1
|
Lennox-Bulow D, Becker L, Loukas A, Seymour J, Smout M. Optimizing the xWORM assay for monitoring hookworm larvae motility. FRONTIERS IN PARASITOLOGY 2023; 2:1189872. [PMID: 39816842 PMCID: PMC11731822 DOI: 10.3389/fpara.2023.1189872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 01/18/2025]
Abstract
Parasitic worms (helminths) infect almost all taxa across the animal kingdom, and pose significant challenges to public health and economies, particularly in developing countries. To address this problem, researchers have developed various tools to measure the motility and viability of helminths. However, the conditions used in anthelmintic screening assays are often not optimized, and can vary considerably between research teams. These unoptimized conditions may impact novel drug screens, as little is known about the effects of different conditions on the health of the target parasites. To improve future research, this study determined the effects of key assay parameters including, media type, media concentration, in-well parasite density, and assay duration on the infective third-stage larva (L3) of two types of hookworms, namely Nippostrongylus brasiliensis in rodents, and Necator americanus in humans. Conditions were screened over several days using the xCELLigence worm real-time motility assay (xWORM); a real-time impedance-based helminth motility assay using the xCELLigence system with 96-well microplates. While results varied depending on the species and media used, the study found that 500-1,000 L3/200-µL and a media concentration of 3.13-25% generally produced good to excellent assay conditions. The findings of this study can guide the future selection of xWORM assay parameters for novel drug trials involving these parasite species and serve as a suggested model for optimizing trial conditions for alternative parasite targets and assays.
Collapse
Affiliation(s)
- Danica Lennox-Bulow
- Tropical Australian Stinger Research Unit, James Cook University, Cairns, QL, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QL, Australia
| | - Luke Becker
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QL, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QL, Australia
| | - Jamie Seymour
- Tropical Australian Stinger Research Unit, James Cook University, Cairns, QL, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QL, Australia
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QL, Australia
| |
Collapse
|
2
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
4
|
Biophysical Analysis of Schistosoma mansoni Septins. Methods Mol Biol 2021; 2151:197-210. [PMID: 32452006 DOI: 10.1007/978-1-0716-0635-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Septins are dynamic filament-forming proteins that are recognized as important components of the cytoskeleton and are involved in numerous functions inside the cells, such as cytokinesis, exocytosis, and ciliogenesis and even in defense against pathogenic bacteria. Despite being highly conserved in eukaryotes, there is scarce literature on the role of septins in organisms other than humans and yeast. Therefore, septins from Schistosoma mansoni represent an interesting model to study an unexplored branch of this protein family. Here we described standard protocols for recombinant production and initial characterization of septins from S. mansoni. Septins are notably difficult to purify, mostly due to their tendency to assemble into filaments. Therefore, specific protocols to stabilize these proteins have been developed. In this chapter, we systematically describe protocols to clone, express, and purify schistosome septins. We also describe the use of circular dichroism to assess the folding and stability of septins and use of chromatography to characterize their oligomeric state, bound guanine nucleotide, and GTP hydrolysis. We expect that these protocols may help researchers involved in the study of schistosome septins as well as assist to establish protocols for septins from other organisms.
Collapse
|
5
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
6
|
Gönczi M, Dienes B, Dobrosi N, Fodor J, Balogh N, Oláh T, Csernoch L. Septins, a cytoskeletal protein family, with emerging role in striated muscle. J Muscle Res Cell Motil 2020; 42:251-265. [PMID: 31955380 PMCID: PMC8332580 DOI: 10.1007/s10974-020-09573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Appropriate organization of cytoskeletal components are required for normal distribution and intracellular localization of different ion channels and proteins involved in calcium homeostasis, signal transduction, and contractile function of striated muscle. Proteins of the contractile system are in direct or indirect connection with the extrasarcomeric cytoskeleton. A number of other molecules which have essential role in regulating stretch-, voltage-, and chemical signal transduction from the surface into the cytoplasm or other intracellular compartments are already well characterized. Sarcomere, the basic contractile unit, is comprised of a precisely organized system of thin (actin), and thick (myosin) filaments. Intermediate filaments connect the sarcomeres and other organelles (mitochondria and nucleus), and are responsible for the cellular integrity. Interacting proteins have a very diverse function in coupling of the intracellular assembly components and regulating the normal physiological function. Despite the more and more intense investigations of a new cytoskeletal protein family, the septins, only limited information is available regarding their expression and role in striated, especially in skeletal muscles. In this review we collected basic and specified knowledge regarding this protein group and emphasize the importance of this emerging field in skeletal muscle biology.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421, Homburg, Saar, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.
| |
Collapse
|
7
|
Sun L, Cao X, Lechuga S, Feygin A, Naydenov NG, Ivanov AI. A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling. Cells 2019; 9:cells9010084. [PMID: 31905721 PMCID: PMC7016606 DOI: 10.3390/cells9010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures, filaments, and rings. The septin cytoskeleton has a number of cellular functions, including regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin, forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells. Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution is warranted while using this compound to examine the biological functions of septins in cellular systems and model organisms.
Collapse
Affiliation(s)
- Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA 23298, USA;
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
- Correspondence: ; Tel.: +1-216-444-5620
| |
Collapse
|
8
|
In Vitro Analyses Reveal the Effect of Synthetic Cytokinin Forchlorfenuron (FCF) on a Septin-Like Protein of Taeniid Cysticerci. J Parasitol Res 2019; 2019:8578936. [PMID: 30941206 PMCID: PMC6420996 DOI: 10.1155/2019/8578936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
Cytokinin forchlorfenuron (FCF), a synthetic cytokinin, has been used specifically for the characterization of septins. In spite of genomic evidence of their existence, nothing is known about septin filaments in taeniid cestodes. The aim of this work was to determine the presence of a septin-like protein in cysticerci of Taenia crassiceps and Taenia solium using the deduced amino acid sequence of T. solium septin 4 (SEPT4_Tsm), to design and synthesize a derived immunogenic peptide (residues 88 to 103), to prepare a specific rabbit polyclonal antibody, and to examine the effects of FCF at different concentrations and exposure times on an in vitro culture of T. crassiceps cysticerci. In vitro, FCF altered the morphology and motility of T. crassiceps cysticerci, and its effects were reversible under specific concentrations. In addition, we observed by ultrastructural observation that FCF alters the cellular subunit of the protonephridial system of cestodes, where disruption of the axoneme pattern of flame cells was observed. The rabbit polyclonal antibody prepared against the synthetic peptide recognized a major band of 41 kDa in both parasites. Our results establish the importance of SEPT4_Tsm in the dynamics and survival of taeniid cysticerci, as well as their susceptibility to FCF. This is also the first report that a septin is present in the cytoskeleton of taeniids.
Collapse
|
9
|
Developmental Sensitivity in Schistosoma mansoni to Puromycin To Establish Drug Selection of Transgenic Schistosomes. Antimicrob Agents Chemother 2018; 62:AAC.02568-17. [PMID: 29760143 DOI: 10.1128/aac.02568-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 01/05/2023] Open
Abstract
Schistosomiasis is considered the most important disease caused by helminth parasites, in terms of morbidity and mortality. Tools to facilitate gain- and loss-of-function approaches can be expected to precipitate the discovery of novel interventions, and drug selection of transgenic schistosomes would facilitate the establishment of stable lines of engineered parasites. Sensitivity of developmental stages of schistosomes to the aminonucleoside antibiotic puromycin was investigated. For the schistosomulum and sporocyst stages, viability was quantified by fluorescence microscopy following dual staining with fluorescein diacetate and propidium iodine. By 6 days in culture, the 50% lethal concentration (LC50) for schistosomula was 19 μg/ml whereas the sporocysts were 45-fold more resilient. Puromycin potently inhibited the development of in vitro-laid eggs (LC50, 68 ng/ml) but was less effective against liver eggs (LC50, 387 μg/ml). Toxicity for adult stages was evaluated using the xCELLigence-based, real-time motility assay (xWORM), which revealed LC50s after 48 h of 4.9 and 17.3 μg/ml for male and female schistosomes, respectively. Also, schistosomula transduced with pseudotyped retrovirus encoding the puromycin resistance marker were partially rescued when cultured in the presence of the antibiotic. Together, these findings will facilitate selection on puromycin of transgenic schistosomes and the enrichment of cultures of transgenic eggs and sporocysts to facilitate the establishment of schistosome transgenic lines. Streamlining schistosome transgenesis with drug selection will open new avenues to understand parasite biology and hopefully lead to new interventions for this neglected tropical disease.
Collapse
|
10
|
Pinto APA, Pereira HM, Zeraik AE, Ciol H, Ferreira FM, Brandão-Neto J, DeMarco R, Navarro MVAS, Risi C, Galkin VE, Garratt RC, Araujo APU. Filaments and fingers: Novel structural aspects of the single septin from Chlamydomonas reinhardtii. J Biol Chem 2017; 292:10899-10911. [PMID: 28476887 PMCID: PMC5491775 DOI: 10.1074/jbc.m116.762229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/04/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are filament-forming GTP-binding proteins involved in many essential cellular events related to cytoskeletal dynamics and maintenance. Septins can self-assemble into heterocomplexes, which polymerize into highly organized, cell membrane-interacting filaments. The number of septin genes varies among organisms, and although their structure and function have been thoroughly studied in opisthokonts (including animals and fungi), no structural studies have been reported for other organisms. This makes the single septin from Chlamydomonas (CrSEPT) a particularly attractive model for investigating whether functional homopolymeric septin filaments also exist. CrSEPT was detected at the base of the flagella in Chlamydomonas, suggesting that CrSEPT is involved in the formation of a membrane-diffusion barrier. Using transmission electron microscopy, we observed that recombinant CrSEPT forms long filaments with dimensions comparable with those of the canonical structure described for opisthokonts. The GTP-binding domain of CrSEPT purified as a nucleotide-free monomer that hydrolyzes GTP and readily binds its analog guanosine 5'-3-O-(thio)triphosphate. We also found that upon nucleotide binding, CrSEPT formed dimers that were stabilized by an interface involving the ligand (G-interface). Across this interface, one monomer supplied a catalytic arginine to the opposing subunit, greatly accelerating the rate of GTP hydrolysis. This is the first report of an arginine finger observed in a septin and suggests that CrSEPT may act as its own GTP-activating protein. The finger is conserved in all algal septin sequences, suggesting a possible correlation between the ability to form homopolymeric filaments and the accelerated rate of hydrolysis that it provides.
Collapse
Affiliation(s)
- Andressa P A Pinto
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil
- the Programa de Pós-graduação em Genética Evolutiva e Biologia Molecular, UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Humberto M Pereira
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil
| | - Ana E Zeraik
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil
| | - Heloisa Ciol
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil
| | | | - José Brandão-Neto
- the Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom, and
| | - Ricardo DeMarco
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil
| | - Marcos V A S Navarro
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil
| | - Cristina Risi
- the Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Vitold E Galkin
- the Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Richard C Garratt
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil,
| | - Ana P U Araujo
- From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil,
- the Programa de Pós-graduação em Genética Evolutiva e Biologia Molecular, UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
11
|
Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo APU, DeMarco R. Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 2016; 131:96-105. [PMID: 27687162 DOI: 10.1016/j.biochi.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/24/2016] [Indexed: 01/22/2023]
Abstract
Septins are GTP-binding proteins that are highly conserved among eukaryotes and which are usually membrane-associated. They have been linked to several critical cellular functions such as exocytosis and ciliogenesis, but little mechanistic detail is known. Their assembly into filaments and membrane binding properties are incompletely understood and that is specially so for non-human septins where such information would offer therapeutic potential. In this study we use Schistosoma mansoni, exhibiting just four septin genes, as a simpler model for characterizing the septin structure and organization. We show that the biochemical and biophysical proprieties of its SmSEPT5 and SmSEPT10 septins are consistent with their human counterparts of subgroups SEPT2 and SEPT6, respectively. By succeeding to isolate stable constructs comprising distinct domains of SmSEPT5 and SmSEPT10 we were able to infer the influence of terminal interfaces in the oligomerization and membrane binding properties. For example, both proteins tended to form oligomers interacting by the N- and C-terminal interfaces in a nucleotide independent fashion but form heterodimers via the G interface, which are nucleotide dependent. Furthermore, we report for the first time that it is the C-terminus of SmSETP10, rather than the N-terminal polybasic region found in other septins, that mediates its binding to liposomes. Upon binding we observe formation of discrete lipo-protein clusters and higher order septin structures, making our system an exciting model to study interactions of septins with biological membranes.
Collapse
Affiliation(s)
- Ana Eliza Zeraik
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Marina Gabriel Fontes
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Roy Quinlan
- School of Biological and Biomedical Sciences, University of Durham, UK
| | | | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
12
|
|
13
|
Rinaldi G, Loukas A, Brindley PJ, Irelan JT, Smout MJ. Viability of developmental stages of Schistosoma mansoni quantified with xCELLigence worm real-time motility assay (xWORM). INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:141-8. [PMID: 26288742 PMCID: PMC4534758 DOI: 10.1016/j.ijpddr.2015.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/15/2022]
Abstract
Infection with helminth parasites causes morbidity and mortality in billions of people and livestock worldwide. Where anthelmintic drugs are available, drug resistance is a major problem in livestock parasites, and a looming threat to public health. Monitoring the efficacy of these medicines and screening for new drugs has been hindered by the lack of objective, high-throughput approaches. Several cell monitoring technologies have been adapted for parasitic worms, including video-, fluorescence-, metabolism enzyme- and impedance-based tools that minimize the screening bottleneck. Using the xCELLigence impedance-based system we previously developed a motility-viability assay that is applicable for a range of helminth parasites. Here we have improved substantially the assay by using diverse frequency settings, and have named it the xCELLigence worm real-time motility assay (xWORM). By utilizing strictly standardized mean difference analysis we compared the xWORM output measured with 10, 25 and 50 kHz frequencies to quantify the motility of schistosome adults (human blood flukes) and hatching of schistosome eggs. Furthermore, we have described a novel application of xWORM to monitor movement of schistosome cercariae, the developmental stage that is infectious to humans. For all three stages, 25 kHz was either optimal or near-optimal for monitoring and quantifying schistosome motility. These improvements in methodology sensitivity should enhance the capacity to screen small compound libraries for new drugs both for schistosomes and other helminth pathogens at large. 25 kHz on the xCELLigence system dramatically improves the schistosome xWORM assay. xWORM assay can efficiently determine viability of Schistome adults or eggs. First time cercariae have been incorporated into an automated viability assay. Other helminth monitoring may benefit from alternate xCELLigence frequency options.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for the Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C. 20037, USA
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for the Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C. 20037, USA
| | | | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
- Corresponding author. James Cook University, Cairns, Queensland 4878, Australia.
| |
Collapse
|
14
|
|
15
|
Off-target effects of the septin drug forchlorfenuron on nonplant eukaryotes. EUKARYOTIC CELL 2014; 13:1411-20. [PMID: 25217460 DOI: 10.1128/ec.00191-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The septins are a family of GTP-binding proteins that form cytoskeletal filaments. Septins are highly conserved and evolutionarily ancient but are absent from land plants. The synthetic plant cytokinin forchlorfenuron (FCF) was shown previously to inhibit budding yeast cell division and induce ectopic septin structures (M. Iwase, S. Okada, T. Oguchi, and A. Toh-e, Genes Genet. Syst. 79:199-206, 2004, http://dx.doi.org/10.1266/ggs.79.199). Subsequent studies in a wide range of eukaryotes have concluded that FCF exclusively inhibits septin function, yet the mechanism of FCF action in nonplant cells remains poorly understood. Here, we report that the cellular effects of FCF are far more complex than previously described. The reported growth arrest of budding yeast cells treated with 1 mM FCF partly reflects sensitization caused by a bud4 mutation present in the W303 strain background. In wild-type (BUD4(+)) budding yeast, growth was inhibited at FCF concentrations that had no detectable effect on septin structure or function. Moreover, FCF severely inhibited the proliferation of fission yeast cells, in which septin function is nonessential. FCF induced fragmentation of budding yeast mitochondrial reticula and the loss of mitochondrial membrane potential. Mitochondria also fragmented in cultured mammalian cells treated with concentrations of FCF that previously were assumed to target septins only. Finally, FCF potently inhibited ciliation and motility and induced mitochondrial disorganization in Tetrahymena thermophila without apparent alterations in septin structure. None of these effects was consistent with the inhibition of septin function. Our findings point to nonseptin targets as major concerns when using FCF.
Collapse
|