1
|
Abou-El-Naga IF. Receptors for growth and development of Schistosoma mansoni. J Helminthol 2025; 99:e29. [PMID: 39949117 DOI: 10.1017/s0022149x24001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The growth and development of schistosomes are tightly regulated by various receptors throughout their life cycle. Each stage of the parasite inhabits a distinct habitat and responds to different factors that drive its growth and development. With two hosts involved in its life cycle (mammalian and snail), the parasite must go through additional free-living stages to transition between them. Moreover, communication between male and female worms is essential for the maturation of females. The ability of adult schistosomes to survive in human hosts for up to thirty years demonstrates their capacity to efficiently utilize host nutrients for metabolic processes and growth. In Schistosoma mansoni, receptors mediate the utilization of growth factors derived from both the parasite itself and the host. Nuclear receptors, in particular, collaborate with other proteins to regulate the expression of genes essential for various developmental functions. Receptors also play a pivotal role in RNA export, which is crucial for the parasite development. Additionally, neurotransmitter receptors are essential for the growth and development of larval stages. This review aims to elucidate the mechanisms by which these receptors regulate cell proliferation, differentiation, and maturation throughout the parasite life cycle. Understanding these processes could provide insights into the role of receptors in Schistosoma mansoni development and potentially lead to innovative therapeutic strategies to combat human schistosomiasis.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
2
|
Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Res 2023; 51:1443-1457. [PMID: 36651297 PMCID: PMC9943680 DOI: 10.1093/nar/gkac1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xin Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- To whom correspondence should be addressed. Tel: +86 10 62734078; Fax: +86 10 62734078;
| |
Collapse
|
3
|
Romero AA, Cobb SA, Collins JNR, Kliewer SA, Mangelsdorf DJ, Collins JJ. The Schistosoma mansoni nuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation of meg-8.3. PLoS Pathog 2021; 17:e1010140. [PMID: 34910770 PMCID: PMC8673669 DOI: 10.1371/journal.ppat.1010140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Schistosomes infect over 200 million of the world's poorest people, but unfortunately treatment relies on a single drug. Nuclear hormone receptors are ligand-activated transcription factors that regulate diverse processes in metazoans, yet few have been functionally characterized in schistosomes. During a systematic analysis of nuclear receptor function, we found that an FTZ-F1-like receptor was essential for parasite survival. Using a combination of transcriptional profiling and chromatin immunoprecipitation (ChIP), we discovered that the micro-exon gene meg-8.3 is a transcriptional target of SmFTZ-F1. We found that both Smftz-f1 and meg-8.3 are required for esophageal gland maintenance as well as integrity of the worm's head. Together, these studies define a new role for micro-exon gene function in the parasite and suggest that factors associated with the esophageal gland could represent viable therapeutic targets.
Collapse
Affiliation(s)
- Aracely A. Romero
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sarah A. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Julie N. R. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, Dallas, Texas, United States of America
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Wu W, LoVerde PT. Identification and evolution of nuclear receptors in Platyhelminths. PLoS One 2021; 16:e0250750. [PMID: 34388160 PMCID: PMC8363021 DOI: 10.1371/journal.pone.0250750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Since the first complete set of Platyhelminth nuclear receptors (NRs) from Schistosoma mansoni were identified a decade ago, more flatworm genome data is available to identify their NR complement and to analyze the evolutionary relationship of Platyhelminth NRs. NRs are important transcriptional modulators that regulate development, differentiation and reproduction of animals. In this study, NRs are identified in genome databases of thirty-three species including in all Platyhelminth classes (Rhabditophora, Monogenea, Cestoda and Trematoda). Phylogenetic analysis shows that NRs in Platyhelminths follow two different evolutionary lineages: 1) NRs in a free-living freshwater flatworm (Schmidtea mediterranea) and all parasitic flatworms share the same evolutionary lineage with extensive gene loss. 2) NRs in a free-living intertidal zone flatworm (Macrostomum lignano) follow a different evolutionary lineage with a feature of multiple gene duplication and gene divergence. The DNA binding domain (DBD) is the most conserved region in NRs which contains two C4-type zinc finger motifs. A novel zinc finger motif is identified in parasitic flatworm NRs: the second zinc finger of parasitic Platyhelminth HR96b possesses a CHC2 motif which is not found in NRs of all other animals studied to date. In this study, novel NRs (members of NR subfamily 3 and 6) are identified in flatworms, this result demonstrates that members of all six classical NR subfamilies are present in the Platyhelminth phylum. NR gene duplication, loss and divergence in Platyhelminths are analyzed along with the evolutionary relationship of Platyhelminth NRs.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic Platyhelminths. Mol Biochem Parasitol 2019; 233:111218. [PMID: 31470045 DOI: 10.1016/j.molbiopara.2019.111218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/16/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily which includes intracellular receptors for secreted hydrophobic signal molecules, such as steroid hormones and thyroid hormones. They regulate development and reproduction in metazoans by binding to the promoter region of their target gene to activate or repress mRNA synthesis. Isolation and characterization of NRs in the parasitic trematode Schistosoma mansoni identified two homologues of mammalian thyroid receptor (TR). This was the first known protostome exhibiting TR homologues. Three novel NRs each possess a novel set of two DNA binding domains (DBD) in tandem with a ligand binding domain (LBD) (2DBD-NRs) isolated in Schistosoma mansoni revealed a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. Full length cDNA of several NRs have been isolated and studied in the parasitic trematodes S. mansoni, S. japonicum and in the cestode Echinococcus multilocularis. The genome of the blood flukes S. mansoni, S. japonicum and S. haematobium, the liver fluke Clonorchis sinensis and the cestode Echinococcus multilocularis have been sequenced. Study of the NR complement in parasitic Platyhelminths will help us to understand the role of NRs in regulation of their development and understand the evolution of NR in animals.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA
| | - Philip T LoVerde
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA.
| |
Collapse
|
6
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic helminths. Mol Cell Endocrinol 2011; 334:56-66. [PMID: 20600585 PMCID: PMC2974807 DOI: 10.1016/j.mce.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/23/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biochemistry, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
7
|
Reitzel AM, Tarrant AM. Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns. BMC Evol Biol 2009; 9:230. [PMID: 19744329 PMCID: PMC2749838 DOI: 10.1186/1471-2148-9-230] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/10/2009] [Indexed: 11/15/2022] Open
Abstract
Background Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Results Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4) and one putative ortholog of GCNF (nuclear receptor family 6). Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. Conclusion N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which are consistent with diverse regulatory roles for these genes. Understanding the evolutionary relationships and developmental expression of the N. vectensis nuclear receptor complement provides insight into the evolution of the nuclear receptor superfamily and a foundation for mechanistic characterization of cnidarian nuclear receptor function.
Collapse
Affiliation(s)
- Adam M Reitzel
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
8
|
Aragon AD, Imani RA, Blackburn VR, Cunningham C. Microarray based analysis of temperature and oxidative stress induced messenger RNA in Schistosoma mansoni. Mol Biochem Parasitol 2008; 162:134-41. [PMID: 18775750 PMCID: PMC2591067 DOI: 10.1016/j.molbiopara.2008.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/10/2008] [Accepted: 08/11/2008] [Indexed: 01/06/2023]
Abstract
The body's defense against schistosome infection can take many forms. For example, upon developing acute schistosomiasis, patients often have fever coinciding with larval maturation, migration and early oviposition. As the infection becomes established, the parasite comes under oxidative stress generated by the host immune system. The most common treatment for schistosomiasis is the anti-helminthic drug praziquantel. Its effectiveness, however, is limited due to its inability to kill schistosomes 2-4 weeks post-infection. Clearly there is a need for new anti-schistosomal drugs. We hypothesize that gene products expressed as part of a protective response against heat and/or oxidative stress are potential therapeutic targets for future drug development. Using a 12,166 element oligonucleotide microarray to characterize Schistosoma mansoni genes induced by heat and oxidative stress we found that 1878 S. mansoni elements were significantly induced by heat stress. These included previously reported heat-shock genes expressing homologs of HSP40, HSP70 and HSP86. One thousand and one elements were induced by oxidative stress including those expressing homologs of superoxide dismutase, glutathione peroxidase and aldehyde dehydrogenase. Seventy-two elements were common to both stressors and could potentially be exploited in the development of novel anti-schistosomal therapeutics.
Collapse
Affiliation(s)
| | | | - Vint R. Blackburn
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Charles Cunningham
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Wu W, LoVerde PT. Schistosoma mansoni: identification of SmNR4A, a member of nuclear receptor subfamily 4. Exp Parasitol 2008; 120:208-13. [PMID: 18682251 PMCID: PMC2577077 DOI: 10.1016/j.exppara.2008.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 11/19/2022]
Abstract
A cDNA encoding a member of nuclear receptor subfamily 4 (SmNR4A) was isolated from the trematode Schistosoma mansoni. The open reading frame (ORF) of SmNR4A cDNA is 2481 base pairs long encoding an 827 amino acid protein. Alignment of the deduced protein sequence showed the DNA binding domain (DBD) of SmNR4A is highly conserved. Like human and Drosophila members in NR subfamily 4, SmNR4A possess an atypical ligand binding domain (LBD), the conserved lysine in helix H3 is replaced by a glutamic acid, and three of the four phenylalanines which fill the entire surface of the ligand binding pocket (LBP) are conserved in SmNR4A. A phylogenetic tree of SmNR4A was constructed using the conserved protein sequence of the DBD, the C-terminal-extension of DBD (CTE) and the LBD. The results show that the SmNR4A is a member of NR subfamily 4 from S. mansoni. The SmNR4A gene contains six exons spanning more than 50kbp. The relative mRNA expression levels of SmNR4A were evaluated in 14 different developmental stages by quantitative real-time reverse-transcriptase polymerase chain reaction (q-PCR). The results demonstrated that SmNR4A expression was regulated throughout development. It was highly expressed in daughter sporocysts and 35-day worms, but barely expressed in cercariae and 1-h and 3-day schistosomules.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Pathology, University of Texas Health Sciences Center, San Antonio, Texas, 78229-3800, USA
| | - Philip T. LoVerde
- Departments of Biochemistry and Pathology, University of Texas Health Sciences Center, San Antonio, Texas, 78229-3800, USA
| |
Collapse
|
10
|
Fantappié MR, de Oliveira FMB, de Moraes Maciel R, Rumjanek FD, Wu W, LoVerde PT. Cloning of SmNCoA-62, a novel nuclear receptor co-activator from Schistosoma mansoni: Assembly of a complex with a SmRXR1/SmNR1 heterodimer, SmGCN5 and SmCBP1. Int J Parasitol 2008; 38:1133-47. [DOI: 10.1016/j.ijpara.2008.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
11
|
Schistosoma mansoni: SmE78, a nuclear receptor orthologue of Drosophila ecdysone-induced protein 78. Exp Parasitol 2008; 119:313-8. [DOI: 10.1016/j.exppara.2008.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/12/2008] [Accepted: 03/07/2008] [Indexed: 11/17/2022]
|
12
|
Wu W, Niles EG, LoVerde PT. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni. BMC Evol Biol 2007; 7:150. [PMID: 17727708 PMCID: PMC2045677 DOI: 10.1186/1471-2148-7-150] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thyroid hormone receptors (TRs) function as molecular switches in response to thyroid hormone to regulate gene transcription. TRs were previously believed to be present only in chordates. RESULTS We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc, Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domain and/or ligand binding domain shows that invertebrate and vertebrate TRs cluster together, TRs from the vertebrates and from the jawless vertebrate (lamprey) clustered within separate subgroups, Platyhelminth TRs cluster outside of the vertebrate TR subgroups and that the schistosome TRs and S. mediterranea TRs clustered within separate subgroups. Alignment of the C-terminus of the A/B domain revealed a conserved TR-specific motif, termed TR 'N-terminus signature sequence', with a consensus sequence of (G/P)YIPSY(M/L)XXXGPE(D/E)X. Heterodimer formation between S. mansoni TRs and SmRXR1 suggests that the invertebrate TR protein gained the ability to form a heterodimer with RXR. ESMA analysis showed that SmTR alpha could bind to a conserved DNA core motif as a monomer or homodimer. CONCLUSION Vertebrate TR genes originated from a common ancestor of the Bilateria. TR genes underwent duplication independently in the Protostomia and Deuterostomia. The duplication of TRs in deuterostomes occurred after the split of jawless and jawed vertebrates. In protostomes, TR genes underwent duplication in Platyhelminths, occurring independently in trematode and turbellarian lineages. Using S. mansoni TRs as an example, invertebrate TRs exhibited the ability to form a dimer with RXR prior to the emergence of the vertebrate TRs and were able to bind to vertebrate TR core DNA elements as a monomer or homodimer.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410 San Antonio, Texas, 78227-5301, USA
- Departments of Biochemistry and Pathology, University of Texas Health Sciences Center, San Antonio, Texas, 78229-3800, USA
| | - Edward G Niles
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA
| | - Philip T LoVerde
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410 San Antonio, Texas, 78227-5301, USA
- Departments of Biochemistry and Pathology, University of Texas Health Sciences Center, San Antonio, Texas, 78229-3800, USA
| |
Collapse
|
13
|
Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains. BMC Evol Biol 2007; 7:27. [PMID: 17319953 PMCID: PMC1810520 DOI: 10.1186/1471-2148-7-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 02/23/2007] [Indexed: 11/11/2022] Open
Abstract
Background Nuclear receptors (NRs) are important transcriptional modulators in metazoans which regulate transcription through binding to the promoter region of their target gene by the DNA binding domain (DBD) and activation or repression of mRNA synthesis through co-regulators bound to the ligand binding domain (LBD). NRs typically have a single DBD with a LBD. Results Three nuclear receptors named 2DBD-NRs, were identified from the flatworm Schistosoma mansoni that each possess a novel set of two DBDs in tandem with a LBD. They represent a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. The 2DBD-NRs form a new subfamily of NRs, VII. By database mining, 2DBD-NR genes from other flatworm species (Schmidtea mediterranea and Dugesia japonica), from Mollusks (Lottia gigantean) and from arthropods (Daphnia pulex) were also identified. All 2DBD-NRs possess a P-box sequence of CEACKK in the first DBD, which is unique to 2DBD-NRs, and a P-box sequence of CEGCKG in the second DBD. Phylogenetic analyses of both DBD and ligand binding domain sequences showed that 2DBD-NR genes originate from a common two DBD-containing ancestor gene. A single 2DBD-NR orthologue was found in Arthropoda, Platyhelminths and Mollusca. Subsequent 2DBD-NR gene evolution in Mollusks and Platyhelminths involved gene duplication. Chromosome localization of S. mansoni 2DBD-NR genes by Fluorescent in situ hybridization (FISH) suggests that 2DBD-NR genes duplicated on different chromosomes in the Platyhelminths. Dimerization of Sm2DBDα indicates that 2DBD-NRs may act as homodimers, suggesting either that two repeats of a half-site are necessary for each DBD of 2DBD-NRs to bind to its target gene, or that each 2DBD-NR can recognize multiple sites. Conclusion 2DBD-NRs share a common ancestor gene which possessed an extra DBD that likely resulted from a recombination event. After the split of the Arthropods, Mollusks and Platyhelminths, 2DBD-NR underwent a recent duplication in a common ancestor of Mollusks, while two rounds of duplication occurred in a common ancestor of the Platyhelminths. This demonstrates that certain NR gene underwent recent duplication in Prostostome lineages after the split of the Prostostomia and Deuterostomia.
Collapse
|
14
|
Wu W, Niles EG, Hirai H, LoVerde PT. Identification and characterization of a nuclear receptor subfamily I member in the Platyhelminth Schistosoma mansoni (SmNR1). FEBS J 2006; 274:390-405. [PMID: 17173548 DOI: 10.1111/j.1742-4658.2006.05587.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A cDNA encoding a nuclear receptor subfamily I member in the platyhelminth Schistosoma mansoni (SmNR1) was identified and characterized. SmNR1 cDNA is 2406 bp long and contains an open reading frame encoding a 715 residue protein. Phylogenetic analysis demonstrates that SmNR1 is a divergent member of nuclear receptor subfamily I with no known orthologue. SmNR1 was localized to S. mansoni chromosome 1 by fluorescent in situ hybridization. Gene structure of SmNR1 was determined showing it to consist of eight exons spanning more than 14 kb. Quantitative real-time RT-PCR showed that SmNR1 was expressed throughout schistosome development with a higher expression in eggs, sporocysts and 21-day worms. SmNR1 contains an autonomous transactivation function (AF1) in the A/B domain as demonstrated in a yeast one-hybrid assay; it interacts with SmRXR1 in a yeast two-hybrid assay and in a glutathione S-transferase pull-down assay. Electrophoretic mobility shift assay showed that SmNR1 could form a heterodimer with SmRXR1 to bind to DNA elements containing the half-site AGGTCA, a direct repeat of the half-site separated by 0-5 nucleotides (DR1-DR5) and a palindrome repeat of the half-site not separated by nucleic acids (Pal0). Transient transfection in mammalian COS-7 cells showed that SmNR1/SmRXR1 could enhance the transcriptional activation of a DR2-dependent reporter gene. Our results demonstrate that SmNR1 is a partner of SmRXR1.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY, USA
| | | | | | | |
Collapse
|