1
|
Zhang Z, Song X, Deng Y, Li Y, Li F, Sheng W, Tian X, Yang Z, Mei X, Wang S. Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins. Acta Trop 2023; 246:106996. [PMID: 37536435 DOI: 10.1016/j.actatropica.2023.106996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Trichomonas vaginalis (T. vaginalis) is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition forthis parasite's parasitism and pathogenicity. Adhesion protein 65 (TvAP65) plays a key role in the process of adhesion. However, how TvAP65 mediates the adhesion and pathogenicity of T. vaginalis to host cellsis unclear. In this study, we knocked down the expression of TvAP65 in trophozoites by small RNA interference. The number of T. vaginalis trophozoites adhering to VK2/E6E7 cells was decreased significantly, and the inhibition of VK2/E6E7 cells proliferation and VK2/E6E7 cells apoptosis and death induced by T. vaginalis were reduced, after the expression of TvAP65 was knocked down. Animal challenge experiments showed that the pathogenicity of trophozoites was decreased by passive immunization with anti-rTvAP65 PcAbs or blocking the TvAP65 protein. Immunofluorescence analysis showed that TvAP65 could bind to VK2/E6E7 cells. In order to screen the molecules interacting with TvAP65 on the host cells, we successfully constructed the cDNA library of VK2/E6E7 cells, and thirteen protein molecules interacting with TvAP65 were screened by yeast two-hybrid system. The interaction between TvAP65 and BNIP3 was further confirmed by coimmunoprecipitation and colocalization. When both TvAP65 and BNIP3 were knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cells proliferation were significantly lower than those of the group with knockdown of TvAP65 or BNIP3 alone. Therefore, the interaction of TvAP65 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. Our study elucidated that the interaction between TvAP65 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, provided a basis for searching for the drug targets of anti-T. vaginalis, and afforded new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yangyang Deng
- The Third Affiliated Hospital Of Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
2
|
Zhang Z, Deng Y, Sheng W, Song X, Li Y, Li F, Pan Y, Tian X, Yang Z, Wang S, Wang M, Mei X. The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells. Parasit Vectors 2023; 16:210. [PMID: 37344876 PMCID: PMC10286359 DOI: 10.1186/s13071-023-05798-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Trichomonas vaginalis is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition for the parasitism and pathogenicity of this parasite. Trichomonas vaginalis adhesion protein 33 (TvAP33) plays a key role in the process of adhesion, but how this protein mediates the adhesion and pathogenicity of T. vaginalis to host cells is unclear. METHODS The expression of TvAP33 in trophozoites was knocked down by small interfering RNA. VK2/E6E7 cells and mice infected with T. vaginalis were used to evaluate the pathogenicity of T. vaginalis. We constructed a complementary DNA library of VK2/E6E7 cells and screened the protein molecules interacting with TvAP33 by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 (Bcl-2 interacting protein 3) was analyzed by co-immunoprecipitation and colocalization. RESULTS Following knockdown of TvAP33 expression, the number of T. vaginalis trophozoites adhering to VK2/E6E7 cells decreased significantly, and the inhibition of VK2/E6E7 cell proliferation and VK2/E6E7 cell apoptosis and death induced by T. vaginalis were reduced. Animal challenge experiments showed that the pathogenicity of trophozoites decreased following passive immunization with TvAP33 antiserum or blocking of the TvAP33 protein. Immunofluorescence analysis revealed that TvAP33 could bind to VK2/E6E7 cells. Eighteen protein molecules interacting with TvAP33 were identified by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 was further confirmed by co-immunoprecipitation and colocalization. When the expression of both TvAP33 and BNIP3 in trophozoites was knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cell proliferation were significantly lower compared to trophozoites with only knockdown of TvAP33 or only BNIP3. Therefore, the interaction of TvAP33 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. CONCLUSIONS Our study showed that the interaction between TvAP33 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, providing a basis for searching for drug targets for T. vaginalis as well as new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yangyang Deng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100 China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| |
Collapse
|
3
|
Parasite protein phosphatases: biological function, virulence, and host immune evasion. Parasitol Res 2021; 120:2703-2715. [PMID: 34309709 DOI: 10.1007/s00436-021-07259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatases are enzymes that dephosphorylate tyrosine and serine/threonine amino acid residues. Although their role in cellular processes has been best characterized in higher eukaryotes, they have also been identified and studied in different pathogenic microorganisms (e.g., parasites) in the last two decades. Whereas some parasite protein phosphatases carry out functions similar to those of their homologs in yeast and mammalian cells, others have unique structural and/or functional characteristics. Thus, the latter unique phosphatases may be instrumental as targets for drug therapy or as markers for diagnosis. It is important to better understand the involvement of protein phosphatases in parasites in relation to their cell cycle, metabolism, virulence, and evasion of the host immune response. The up-to-date information about parasite phosphatases of medical and veterinarian relevance is herein reviewed.
Collapse
|
4
|
Molgora BM, Rai AK, Sweredoski MJ, Moradian A, Hess S, Johnson PJ. A Novel Trichomonas vaginalis Surface Protein Modulates Parasite Attachment via Protein:Host Cell Proteoglycan Interaction. mBio 2021; 12:e03374-20. [PMID: 33563826 PMCID: PMC7885099 DOI: 10.1128/mbio.03374-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis is a highly prevalent, sexually transmitted parasite which adheres to mucosal epithelial cells to colonize the human urogenital tract. Despite adherence being crucial for this extracellular parasite to thrive within the host, relatively little is known about the mechanisms or key molecules involved in this process. Here, we have identified and characterized a T. vaginalis hypothetical protein, TVAG_157210 (TvAD1), as a surface protein that plays an integral role in parasite adherence to the host. Quantitative proteomics revealed TvAD1 to be ∼4-fold more abundant in parasites selected for increased adherence (MA parasites) than the isogenic parental (P) parasite line. De novo modeling suggested that TvAD1 binds N-acetylglucosamine (GlcNAc), a sugar comprising host glycosaminoglycans (GAGs). Adherence assays utilizing GAG-deficient cell lines determined that host GAGs, primarily heparan sulfate (HS), mediate adherence of MA parasites to host cells. TvAD1 knockout (KO) parasites, generated using CRISPR-Cas9, were found to be significantly reduced in host cell adherence, a phenotype that is rescued by overexpression of TvAD1 in KO parasites. In contrast, there was no significant difference in parasite adherence to GAG-deficient lines by KO parasites compared with wild-type, which is contrary to that observed for KO parasites overexpressing TvAD1. Isothermal titration calorimetric (ITC) analysis showed that TvAD1 binds to HS, indicating that TvAD1 mediates host cell adherence via HS interaction. In addition to characterizing the role of TvAD1 in parasite adherence, these studies reveal a role for host GAG molecules in T. vaginalis adherence.IMPORTANCE The ability of the sexually transmitted parasite Trichomonas vaginalis to adhere to its human host is critical for establishing and maintaining an infection. Yet how parasites adhere to host cells is poorly understood. In this study, we employed a novel adherence selection method to identify proteins involved in parasite adherence to the host. This method led to the identification of a protein, with no previously known function, that is more abundant in parasites with increased capacity to bind host cells. Bioinformatic modeling and biochemical analyses revealed that this protein binds a common component on the host cell surface proteoglycans. Subsequent creation of parasites that lack this protein directly demonstrated that the protein mediates parasite adherence via an interaction with host cell proteoglycans. These findings both demonstrate a role for this protein in T. vaginalis adherence to the host and shed light on host cell molecules that participate in parasite colonization.
Collapse
Affiliation(s)
- Brenda M Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Anand Kumar Rai
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Patricia J Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Protein phosphatase 1 of Leishmania donovani exhibits conserved catalytic residues and pro-inflammatory response. Biochem Biophys Res Commun 2019; 516:770-776. [DOI: 10.1016/j.bbrc.2019.06.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
|
6
|
Dias-Lopes G, Wiśniewski JR, de Souza NP, Vidal VE, Padrón G, Britto C, Cuervo P, De Jesus JB. In-Depth Quantitative Proteomic Analysis of Trophozoites and Pseudocysts of Trichomonas vaginalis. J Proteome Res 2018; 17:3704-3718. [PMID: 30239205 DOI: 10.1021/acs.jproteome.8b00343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is a sexually transmitted anaerobic parasite that infects humans causing trichomoniasis, a common and ubiquitous sexually transmitted disease. The life cycle of this parasite possesses a trophozoite form without a cystic stage. However, the presence of nonproliferative and nonmotile, yet viable and reversible spherical forms with internalized flagella, denominated pseudocysts, has been commonly observed for this parasite. To understand the mechanisms involved in the formation of pseudocysts, we performed a mass spectrometry-based high-throughput quantitative proteomics study using a label-free approach and functional assays by biochemical and flow cytometric methods. We observed that the morphological transformation of trophozoite to pseudocysts is coupled to (i) a metabolic shift toward a less glycolytic phenotype; (ii) alterations in the abundance of hydrogenosomal iron-sulfur cluster (ISC) assembly machinery; (iii) increased abundance of regulatory particles of the ubiquitin-proteasome system; (iv) significant alterations in proteins involved in adhesion and cytoskeleton reorganization; and (v) arrest in G2/M phase associated with alterations in the abundance of regulatory proteins of the cell cycle. These data demonstrate that pseudocysts experience important physiological and structural alterations for survival under unfavorable environmental conditions.
Collapse
Affiliation(s)
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction , Max-Planck-Institute for Biochemistry , 82152 Martinsried , Germany
| | | | | | | | | | | | - José Batista De Jesus
- Departamento de Medicina , Universidade Federal de São João del Rei , 36301-160 São João del Rei , Minas Gerais Brazil
| |
Collapse
|
7
|
Mercer F, Johnson PJ. Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends Parasitol 2018; 34:683-693. [PMID: 30056833 PMCID: PMC11132421 DOI: 10.1016/j.pt.2018.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
The parasite Trichomonas vaginalis (Tv) causes a highly prevalent sexually transmitted infection. As an extracellular pathogen, the parasite mediates adherence to epithelial cells to colonize the human host. In addition, the parasite interfaces with the host immune system and the vaginal microbiota. Modes of Tv pathogenesis include damage to host tissue mediated by parasite killing of host cells, disruption of steady-state vaginal microbial ecology, and eliciting inflammation by activating the host immune response. Recent Tv research has uncovered new players that contribute to multifactorial mechanisms of host-parasite adherence and killing, and has examined the relationship between Tv and vaginal bacteria. Mechanisms that may lead to parasite recognition and killing, or the evasion of host immune cells, have also been revealed.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA.
| | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, 1602 Molecular Sciences Building, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
8
|
Janssen BD, Chen YP, Molgora BM, Wang SE, Simoes-Barbosa A, Johnson PJ. CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci Rep 2018; 8:270. [PMID: 29321601 PMCID: PMC5762654 DOI: 10.1038/s41598-017-18442-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The sexually-transmitted parasite Trichomonas vaginalis infects ~1/4 billion people worldwide. Despite its prevalence and myriad adverse outcomes of infection, the mechanisms underlying T. vaginalis pathogenesis are poorly understood. Genetic manipulation of this single-celled eukaryote has been hindered by challenges presented by its complex, repetitive genome and inefficient methods for introducing DNA (i.e. transfection) into the parasite. Here, we have developed methods to increase transfection efficiency using nucleofection, with the goal of efficiently introducing multiple DNA elements into a single T. vaginalis cell. We then created DNA constructs required to express several components essential to drive CRISPR/Cas9-mediated DNA modification: guide RNA (gRNA), the Cas9 endonuclease, short oligonucleotides and large, linearized DNA templates. Using these technical advances, we have established CRISPR/Cas9-mediated repair of mutations in genes contained on circular DNA plasmids harbored by the parasite. We also engineered CRISPR/Cas9 directed homologous recombination to delete (i.e. knock out) two non-essential genes within the T. vaginalis genome. This first report of the use of the CRISPR/Cas9 system in T. vaginalis greatly expands the ability to manipulate the genome of this pathogen and sets the stage for testing of the role of specific genes in many biological processes.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| | - Yi-Pei Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Brenda M Molgora
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Shuqi E Wang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA.
- Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
9
|
Lu Y, Qin Y, Zhu D, Shan A, Feng J. Identification and characterization of PP2C phosphatase SjPtc1 in Schistosoma japonicum. Parasitol Int 2017; 67:213-217. [PMID: 29183718 DOI: 10.1016/j.parint.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation, regulated by protein kinases and protein phosphatases, is crucial for protein structure and function in eukaryotic organisms. Type 2C protein phosphatase (PP2C) belongs to the serine/threonine phosphatase family and its activities require the presence of a divalent magnesium or manganese ion. In the present study, a potential PP2C phosphatase (SjPtc1) was identified in Schistosoma japonicum. The SjPTC1 gene was found to be highly expressed in adult worms. A recombinant SjPtc1 protein showed typical PP2C phosphatase activity. Heterologous SjPTC1 expression reversed the sensitivity of yeast ptc1 null mutants toward H2O2, ZnCl2, cisplatin, and rapamycin. Collectively, the results suggest that SjPtc1 may take part in the regulation of cellular responses to oxidative stress, DNA damage stress, and the TOR (target of rapamycin) signaling pathway.
Collapse
Affiliation(s)
- Yunfeng Lu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China; School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Aidi Shan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Abstract
Periodontal diseases (gingivitis and periodontitis), result from a disruption of the host-oral microbiome homoeostasis. Whereas the pathological role of some specific bacterial strains during periodontal diseases is well documented, the impact of parasites in periodontium pathophysiology is still under debate. This review aims to collect data about the prevalence and the potential role of Trichomonas tenax during periodontal diseases. Data from 47 studies revealed that T. tenax prevalence in diseased periodontium ranged from 0 to 94·1%. The prevalence of oral protozoan infections was found to be largely greater in patients with periodontal diseases than with healthy periodontium. The parasite detection was mainly performed by direct microscopy. Trichomonas tenax presence was clearly correlated with periodontal disease. The high heterogeneity of its periodontal prevalence may be correlated with the diversity of the population screened (age, sex, systemic diseases), and the methods used for diagnosis. This protozoan seems to have the capacity to be involved in the inflammatory process of gum disease. Animal experimentation, using relevant physiopathological models of periodontitis, needs to be performed to investigate the ability of T. tenax to cause and/or worsen the disease. Further investigations using standardized experimental designs of epidemiologic studies are also needed.
Collapse
|
11
|
Liu H, Li M, He X, Cai S, He X, Lu X. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:246-56. [PMID: 26837419 DOI: 10.1093/abbs/gmv140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/21/2015] [Indexed: 12/23/2022] Open
Abstract
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori. Germination, an indispensible process through which microsporidia infect the host cells, is regarded as a key developmental turning point for microsporidia from dormant state to reproduction state. Thus, elucidating the transcriptome changes before and after germination is crucial for parasite control. However, the molecular basis of germination of microsporidia remains unknown. To investigate this germination process, the transcriptome of N. bombycis ungerminated spores and germinated spores were sequenced and analyzed. More than 60 million high-quality transcript reads were generated from these two groups using RNA-Seq technology. After assembly, 2756 and 2690 unigenes were identified, respectively, and subsequently annotated based on known proteins. After analysis of differentially expressed genes, 66 genes were identified to be differentially expressed (P ≤ 0.05) between these two groups. A protein phosphatase-associated gene was first identified to be significantly up-regulated as determined by RNA-Seq and immunoblot analysis, indicating that dephosphorylation might potentially contribute to microsporidia germination. The DEGs that encode proteins involved in glycometabolism, spore wall proteins and ricin B lectin of N. bombycis were also analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed genes responsible for some specific biological functions and processes. The datasets generated in this study provide a basic characterization of the transcriptome changes in N. bombycis during germination. The analysis of transcriptome data and identification of certain functional genes which are robust candidate genes related to germination will help to provide a deep understanding of spore germination and invasion.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Tongde Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Ravaee R, Ebadi P, Hatam G, Vafafar A, Ghahramani Seno MM. Synthetic siRNAs effectively target cystein protease 12 and α-actinin transcripts in Trichomonas vaginalis. Exp Parasitol 2015; 157:30-4. [PMID: 26134763 DOI: 10.1016/j.exppara.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
The flagellated protozoan Trichomonas vaginalis (T. vaginalis) causes trichomoniasis, a reproductive tract infection, in humans. Trichomoniasis is the most common non-viral sexually transmitted disease worldwide. In addition to direct consequences such as infertility and abortion, there are indications that trichomoniasis favours development of prostate cancer and it has also been associated with increased risk of spreading human immunodeficiency virus and papillomavirus infections. Reports from around the world show that the rate of drug resistance in T. vaginalis is increasing, and therefore new therapeutic approaches have to be developed. Studying molecular biology of T. vaginalis will be quite helpful in identifying new drugable targets. RNAi is a powerful technique which allows biologist to specifically target gene products (i.e. mRNA) helping them in unravelling gene functions and biology of systems. However, due to lack of some parts of the required intrinsic RNAi machinery, the RNAi system is not functional in all orders of life. Here, by using synthetic siRNAs targeting two genes, i.e. α-actinin and cystein protease 12 (cp12), we demonstrate T. vaginalis cells are amenable to RNAi experiments conducted by extrinsic siRNAs. Electroporation of siRNAs targeting α-actinin or cp12 into T. vaginalis cells resulted in, respectively, 48-67% and 33-72% downregulation of the cognate transcripts compared to the T. vaginalis cells received siRNAs targeting GL2 luciferase as a control. This finding is helpful in that it demonstrates the potential of using extrinsically induced RNAi in studies on molecular biology of T. vaginalis such as those aiming at identifying new drug targets.
Collapse
Affiliation(s)
- Roya Ravaee
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Parimah Ebadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arghavan Vafafar
- Department of Parasitology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Ghahramani Seno
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
13
|
Pereira-Neves A, Gonzaga L, Menna-Barreto RFS, Benchimol M. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form. PLoS One 2015; 10:e0129165. [PMID: 26047503 PMCID: PMC4457923 DOI: 10.1371/journal.pone.0129165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in an accumulation of ubiquitinated proteins and caused increase in the amount of endoplasmic reticulum membranes in the parasite. Taken together, our results suggest that the ubiquitin-proteasome pathway is required for cell cycle and EFF transformation in T. foetus.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Amino Acid Sequence
- Blotting, Western
- Cell Cycle
- Cysteine Proteinase Inhibitors/pharmacology
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- Flagella/metabolism
- Flagella/ultrastructure
- Life Cycle Stages/drug effects
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Proteasome Endopeptidase Complex/classification
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Protozoan Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Spores, Protozoan/drug effects
- Spores, Protozoan/metabolism
- Spores, Protozoan/ultrastructure
- Tritrichomonas foetus/genetics
- Tritrichomonas foetus/growth & development
- Tritrichomonas foetus/metabolism
Collapse
Affiliation(s)
- Antonio Pereira-Neves
- Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Fiocruz, Centro de Pesquisa Aggeu Magalhães, Departamento de Microbiologia, Laboratório de Microbiologia e Biologia Celular, Recife, PE, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, RJ, Brazil
| | | | - Marlene Benchimol
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- UNIGRANRIO- Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
14
|
Kusdian G, Gould SB. The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol Biochem Parasitol 2015; 198:92-9. [PMID: 25677793 DOI: 10.1016/j.molbiopara.2015.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
The human pathogen Trichomonas vaginalis is a parasitic protist. It is a representative of the eukaryotic supergroup Excavata that includes a few other protist parasites such as Leishmania, Trypanosoma and Giardia. T. vaginalis is the agent of trichomoniasis and in the US alone, one in 30 women tests positive for this parasite. The disease is easily treated with metronidazole in most cases, but resistant strains are on the rise. The biology of Trichomonas is remarkable: it includes for example the biggest protist genome currently sequenced, the expression of about 30,000 protein-encoding genes (and thousands of lncRNAs and pseudogenes), anaerobic hydrogenosomes, rapid morphogenesis during infection, the secretion of exosomes, the manipulation of the vaginal microbiota through phagocytosis and a rich strain-dependent diversity. Here we provide an overview of Trichomonas biology with a focus on its relevance for pathogenicity and summarise the most recent advances. With some respect this parasite offers the opportunity to serve as a model system to study certain aspects of cell and genome biology, but tackling the complex biology of T. vaginalis is also important to better understand the effects that accompany infection and direct symptoms.
Collapse
Affiliation(s)
- Gary Kusdian
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Edwards T, Burke P, Smalley H, Hobbs G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit Rev Microbiol 2014; 42:406-17. [PMID: 25383648 DOI: 10.3109/1040841x.2014.958050] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Trichomonas vaginalis is the etiological agent of trichomoniasis, the most prevalent non-viral sexually transmitted disease worldwide. Trichomoniasis is a widespread, global health concern and occurring at an increasing rate. Infections of the female genital tract can cause a range of symptoms, including vaginitis and cervicitis, while infections in males are generally asymptomatic. The relatively mild symptoms, and lack of evidence for any serious sequelae, have historically led to this disease being under diagnosed, and under researched. However, growing evidence that T. vaginalis infection is associated with other disease states with high morbidity in both men and women has increased the efforts to diagnose and treat patients harboring this parasite. The pathology of trichomoniasis results from damage to the host epithelia, caused by a variety of processes during infection and recent work has highlighted the complex interactions between the parasite and host, commensal microbiome and accompanying symbionts. The commercial release of a number of nucleic acid amplification tests (NAATs) has added to the available diagnostic options. Immunoassay based Point of Care testing is currently available, and a recent initial evaluation of a NAAT Point of Care system has given promising results, which would enable testing and treatment in a single visit.
Collapse
Affiliation(s)
- Thomas Edwards
- a Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences , Byrom Street , Liverpool , UK
| | - Patricia Burke
- a Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences , Byrom Street , Liverpool , UK
| | - Helen Smalley
- a Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences , Byrom Street , Liverpool , UK
| | - Glyn Hobbs
- a Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences , Byrom Street , Liverpool , UK
| |
Collapse
|
16
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
17
|
Ma GX, Zhou RQ, Huang HC, Hu SJ, Lin J. Tissue-specific distribution of serine/threonine protein phosphatase 1 of Toxocara canis. Vet Parasitol 2014; 205:551-7. [PMID: 25282049 DOI: 10.1016/j.vetpar.2014.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/06/2014] [Accepted: 09/13/2014] [Indexed: 01/21/2023]
Abstract
Serine/threonine protein phosphatase 1 (PP1) is expressed in developing and reproductively active male Toxocara canis. To investigate the tissue-specific expression of PP1 in T. canis, the PP1 protein was expressed in Escherichia coli, and the recombinant protein was used to generate a rabbit polyclonal antiserum. Indirect fluorescence immunohistochemical analysis of adult male T. canis showed that PP1 was expressed in the germ line tissues, primarily in the testis, seminal vesicle, vas deferens, and sperm cells, indicating the potential roles of PP1 in spermatogenesis. What's more, structural predictions of PP1 in T. canis were performed. The predictions of the structure indicated that PP1 may be a potential target for antihelmintic drugs. This is the first report of the tissue distributions and structural prediction of PP1 in T. canis, which might lead to the development of novel, innovative strategies for controlling T. canis infestations.
Collapse
Affiliation(s)
- Guang Xu Ma
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Rong Qiong Zhou
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China.
| | - Han Cheng Huang
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Shi Jun Hu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Jie Lin
- Dazhou Animal Disease Control and Prevention Center, Dazhou 635000, People's Republic of China
| |
Collapse
|
18
|
Orrego PR, Olivares H, Cordero EM, Bressan A, Cortez M, Sagua H, Neira I, González J, da Silveira JF, Yoshida N, Araya JE. A cytoplasmic new catalytic subunit of calcineurin in Trypanosoma cruzi and its molecular and functional characterization. PLoS Negl Trop Dis 2014; 8:e2676. [PMID: 24498455 PMCID: PMC3907409 DOI: 10.1371/journal.pntd.0002676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca(2+)-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn(2+)/Ni(2+). The participation of TcCaNA2 in target cell invasion by metacyclic trypomastigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Héctor Olivares
- Biomedical Department, University of Antofagasta, Antofagasta, Chile
| | - Esteban M. Cordero
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Albert Bressan
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Hernán Sagua
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Ivan Neira
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Jorge González
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - José Franco da Silveira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge E. Araya
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
19
|
Gallet C, Demonchy R, Koppel C, Grellier P, Kohl L. A Protein Phosphatase 1 involved in correct nucleus positioning in trypanosomes. Mol Biochem Parasitol 2013; 192:49-54. [DOI: 10.1016/j.molbiopara.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 11/16/2022]
|
20
|
Alderete JF, Neace CJ. Identification, characterization, and synthesis of peptide epitopes and a recombinant six-epitope protein for Trichomonas vaginalis serodiagnosis. Immunotargets Ther 2013; 2:91-103. [PMID: 27471691 PMCID: PMC4928357 DOI: 10.2147/itt.s46694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
There is a need for a rapid, accurate serodiagnostic test useful for both women and men infected by Trichomonas vaginalis, which causes the number one sexually transmitted infection (STI). Women and men exposed to T. vaginalis make serum antibody to fructose-1,6-bisphosphate aldolase (ALD), α-enolase (ENO), and glyceraldehyde-3-phosphate dehydrogenase (GAP). We identified, by epitope mapping, the common and distinct epitopes of each protein detected by the sera of women patients with trichomonosis and by the sera of men highly seropositive to the immunogenic protein α-actinin (positive control sera). We analyzed the amino acid sequences to determine the extent of identity of the epitopes of each protein with other proteins in the databanks. This approach identified epitopes unique to T. vaginalis, indicating these peptide-epitopes as possible targets for a serodiagnostic test. Individual or combinations of 15-mer peptide epitopes with low to no identity with other proteins were reactive with positive control sera from both women and men but were unreactive with negative control sera. These analyses permitted the synthesis of a recombinant His6 fusion protein of 111 amino acids with an Mr of ~13.4 kDa, which consisted of 15-mer peptides of two distinct epitopes each for ALD, ENO, and GAP. This recombinant protein was purified by affinity chromatography. This composite protein was detected by enzyme-linked immunosorbent assay (ELISA), dot blots, and immunoblots, using positive control sera from women and men. These data indicate that it is possible to identify epitopes and that either singly, in combination, or as a composite protein represent targets for a point-of-care serodiagnostic test for T. vaginalis.
Collapse
Affiliation(s)
- J F Alderete
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Calvin J Neace
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|