similar but slightly diverging temporal patterns during 10 dpi. We detected Eimeria DNA earlier than the first appearance of oocysts in faeces. Additionally, Eimeria OPGs within each dpi did not explain parasite DNA intensity. Early dpi were characterized by high DNA intensity with low oocyst counts, while late infections showed the opposite pattern. The intensity of Eimeria DNA was consistently a stronger predictor of either maximal weight loss (1 value per animal during the infection course) or weight loss on each day during the experiment when controlling for between-dpi and between-individual variance. Conclusions Eimeria ferrisi oocyst counts correlate weakly with parasite intensity assessed through DNA quantification. DNA is likely partially derived from life-cycle stages other than transmissive oocysts. DNA-based intensities predict health outcomes of infection for the host more robustly than counts of transmissive stages. We conclude that DNA-based quantifications should not necessarily require validation against counts of transmissive stages. Instead, DNA-based load estimates should be evaluated as complementary sources of information with potential specific biological relevance for each host-parasite system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05119-0.
Collapse
Affiliation(s)
- Víctor Hugo Jarquín-Díaz
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany. .,Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW), im Forschungsverbund Berlin e.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany. .,Experimental and Clinical Research Center, jointly operated by Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Charité Campus Berlin Buch, Lindenberger Weg 80, 13125, Berlin, Germany.
| | - Alice Balard
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW), im Forschungsverbund Berlin e.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Susana Carolina Martins Ferreira
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Division of Computational Systems Biology, University of Vienna, Althanstr. 14, 1090, Wien, Austria
| | - Vivian Mittné
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Julia Mari Murata
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Emanuel Heitlinger
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW), im Forschungsverbund Berlin e.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
9
|
Prevalence of Select Intestinal Parasites in Alabama Backyard Poultry Flocks. Animals (Basel) 2021; 11:ani11040939. [PMID: 33810349 PMCID: PMC8066009 DOI: 10.3390/ani11040939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary As biosecurity is generally low in backyard chicken flocks, infections with various pathogens are common. This puts other poultry nearby, including commercial flocks, at risk. Some chicken pathogens can also infect humans and cause disease. In this study, backyard poultry flocks were tested for parasites. Eighty-four fecal samples, 82 from chickens and two from turkeys, from 64 backyard flocks throughout the state of Alabama were collected in the summers of 2017 and 2018. The most frequently observed parasites were coccidia, unicellular parasites capable of causing diarrhea. Eggs of various roundworms were observed in 20.3–26.6% of the flocks. These parasites were usually present in low numbers only. Other detected parasites were the flagellates Histomonas meleagridis and Tetratrichomonas gallinarum in 4.7% and 18.8% of flocks. Both can cause severe disease in poultry. Detected parasites that can cause disease in humans were Cryptosporidium spp. in 18.8% of the flocks and Blastocystis spp. in 87.5% of the flocks. The results will help to provide information that can be used to design outreach programs to improve the health and wellbeing of birds in backyard flocks. Abstract Keeping chickens as backyard pets has become increasingly popular in the United States in recent years. However, biosecurity is generally low in backyard flocks. As a consequence, they can serve as reservoirs for various pathogens that pose a risk for commercial poultry or human health. Eighty-four fecal samples, 82 from chickens and two from turkeys, from 64 backyard flocks throughout the state of Alabama were collected in the summers of 2017 and 2018. Coccidia oocysts were seen in 64.1% of flocks with oocyst counts in most samples below 10,000 oocysts per gram. Eggs of Ascaridia spp. or Heterakis gallinarum were observed in 20.3% of the flocks, and eggs of Capillaria spp. in 26.6% of the flocks. Egg counts were low, rarely exceeding 1000 eggs per gram. DNA extracted directly from fecal samples was investigated by PCR for other relevant parasites. The results showed that 4.7% of flocks were positive for Histomonas meleagridis, 18.8% of flocks for Tetratrichomonas gallinarum, 18.8% of flocks for Cryptosporidium spp. and 87.5% of flocks for Blastocystis spp. The results will help to provide information that can be used to design outreach programs to improve health and wellbeing of birds in backyard flocks.
Collapse
|
10
|
Bremner A, Kim S, Morris KM, Nolan MJ, Borowska D, Wu Z, Tomley F, Blake DP, Hawken R, Kaiser P, Vervelde L. Kinetics of the Cellular and Transcriptomic Response to Eimeria maxima in Relatively Resistant and Susceptible Chicken Lines. Front Immunol 2021; 12:653085. [PMID: 33841436 PMCID: PMC8027475 DOI: 10.3389/fimmu.2021.653085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge economic impact on poultry production. Knowledge of immunity to E. maxima and the specific mechanisms that contribute to differing levels of resistance observed between chicken breeds and between congenic lines derived from a single breed of chickens is required. This study aimed to define differences in the kinetics of the immune response of two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12) or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4, 6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity and magnitude of cytokine transcription responses post-infection between the two lines. In particular, IFN-γ and IL-10 transcript expression increased in the jejunum earlier in line C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of IFNG and IL10 mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early induction of the IFN-γ and IL-10 responses, as well as immune-related genes including IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.
Collapse
Affiliation(s)
- Abi Bremner
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Sungwon Kim
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom.,Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Katrina M Morris
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Matthew John Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dominika Borowska
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Zhiguang Wu
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Fiona Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Rachel Hawken
- Cobb-Vantress Inc., Siloam Springs, AR, United States
| | - Pete Kaiser
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| |
Collapse
|
11
|
Pastor-Fernández I, Kim S, Marugán-Hernández V, Soutter F, Tomley FM, Blake DP. Vaccination with transgenic Eimeria tenella expressing Eimeria maxima AMA1 and IMP1 confers partial protection against high-level E. maxima challenge in a broiler model of coccidiosis. Parasit Vectors 2020; 13:343. [PMID: 32650837 PMCID: PMC7350274 DOI: 10.1186/s13071-020-04210-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Background Poultry coccidiosis is a parasitic enteric disease with a highly negative impact on chicken production. In-feed chemoprophylaxis remains the primary method of control, but the increasing ineffectiveness of anticoccidial drugs, and potential future restrictions on their use has encouraged the use of commercial live vaccines. Availability of such formulations is constrained by their production, which relies on the use of live chickens. Several experimental approaches have been taken to explore ways to reduce the complexity and cost of current anticoccidial vaccines including the use of live vectors expressing relevant Eimeria proteins. We and others have shown that vaccination with transgenic Eimeria tenella parasites expressing Eimeria maxima Apical Membrane Antigen-1 or Immune Mapped Protein-1 (EmAMA1 and EmIMP1) partially reduces parasite replication after challenge with a low dose of E. maxima oocysts. In the present study, we have reassessed the efficacy of these experimental vaccines using commercial birds reared at high stocking densities and challenged with both low and high doses of E. maxima to evaluate how well they protect chickens against the negative impacts of disease on production parameters. Methods Populations of E. tenella parasites expressing EmAMA1 and EmIMP1 were obtained by nucleofection and propagated in chickens. Cobb500 broilers were immunised with increasing doses of transgenic oocysts and challenged two weeks later with E. maxima to quantify the effect of vaccination on parasite replication, local IFN-γ and IL-10 responses (300 oocysts), as well as impacts on intestinal lesions and body weight gain (10,000 oocysts). Results Vaccination of chickens with E. tenella expressing EmAMA1, or admixtures of E. tenella expressing EmAMA1 or EmIMP1, was safe and induced partial protection against challenge as measured by E. maxima replication and severity of pathology. Higher levels of protection were observed when both antigens were delivered and was associated with a partial modification of local immune responses against E. maxima, which we hypothesise resulted in more rapid immune recognition of the challenge parasites. Conclusions This study offers prospects for future development of multivalent anticoccidial vaccines for commercial chickens. Efforts should now be focused on the discovery of additional antigens for incorporation into such vaccines.![]()
Collapse
Affiliation(s)
- Iván Pastor-Fernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertforshire, AL9 7TA, UK. .,SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Sungwon Kim
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertforshire, AL9 7TA, UK
| | - Virginia Marugán-Hernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertforshire, AL9 7TA, UK
| | - Francesca Soutter
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertforshire, AL9 7TA, UK
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertforshire, AL9 7TA, UK
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertforshire, AL9 7TA, UK
| |
Collapse
|
12
|
Hauck R, Carrisosa M, McCrea BA, Dormitorio T, Macklin KS. Evaluation of Next-Generation Amplicon Sequencing to Identify Eimeria spp. of Chickens. Avian Dis 2020; 63:577-583. [PMID: 31865671 DOI: 10.1637/aviandiseases-d-19-00104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/24/2019] [Indexed: 11/05/2022]
Abstract
Identifying Eimeria spp. circulating in a poultry flock assists in designing vaccine preventive programs, as different species do not cross-protect. Because species differ in anticoccidial drug susceptibility, species identification can also be used to optimize anticoccidial medication. In the present study, we designed pan-Eimeria-specific primers for the 18S rDNA and the cytochrome oxidase I (COI) genes, and tested whether next-generation sequencing of their amplicons allowed reliable identification of Eimeria spp. in samples of isolated oocysts. For each gene, two sets of primers to be used in a nested PCR (nPCR) system were designed. In silico evaluation of the primers using published sequences showed that nucleotide sequence identities of the nested amplicons were less than 97% between most species, while only identities of 18S rDNA genes of Eimeria necatrix and Eimeria tenella and between the COI genes of Eimeria mitis and Eimeria mivati were higher than 97%. Three vaccines and five Eimeria samples from chickens in backyard flocks were investigated by nPCRs and by direct PCRs (dPCR) using the nested (inner) primers with genomic DNA as the template. Seventeen further Eimeria samples from chickens in backyard flocks and three Eimeria samples from commercial broiler flocks were investigated only by nPCR. Sequencing nPCR products tended to detect more species than sequencing dPCR products and sequencing 18S rDNA products tended to detect more species than sequencing COI products. Regarding the detected species, there was a clear difference between the commercial broiler flocks and the backyard flocks. Eimeria acervulina, Eimeria maxima, and E. tenella/E. necatrix were the only species detected in broiler flocks, while the population in the backyard flocks was more varied, with Eimeria brunetti and E. mitis/E. mivati and the previously described operational taxonomic unit Y being more prevalent. Several sequences having less than 97% identity with one of the sequences used for clustering were detected in samples from backyard flocks. In conclusion, next-generation amplicon sequencing can be a useful tool to determine which Eimeria spp. are circulating in chicken flocks.
Collapse
Affiliation(s)
- Rüdiger Hauck
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849, .,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849,
| | - Miranda Carrisosa
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849
| | | | - Teresa Dormitorio
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849
| | - Kenneth S Macklin
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849
| |
Collapse
|
13
|
Soutter F, Werling D, Tomley FM, Blake DP. Poultry Coccidiosis: Design and Interpretation of Vaccine Studies. Front Vet Sci 2020; 7:101. [PMID: 32175341 PMCID: PMC7054285 DOI: 10.3389/fvets.2020.00101] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Eimeria infection impacts upon chicken welfare and economic productivity of the poultry sector. Live coccidiosis vaccines for chickens have been available for almost 70 years, but the requirement to formulate blends of oocysts from multiple Eimeria species makes vaccine production costly and logistically demanding. A multivalent vaccine that does not require chickens for its production and can induce protection against multiple Eimeria species is highly desirable. However, despite the identification and testing of many vaccine candidate antigens, no recombinant coccidiosis vaccine has been developed commercially. Currently, assessment of vaccine efficacy against Eimeria, and the disease coccidiosis, can be done only through in vivo vaccination and challenge experiments but the design of such studies has been highly variable. Lack of a "standard" protocol for assessing vaccine efficacy makes comparative evaluations very difficult, complicating vaccine development, and validation. The formulation and schedule of vaccination, the breed of chicken and choice of husbandry system, the species, strain, magnitude, and timing of delivery of the parasite challenge, and the parameters used to assess vaccine efficacy all influence the outcomes of experimental trials. In natural Eimeria infections, the induction of strong cell mediated immune responses are central to the development of protective immunity against coccidiosis. Antibodies are generally regarded to be of lesser importance. Unfortunately, there are no specific immunological assays that can accurately predict how well a vaccine will protect against coccidiosis (i.e., no "correlates of protection"). Thus, experimental vaccine studies rely on assessing a variety of post-challenge parameters, including assessment of pathognomonic lesions, measurements of parasite replication such as oocyst output or quantification of Eimeria genomes, and/or measurements of productivity such as body weight gain and feed conversion rates. Understanding immune responses to primary and secondary infection can inform on the most appropriate immunological assays. The discovery of new antigens for different Eimeria species and the development of new methods of vaccine antigen delivery necessitates a more considered approach to assessment of novel vaccines with robust, repeatable study design. Careful consideration of performance and welfare factors that are genuinely relevant to chicken producers and vaccine manufacturers is essential.
Collapse
Affiliation(s)
| | | | | | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, United Kingdom
| |
Collapse
|
14
|
Kundu K, Kumar S, Banerjee PS, Garg R. Quantification of Eimeria necatrix, E. acervulina and E. maxima genomes in commercial chicken farms by quantitative real time PCR. J Parasit Dis 2020; 44:374-380. [PMID: 32419744 PMCID: PMC7223584 DOI: 10.1007/s12639-019-01188-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022] Open
Abstract
Advent of quantitative polymerase chain reaction and its variants have enabled identification and quantification of seven known Eimeria species of poultry in biological samples. Attempts were made in the present study to identify and quantify three important pathogenic Eimeria species responsible for intestinal coccidiosis in domestic farmed chicken, E. necatrix, E. acervulina and E. maxima in droppings collected from thirty one poultry farms of North Indian states of Haryana, Punjab, Uttar Pradesh and Uttarakhand. The study included broiler, layer and backyard rearing units. Overall occurrence of E. necatrix, E. maxima and E. acervulina was 64.5%. E. necatrix was detected in 55% (11/20) broiler farms, 66.7% (4/6) layer farms and 100% (5/5) backyard rearing units studied. Thus, occurrence of E. necatrix was detected in 64.5% (20/31) farms studied. E. maxima and E. acervulina were detected in droppings of 65% (13/20) broiler farms, 66.7% (4/6) layer farms and 60% (3/5) back yard rearing units. Genome counts of each Eimeria species revealed maximum parasite load of E. necatrix followed by E. acervulina in broiler farms and least in layer farms. The mean parasite load (genome) copies for these parasite species were intermediate for backyard units while E. maxima had the lowest number of genome copies in droppings. Mean E. maxima counts were highest in boiler farms, while it was similar for layer and back yard units. However, statistically no significant differences were observed for parasite load existing either between the broiler, layer or back yard units or between the genome counts of E. necatrix, E. acervulina or E. maxima.
Collapse
Affiliation(s)
- Krishnendu Kundu
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
- Present Address: Department of Veterinary Parasitology, Faculty of Veterinary and Animal Sciences, BHU, Mirzapur, Uttar Pradesh India
| | - Saroj Kumar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
- Present Address: Department of Veterinary Parasitology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Partha Sarathi Banerjee
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Rajat Garg
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| |
Collapse
|
15
|
Giles T, Sakkas P, Belkhiri A, Barrow P, Kyriazakis I, Foster N. Differential immune response to Eimeria maxima infection in fast- and slow-growing broiler genotypes. Parasite Immunol 2019; 41:e12660. [PMID: 31230360 DOI: 10.1111/pim.12660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Very little has been reported comparing resistance to coccidiosis in fast or slow growing broilers, the latter of which are becoming more prevalent in the broiler industry. We examined mRNA expression in the intestines of fast and slow growing broilers following Eimeria infection. We show that by day 13 post-infection (d pi) with 2500 or 7000 oocysts of Eimeria maxima, slower-growing (Ranger Classic) broilers significantly (P < 0.01) upregulated expression of proinflammatory cyclooxygenase genes (LTB4DH, PTSG1 and PTSG2) above that detected in fast growing (Ross 308) broilers. Expression of CD8α mRNA was downregulated in Ross 308 at day 6d pi with either 2500 or 7000 oocysts of E maxima (P < 0.05), compared to uninfected controls, but was not differentially expressed in Ranger Classic. CD4 genes were not differentially expressed in either chicken line infected with either infectious oocyst dose at d6 pi, compared to uninfected controls. However, at d13 pi, CD4 expression was significantly upregulated in both chicken lines infected with either infectious oocyst dose, compared to uninfected controls (P < 0.05) but this was significantly greater in Ranger Classic broilers compared to Ross 308 (P < 0.05). At d13 pi, expression of CD3 chains (required for T lymphocyte activation) was significantly increased in Ranger Classic compared to Ross 308, infected with either oocyst dose (P < 0.05-0.01). Expression of IL-2 and IL-15 mRNA, required for T lymphocyte proliferation was also significantly upregulated, or maintained longer, in Ranger Classic broilers compared to Ross 308. These differences in immune response to E maxima corresponded with a reduction in E maxima genome detected in the intestines of Ranger Classic compared to Ross 308.
Collapse
Affiliation(s)
- Tim Giles
- University of Nottingham, Sutton Bonington, UK
| | | | | | - Paul Barrow
- University of Nottingham, Sutton Bonington, UK
| | | | - Neil Foster
- University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
16
|
Dietary vitamin D improves performance and bone mineralisation, but increases parasite replication and compromises gut health in Eimeria-infected broilers. Br J Nutr 2019; 122:676-688. [PMID: 31178000 DOI: 10.1017/s0007114519001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coccidial infections reduce fat-soluble vitamin status and bone mineralisation in broiler chickens. We hypothesised that broilers infected with Eimeria maxima would benefit from increased dietary supplementation with vitamin D (vitD) or with 25-hydroxycholecalciferol (25(OH)D3 or 25D3). Broilers were assigned to diets with low (L) or commercial (M) vitD levels (25 v. 100 μg/kg) supplemented as cholecalciferol (D3) or 25D3. At day 11 of age, birds were inoculated with water or 7000 E. maxima oocysts. Pen performance was calculated over the early (days 1-6), acute (days 7-10) and recovery periods (days 11-14) post-infection (pi). At the end of each period, six birds per treatment were dissected to assess long bone mineralisation, plasma levels of 25D3, Ca and P, and intestinal histomorphometry. Parasite replication and transcription of cytokines IL-10 and interferon-γ (IFN-γ) were assessed at day 6 pi using quantitative PCR. Performance, bone mineralisation and plasma 25D3 levels were significantly reduced during infection (P < 0·05). M diets or diets with 25D3 raised plasma 25D3, improved performance and mineralisation (P < 0·05). Offering L diets compromised feed efficiency pi, reduced femur breaking strength and plasma P levels at day 10 pi in infected birds (P < 0·05). Contrastingly, offering M diets or diets with 25D3 resulted in higher parasite loads (P < 0·001) and reduced jejunal villi length at day 10 pi (P < 0·01), with no effect on IL-10 or IFN-γ transcription. Diets with M levels or 25D3 improved performance and mineralisation, irrespective of infection, while M levels further improved feed efficiency and mineralisation in the presence of coccidiosis.
Collapse
|
17
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
18
|
Boulton K, Nolan MJ, Wu Z, Riggio V, Matika O, Harman K, Hocking PM, Bumstead N, Hesketh P, Archer A, Bishop SC, Kaiser P, Tomley FM, Hume DA, Smith AL, Blake DP, Psifidi A. Dissecting the Genomic Architecture of Resistance to Eimeria maxima Parasitism in the Chicken. Front Genet 2018; 9:528. [PMID: 30534137 PMCID: PMC6275401 DOI: 10.3389/fgene.2018.00528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
Coccidiosis in poultry, caused by protozoan parasites of the genus Eimeria, is an intestinal disease with substantial economic impact. With the use of anticoccidial drugs under public and political pressure, and the comparatively higher cost of live-attenuated vaccines, an attractive complementary strategy for control is to breed chickens with increased resistance to Eimeria parasitism. Prior infection with Eimeria maxima leads to complete immunity against challenge with homologous strains, but only partial resistance to challenge with antigenically diverse heterologous strains. We investigate the genetic architecture of avian resistance to E. maxima primary infection and heterologous strain secondary challenge using White Leghorn populations of derived inbred lines, C.B12 and 15I, known to differ in susceptibility to the parasite. An intercross population was infected with E. maxima Houghton (H) strain, followed 3 weeks later by E. maxima Weybridge (W) strain challenge, while a backcross population received a single E. maxima W infection. The phenotypes measured were parasite replication (counting fecal oocyst output or qPCR for parasite numbers in intestinal tissue), intestinal lesion score (gross pathology, scale 0-4), and for the backcross only, serum interleukin-10 (IL-10) levels. Birds were genotyped using a high density genome-wide DNA array (600K, Affymetrix). Genome-wide association study located associations on chromosomes 1, 2, 3, and 5 following primary infection in the backcross population, and a suggestive association on chromosome 1 following heterologous E. maxima W challenge in the intercross population. This mapped several megabases away from the quantitative trait locus (QTL) linked to the backcross primary W strain infection, suggesting different underlying mechanisms for the primary- and heterologous secondary- responses. Underlying pathways for those genes located in the respective QTL for resistance to primary infection and protection against heterologous challenge were related mainly to immune response, with IL-10 signaling in the backcross primary infection being the most significant. Additionally, the identified markers associated with IL-10 levels exhibited significant additive genetic variance. We suggest this is a phenotype of interest to the outcome of challenge, being scalable in live birds and negating the requirement for single-bird cages, fecal oocyst counts, or slaughter for sampling (qPCR).
Collapse
Affiliation(s)
- Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Zhiguang Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nat Bumstead
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Pat Hesketh
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Andrew Archer
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute, The University of Queensland, Brisbane, St. Lucia, QLD, Australia
| | - Adrian L Smith
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom.,Department of Zoology, Sir Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom.,Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
| |
Collapse
|
19
|
Sakkas P, Oikeh I, Blake DP, Nolan MJ, Bailey RA, Oxley A, Rychlik I, Lietz G, Kyriazakis I. Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima? Vet Parasitol 2018; 258:88-98. [PMID: 30105985 PMCID: PMC6052249 DOI: 10.1016/j.vetpar.2018.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Chickens exhibit varied responses to infection with Eimeria parasites. We hypothesise that broilers selected for increased growth rate will show lower resistance and tolerance to a coccidian challenge. 288 chickens of fast (F) or slow (S) growing lines were inoculated with 0 (control), 2500 (low-dose), or 7000 (high-dose) sporulated E. maxima oocysts at 13 days of age in two consecutive rounds. Gain and Intake were measured daily and their values relative to BW at the point of infection were calculated over the pre-patent (days 1-4 post-infection), acute (d5-8 pi), and recovery (d9-12 pi) phases of infection to assess the impact of infection. Levels of plasma carotenoids, vitamins E and A, long bone mineralisation, caecal microbiota diversity indices, and histological measurements were assessed at the acute (d6 pi) and recovery stage (d13 pi). In addition, we measured the levels of nitric oxide metabolites and the number of parasite genome copies in the jejunumat d6pi. In absolute terms F birds grew 1.42 times faster than S birds when not infected. Infection significantly reduced relative daily gain and intake (P < 0.001), with the effects being most pronounced during the acute phase (P < 0.001). Levels of all metabolites were significantly decreased, apart from NO which increased (P < 0.001) in response to infection on d6pi, and were accompanied by changes in histomorphometric features and the presence of E. maxima genome copies in infected birds, which persisted to d13pi. Furthermore, infection reduced tibia and femur mineralisation, which also persisted to d13pi. Reductions in measured variables were mostly independent of dose size, as was the level of parasite replication. The impact of infection was similar for S and F-line birds for all measured parameters, and there were no significant interactions between line x dose size on any of these parameters. In conclusion, our results suggest that line differences in productive performance do not influence host responses to coccidiosis when offered nutrient adequate diets.
Collapse
Affiliation(s)
- Panagiotis Sakkas
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Idiegberanoise Oikeh
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, North Mymms, AL9 7TA, UK
| | - Matthew J Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, North Mymms, AL9 7TA, UK
| | | | - Anthony Oxley
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Georg Lietz
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ilias Kyriazakis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
20
|
Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens. Int J Parasitol 2018. [DOI: 10.1016/j.ijpara.2018.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Clark EL, Macdonald SE, Thenmozhi V, Kundu K, Garg R, Kumar S, Ayoade S, Fornace KM, Jatau ID, Moftah A, Nolan MJ, Sudhakar NR, Adebambo AO, Lawal IA, Álvarez Zapata R, Awuni JA, Chapman HD, Karimuribo E, Mugasa CM, Namangala B, Rushton J, Suo X, Thangaraj K, Srinivasa Rao ASR, Tewari AK, Banerjee PS, Dhinakar Raj G, Raman M, Tomley FM, Blake DP. Cryptic Eimeria genotypes are common across the southern but not northern hemisphere. Int J Parasitol 2016; 46:537-44. [PMID: 27368611 PMCID: PMC4978698 DOI: 10.1016/j.ijpara.2016.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/09/2023]
Abstract
The seven Eimeria spp. recognised to infect chickens are present globally. Cryptic Eimeria operational taxonomic units (OTUs) are common in the southern but not northern hemisphere. Parasite population structure appears to vary between Eimeria spp.
The phylum Apicomplexa includes parasites of medical, zoonotic and veterinary significance. Understanding the global distribution and genetic diversity of these protozoa is of fundamental importance for efficient, robust and long-lasting methods of control. Eimeria spp. cause intestinal coccidiosis in all major livestock animals and are the most important parasites of domestic chickens in terms of both economic impact and animal welfare. Despite having significant negative impacts on the efficiency of food production, many fundamental questions relating to the global distribution and genetic variation of Eimeria spp. remain largely unanswered. Here, we provide the broadest map yet of Eimeria occurrence for domestic chickens, confirming that all the known species (Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox, Eimeria tenella) are present in all six continents where chickens are found (including 21 countries). Analysis of 248 internal transcribed spacer sequences derived from 17 countries provided evidence of possible allopatric diversity for species such as E. tenella (FST values ⩽0.34) but not E. acervulina and E. mitis, and highlighted a trend towards widespread genetic variance. We found that three genetic variants described previously only in Australia and southern Africa (operational taxonomic units x, y and z) have a wide distribution across the southern, but not the northern hemisphere. While the drivers for such a polarised distribution of these operational taxonomic unit genotypes remains unclear, the occurrence of genetically variant Eimeria may pose a risk to food security and animal welfare in Europe and North America should these parasites spread to the northern hemisphere.
Collapse
Affiliation(s)
- Emily L Clark
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Sarah E Macdonald
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - V Thenmozhi
- Department of Veterinary Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Krishnendu Kundu
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Rajat Garg
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Saroj Kumar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Simeon Ayoade
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Kimberly M Fornace
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Isa Danladi Jatau
- Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Abdalgader Moftah
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Nolan
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - N R Sudhakar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A O Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - I A Lawal
- Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Ramón Álvarez Zapata
- Universidad Central de Venezuela, Facultad de Agronomía Instituto de Producción Animal, Av. Universidad via El Limón, Maracay, Venezuela
| | | | - H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Esron Karimuribo
- Southern African Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | - Claire M Mugasa
- Department of Biotechnical and Diagnostic sciences College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, Faculty of Veterinary Medicine, Lusaka, Zambia
| | - Jonathan Rushton
- Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | - Anup K Tewari
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Partha S Banerjee
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G Dhinakar Raj
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - M Raman
- Department of Veterinary Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Fiona M Tomley
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Damer P Blake
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK.
| |
Collapse
|
22
|
Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proc Natl Acad Sci U S A 2015; 112:E5343-50. [PMID: 26354122 DOI: 10.1073/pnas.1506468112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host.
Collapse
|
23
|
Quantitative real-time PCR (qPCR) for Eimeria tenella replication--Implications for experimental refinement and animal welfare. Parasitol Int 2015; 64:464-70. [PMID: 26141544 PMCID: PMC4534708 DOI: 10.1016/j.parint.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/21/2022]
Abstract
The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R2 = 0.994) (p < 0.002) but not in those from day eight (after most oocyst shedding) (R2 = 0.006) (p > 0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings. Quantitative PCR indicates significant dose-dependent increases in parasites. More sensitive measure of parasite replication than faecal oocyst count/lesion score Significant implications for animal welfare and experiment refinement (3R's) Support studies focusing on the genetic basis of resistance/susceptibility Major implications for investigations of key aspects of Eimeria biology and control
Collapse
|
24
|
Barkway CP, Pocock RL, Vrba V, Blake DP. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens. J Vis Exp 2015. [PMID: 25741643 PMCID: PMC4354661 DOI: 10.3791/52552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.
Collapse
Affiliation(s)
| | - Rebecca L Pocock
- Department of Pathology and Pathogen Biology, Royal Veterinary College, London
| | - Vladimir Vrba
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs
| | - Damer P Blake
- Department of Pathology and Pathogen Biology, Royal Veterinary College, London;
| |
Collapse
|
25
|
Vrba V, Pakandl M. Coccidia of turkey: from isolation, characterisation and comparison to molecular phylogeny and molecular diagnostics. Int J Parasitol 2014; 44:985-1000. [PMID: 25020103 DOI: 10.1016/j.ijpara.2014.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
Coccidiosis is a disease caused by apicomplexan parasites of the genus Eimeria, which has a significant economic impact on poultry production. Multiple species infecting the turkey have been described; however, due to the general lack of unambiguous description, their identification and taxonomy is debatable. In this work, a systematic approach was taken to isolate, characterise and compare coccidian species in the turkey. Individual species were tracked according to their unique 18S ribosomal DNA sequence. The single-oocyst isolation technique and passaging of mixed species field isolates in selectively immunised birds enabled the derivation of pure species. Six distinct strains representing five eimerian species that infect the turkey were obtained. It appears highly probable that these species represent all species described in the past with the exception of Eimeria subrotunda. The species were analysed using both traditional methods and DNA sequencing. For each strain the oocyst morphology, prepatent period, gross pathology, pathogenicity, host specificity and endogenous cycle were studied. Antigenic similarity was investigated in multiple cross-immunity experiments. For identification and quantification of each individual species or strain, quantitative real-time PCR markers were also developed. Parallel characterisation of pure strains allowed comprehensive comparison with the original descriptions and assignment of correct species names. The species Eimeria meleagridis, Eimeria dispersa, Eimeria gallopavonis, Eimeria meleagrimitis and Eimeria innocua were identified. Comparison of our data with those of previous studies indicates that Eimeria adenoeides is most probably a synonym for either E. meleagridis or E. gallopavonis, or a description based on a mixture of these species, and thus nomen dubium. The species E. dispersa and E. innocua were also found to infect Bobwhite Quail. Phylogenetic reconstruction based on 18S rDNA and cytochrome c oxidase subunit I gene (COI) sequences showed that these two species form a distinct clade unrelated to other turkey coccidia and point to a polyphyletic origin of the species infecting the turkey.
Collapse
Affiliation(s)
- Vladimir Vrba
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohori-Chotoun, Jilove u Prahy 254 49, Czech Republic.
| | - Michal Pakandl
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohori-Chotoun, Jilove u Prahy 254 49, Czech Republic
| |
Collapse
|
26
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fornace KM, Clark EL, Macdonald SE, Namangala B, Karimuribo E, Awuni JA, Thieme O, Blake DP, Rushton J. Occurrence of Eimeria species parasites on small-scale commercial chicken farms in Africa and indication of economic profitability. PLoS One 2013; 8:e84254. [PMID: 24391923 PMCID: PMC3877271 DOI: 10.1371/journal.pone.0084254] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022] Open
Abstract
Small-scale commercial poultry production is emerging as an important form of livestock production in Africa, providing sources of income and animal protein to many poor households, yet the occurrence and impact of coccidiosis on this relatively new production system remains unknown. The primary objective of this study was to examine Eimeria parasite occurrence on small-scale commercial poultry farms in Ghana, Tanzania and Zambia. Additionally, farm economic viability was measured by calculating the farm gross margin and enterprise budget. Using these economic measures as global assessments of farm productivity, encompassing the diversity present in regional husbandry systems with a measure of fundamental local relevance, we investigated the detection of specific Eimeria species as indicators of farm profitability. Faecal samples and data on production parameters were collected from small-scale (less than 2,000 birds per batch) intensive broiler and layer farms in peri-urban Ghana, Tanzania and Zambia. All seven Eimeria species recognised to infect the chicken were detected in each country. Furthermore, two of the three genetic variants (operational taxonomic units) identified previously in Australia have been described outside of Australia for the first time. Detection of the most pathogenic Eimeria species associated with decreased farm profitability and may be considered as an indicator of likely farm performance. While a causal link remains to be demonstrated, the presence of highly pathogenic enteric parasites may pose a threat to profitable, sustainable small-scale poultry enterprises in Africa.
Collapse
Affiliation(s)
| | - Emily L. Clark
- Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | | | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, Faculty of Veterinary Medicine, Lusaka, Zambia
| | - Esron Karimuribo
- Southern African Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | | | - Olaf Thieme
- Food and Agriculture Organization, Rome, Italy
| | - Damer P. Blake
- Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Jonathan Rushton
- Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
28
|
Raj GD, Aarthi S, Selvabharathi R, Raman M, Blake DP, Tomley FM. Real-time PCR-based quantification of Eimeria genomes: a method to outweigh underestimation of genome numbers due to PCR inhibition. Avian Pathol 2013; 42:304-8. [PMID: 23656603 DOI: 10.1080/03079457.2013.790531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eimeria species parasites can cause the disease coccidiosis in all livestock species, most notably poultry. Traditional diagnostics such as faecal microscopy have now been supplemented by molecular assays including genus-specific and species-specific quantitative polymerase chain reaction (qPCR), although DNA extracted from faecal samples is commonly affected by PCR inhibition. This was confirmed when genomic DNA extracted from chicken faeces inhibited the threshold cycle value of internal positive control (IPC) DNA amplification by 15.33%. Hence, the objective of the present study was to use IPC qPCR to determine PCR inhibition in a series of experimental samples and use the increase in IPC qPCR threshold cycle value as an individual (sample-specific) correction factor for an established 5S rDNA qPCR used to estimate total Eimeria genome numbers. IPC-corrected genome counts were correlated with conventional oocyst per gram counts and compared with non-corrected counts, revealing a 0.1769 increase in correlation coefficient to outweigh underestimation of oocyst counts. Though the sample size used in this study is small, this limitation would be offset by the sample-specific correction factor determined using the IPC along with each sample.
Collapse
Affiliation(s)
- G Dhinakar Raj
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 007, India.
| | | | | | | | | | | |
Collapse
|
29
|
Su H, Liu X, Yan W, Shi T, Zhao X, Blake DP, Tomley FM, Suo X. piggyBac transposon-mediated transgenesis in the apicomplexan parasite Eimeria tenella. PLoS One 2012; 7:e40075. [PMID: 22768223 PMCID: PMC3386905 DOI: 10.1371/journal.pone.0040075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 06/05/2012] [Indexed: 01/24/2023] Open
Abstract
piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5′ and 3′ ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac.
Collapse
Affiliation(s)
- Huali Su
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenchao Yan
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tuanyuan Shi
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinxin Zhao
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Damer P. Blake
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Royal Veterinary College, Pathology and Infectious Diseases, North Mymms, Hertfordshire, United Kingdom
| | - Fiona M. Tomley
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Royal Veterinary College, Pathology and Infectious Diseases, North Mymms, Hertfordshire, United Kingdom
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Barkway CP, Pocock RL, Vrba V, Blake DP. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens. BMC Vet Res 2011; 7:67. [PMID: 22053893 PMCID: PMC3217895 DOI: 10.1186/1746-6148-7-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 11/29/2022] Open
Abstract
Background Eimeria parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease. Recognition of the tight economic margins prevailing in modern poultry production and the impact of avian coccidiosis on poverty in many parts of the world has highlighted a requirement for a panel of straightforward and sensitive, but cost-effective, Eimeria species-specific diagnostic assays. Results Loop-mediated isothermal amplification (LAMP) is an uncomplicated, quick and relatively inexpensive diagnostic tool. In this study we have developed a panel of species-specific LAMP assays targeting the seven Eimeria species that infect the chicken. Each assay has been shown to be genuinely species-specific with the capacity to detect between one and ten eimerian genomes, equivalent to less than a single mature schizont. Development of a simple protocol for template DNA preparation from tissue collected post mortem with no requirement for specialist laboratory equipment supports the use of these assays in routine diagnosis of eimerian infection. Preliminary field testing supports this hypothesis. Conclusions Development of a panel of sensitive species-specific LAMP assays introduces a valuable new cost-effective tool for use in poultry husbandry.
Collapse
Affiliation(s)
- Christopher P Barkway
- Royal Veterinary College, Department of Pathology and Infectious Diseases, University of London, North Mymms, UK
| | | | | | | |
Collapse
|
31
|
Blake DP, Billington KJ, Copestake SL, Oakes RD, Quail MA, Wan KL, Shirley MW, Smith AL. Genetic mapping identifies novel highly protective antigens for an apicomplexan parasite. PLoS Pathog 2011; 7:e1001279. [PMID: 21347348 PMCID: PMC3037358 DOI: 10.1371/journal.ppat.1001279] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/07/2011] [Indexed: 11/19/2022] Open
Abstract
Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult. Protozoan parasites are responsible for serious diseases in humans and livestock species. Vaccination is a declared intervention of choice with these infections, but even after many years of effort few effective vaccines are available. Identification of the right antigens for inclusion in sub-unit vaccines is a particular problem with complex pathogens. Moreover, the host response does not discriminate between protective and non-protective antigens, confounding development of effective screening systems. This study represents the culmination of work using parasite genetics and immunity as a selective barrier to find parts of the parasite genome targeted by immunity. The pathogen used in these studies (Eimeria maxima) is very important in livestock and related to a number of human pathogens including those responsible for malaria. Our studies indicate that just six regions in the genome were targeted by immunity and two of these have now been interrogated to determine the protective antigen encoding gene. Interestingly, one of these (called AMA-1) has homologues known to be protective with other apicomplexan parasites. This raises the intriguing possibility that a set of homologous antigens may be protective across the apicomplexan parasites and that protective antigen discovery in one parasite may generate new leads in other vaccine programmes.
Collapse
Affiliation(s)
- Damer P. Blake
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Pathology and Infectious Diseases, Royal Veterinary College, University of London, North Mymms, United Kingdom
- * E-mail: (DPB); (ALS)
| | | | | | | | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Kiew-Lian Wan
- Malaysia Genome Institute, UKM-MTDC Technology Centre, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | - Adrian L. Smith
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DPB); (ALS)
| |
Collapse
|
32
|
Blake DP, Oakes R, Smith AL. A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella. Int J Parasitol 2011; 41:263-70. [DOI: 10.1016/j.ijpara.2010.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/09/2010] [Accepted: 09/15/2010] [Indexed: 11/24/2022]
|
33
|
Vrba V, Blake DP, Poplstein M. Quantitative real-time PCR assays for detection and quantification of all seven Eimeria species that infect the chicken. Vet Parasitol 2010; 174:183-90. [DOI: 10.1016/j.vetpar.2010.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/31/2010] [Accepted: 09/06/2010] [Indexed: 11/28/2022]
|
34
|
Aarthi S, Dhinakar Raj G, Raman M, Gomathinayagam S, Kumanan K. Molecular prevalence and preponderance of Eimeria spp. among chickens in Tamil Nadu, India. Parasitol Res 2010; 107:1013-7. [PMID: 20607286 DOI: 10.1007/s00436-010-1971-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 11/26/2022]
Abstract
Coccidosis is one of the most commonly prevalent and economically important parasitic diseases of poultry worldwide. Chicken coccidia are protozoan parasites of the genus Eimeria. This study aimed at analysing the molecular prevalence of seven species of Eimeria infecting chickens in Tamil Nadu, India. Tissue samples (caecum, rectum and upper and mid intestines) collected from chickens exhibiting symptoms of coccidiosis were used for DNA extraction, followed by amplification of the internal transcribed spacer (ITS) region of Eimeria genome with genus-specific primers and speciation in nested polymerase chain reaction (PCR) with species-specific primers. Of 43 tissue samples examined, 25 were positive in ITS PCR and all the seven species could be identified. However, the prevalence of each species varied. In broilers, Eimeria necatrix was present in all infected chickens with Eimeria brunetti, Eimeria tenella, Eimeria maxima and Eimeria acervulina present in more than 50% of infected chickens, while Eimeria praecox and Eimeria mitis were only present in 11% to 16%. Although only 7 samples were positive among layers, the prevalence was largely similar, but with a higher prevalence of E. praecox and E. mitis and a lower prevalence of E. tenella. Multiple infections were most common, with 2-6 Eimeria species infecting the same chickens. In order to estimate the preponderance of each infecting species of Eimeria, a random cloning technique was adopted. The genus-specific ITS PCR product was cloned in a TA vector and ten clones were randomly picked and used as template for amplification of all the seven genera of Eimeria. If the specific species of Eimeria is preponderant, then the frequency of the clones showing that species-specific PCR amplification would be higher. Using this method, the most preponderant species present in the rectum, mid and upper intestines of layers was assessed to be E. acervulina, E. brunetti and E. necatrix. E. acervulina was present in 60-90%, E. necatrix in 10-30% and E. brunetti in 10-20% of the clones screened, indicating that these species could be the most preponderant Eimeria species. Intervention strategies should aim at these species. This new method of estimating preponderance of infecting Eimeria species could be used to assess the relative importance of each species at the farm or region level instead of relying only on prevalence estimates.
Collapse
Affiliation(s)
- S Aarthi
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India, 600007
| | | | | | | | | |
Collapse
|
35
|
Velkers F, Blake D, Graat E, Vernooij J, Bouma A, de Jong M, Stegeman J. Quantification of Eimeria acervulina in faeces of broilers: Comparison of McMaster oocyst counts from 24h faecal collections and single droppings to real-time PCR from cloacal swabs. Vet Parasitol 2010; 169:1-7. [DOI: 10.1016/j.vetpar.2010.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/21/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
|
36
|
A recombinant DNA vaccine encoding Eimeria acervulina cSZ-2 induces immunity against experimental E. tenella infection. Vet Parasitol 2010; 169:185-9. [DOI: 10.1016/j.vetpar.2009.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/10/2009] [Accepted: 12/22/2009] [Indexed: 11/24/2022]
|
37
|
Real-time polymerase chain reaction (PCR) assays for the specific detection and quantification of seven Eimeria species that cause coccidiosis in chickens. Mol Cell Probes 2009; 23:83-9. [DOI: 10.1016/j.mcp.2008.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 11/18/2022]
|
38
|
Kirkpatrick NC, Blacker HP, Woods WG, Gasser RB, Noormohammadi AH. A polymerase chain reaction-coupled high-resolution melting curve analytical approach for the monitoring of monospecificity of avianEimeriaspecies. Avian Pathol 2009; 38:13-9. [DOI: 10.1080/03079450802596053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Kawahara F, Taira K, Nagai S, Onaga H, Onuma M, Nunoya T. Detection of Five Avian Eimeria Species by Species-Specific Real-Time Polymerase Chain Reaction Assay. Avian Dis 2008; 52:652-6. [DOI: 10.1637/8351-050908-reg.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Clark JD, Billington K, Bumstead JM, Oakes RD, Soon PE, Sopp P, Tomley FM, Blake DP. A toolbox facilitating stable transfection of Eimeria species. Mol Biochem Parasitol 2008; 162:77-86. [DOI: 10.1016/j.molbiopara.2008.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/17/2008] [Accepted: 07/22/2008] [Indexed: 11/30/2022]
|
41
|
Haug A, Gjevre AG, Thebo P, Mattsson JG, Kaldhusdal M. Coccidial infections in commercial broilers: epidemiological aspects and comparison ofEimeriaspecies identification by morphometric and polymerase chain reaction techniques. Avian Pathol 2008; 37:161-70. [DOI: 10.1080/03079450801915130] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Blake DP, Qin Z, Cai J, Smith AL. Development and validation of real-time polymerase chain reaction assays specific to four species of Eimeria. Avian Pathol 2008; 37:89-94. [DOI: 10.1080/03079450701802248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Damer P. Blake
- a Enteric Immunology Group , Institute for Animal Health , Compton , Berkshire , RG20 7NN , UK
| | - Zonghua Qin
- b Guangdong Academy of Agricultural Sciences , Institute of Veterinary Medicine , Guangzhou , 510640 , China
| | - Jianping Cai
- b Guangdong Academy of Agricultural Sciences , Institute of Veterinary Medicine , Guangzhou , 510640 , China
| | - Adrian L. Smith
- a Enteric Immunology Group , Institute for Animal Health , Compton , Berkshire , RG20 7NN , UK
| |
Collapse
|