1
|
Alruwaili M, Elderdery A, Manni E, Mills J. A Narrative Review on the Prevalence of Plasmodium falciparum Resistance Mutations to Antimalarial Drugs in Rwanda. Trop Med Infect Dis 2025; 10:89. [PMID: 40278762 PMCID: PMC12030788 DOI: 10.3390/tropicalmed10040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Malaria has been and remains a significant challenge in Africa and other endemic settings. Roughly, 95% of global morbidity and mortality due to malaria occurs within African populations and affects millions of individuals, especially those living in sub-Saharan countries, predominantly due to disease complications. Cultural factors such as unawareness of and disinterest in using recommended preventive tools and combating the primary host (i.e., the female Anopheles mosquito) play a significant role. This host transmits the malaria-causing Plasmodium parasite by biting an infected individual and spreading it to humans. The current overview focuses on the molecular markers associated with antimalarial drug resistance in Plasmodium falciparum (P. falciparum) in Rwanda, considered an exemplar of sub-Saharan countries where malaria is prevalent and effective policies on the development of malaria treatment, approved recently by WHO in 2025, have been adopted. The prevalence of mutations in key resistance genes, including pfcrt, pfmdr1, and pfdhfr/pfdhps, are linked to resistance against common antimalarial drugs such as chloroquine and sulfadoxine-pyrimethamine (SP). In addition, the Plasmodium falciparum kelch13 (pfk13) gene is linked to resistance against artemisinin, as its mutations can cause delayed parasite clearance and treatment failure. Despite changes in therapeutic use policies owing to high prevalence of variant alleles, which reduce the drug's efficacy resistance to SP, the gene persists in Rwanda. Malaria parasites are becoming more resistant to chloroquine, leading to diminished effectiveness and slower recovery or treatment failure. Surveillance data reported from several studies provide crucial insights into the evolving trends of resistance markers and are vital for guiding treatment protocols and informing therapeutic use policy decisions. It is important that we continue to maintain and develop the effectiveness of malaria prevention strategies and treatments, due to the multiple types of resistance found in the population.
Collapse
Affiliation(s)
- Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Abozer Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Jeremy Mills
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
2
|
Wakoli DM, Ondigo BN, Ochora DO, Amwoma JG, Okore W, Mwakio EW, Chemwor G, Juma J, Okoth R, Okudo C, Yeda R, Opot BH, Cheruiyot AC, Juma D, Roth A, Ogutu BR, Boudreaux D, Andagalu B, Akala HM. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med 2022; 20:448. [PMID: 36397090 PMCID: PMC9673313 DOI: 10.1186/s12916-022-02652-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
Collapse
Affiliation(s)
- Dancan M Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya. .,Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas O Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Jackeline Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Amanda Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benhards R Ogutu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Daniel Boudreaux
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| |
Collapse
|
3
|
Wamae K, Kimenyi KM, Osoti V, de Laurent ZR, Ndwiga L, Kharabora O, Hathaway NJ, Bailey JA, Juliano JJ, Bejon P, Ochola-Oyier LI. Amplicon sequencing as a potential surveillance tool for complexity of infection and drug resistance markers in Plasmodium falciparum asymptomatic infections. J Infect Dis 2022; 226:920-927. [PMID: 35429395 PMCID: PMC7613600 DOI: 10.1093/infdis/jiac144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Genotyping Plasmodium falciparum subpopulations in malaria infections is an important aspect of malaria molecular epidemiology to understand within-host diversity and the frequency of drug resistance markers. Methods We characterized P. falciparum genetic diversity in asymptomatic infections and subsequent first febrile infections using amplicon sequencing (AmpSeq) of ama1 in Coastal Kenya. We also examined temporal changes in haplotype frequencies of mdr1, a drug-resistant marker. Results We found >60% of the infections were polyclonal (complexity of infection [COI] >1) and there was a reduction in COI over time. Asymptomatic infections had a significantly higher mean COI than febrile infections based on ama1 sequences (2.7 [95% confidence interval {CI}, 2.65–2.77] vs 2.22 [95% CI, 2.17–2.29], respectively). Moreover, an analysis of 30 paired asymptomatic and first febrile infections revealed that many first febrile infections (91%) were due to the presence of new ama1 haplotypes. The mdr1-YY haplotype, associated with chloroquine and amodiaquine resistance, decreased over time, while the NY (wild type) and the NF (modulates response to lumefantrine) haplotypes increased. Conclusions This study emphasizes the utility of AmpSeq in characterizing parasite diversity as it can determine relative proportions of clones and detect minority clones. The usefulness of AmpSeq in antimalarial drug resistance surveillance is also highlighted.
Collapse
Affiliation(s)
- Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kelvin M. Kimenyi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Oksana Kharabora
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J. Hathaway
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Targeted Amplicon Deep Sequencing for Monitoring Antimalarial Resistance Markers in Western Kenya. Antimicrob Agents Chemother 2022; 66:e0194521. [PMID: 35266823 PMCID: PMC9017353 DOI: 10.1128/aac.01945-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Molecular surveillance of Plasmodium falciparum parasites is important to track emerging and new mutations and trends in established mutations and should serve as an early warning system for antimalarial resistance. Dried blood spots were obtained from a Plasmodium falciparum malaria survey in school children conducted across eight counties in western Kenya in 2019. Real-time PCR identified 500 P. falciparum-positive samples that were amplified at five drug resistance loci for targeted amplicon deep sequencing (TADS). The absence of important kelch 13 mutations was similar to previous findings in Kenya pre-2019, and low-frequency mutations were observed in codons 569 and 578. The chloroquine resistance transporter gene codons 76 and 145 were wild type, indicating that the parasites were chloroquine and piperaquine sensitive, respectively. The multidrug resistance gene 1 haplotypes based on codons 86, 184, and 199 were predominantly present in mixed infections with haplotypes NYT and NFT, driven by the absence of chloroquine pressure and the use of lumefantrine, respectively. The sulfadoxine-pyrimethamine resistance profile was a “superresistant” combination of triple mutations in both Pfdhfr (51I 59R 108N) and Pfdhps (436H 437G 540E), rendering sulfadoxine-pyrimethamine ineffective. TADS highlighted the low-frequency variants, allowing the early identification of new mutations, Pfmdr1 codon 199S and Pfdhfr codon 85I and emerging 164L mutations. The added value of TADS is its accuracy in identifying mixed-genotype infections and for high-throughput monitoring of antimalarial resistance markers.
Collapse
|
5
|
Chidimatembue A, Svigel SS, Mayor A, Aíde P, Nhama A, Nhamussua L, Nhacolo A, Bassat Q, Salvador C, Enosse S, Saifodine A, De Carvalho E, Candrinho B, Zulliger R, Goldman I, Udhayakumar V, Lucchi NW, Halsey ES, Macete E. Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in Plasmodium falciparum isolates collected in Mozambique, 2018. Malar J 2021; 20:398. [PMID: 34641867 PMCID: PMC8507114 DOI: 10.1186/s12936-021-03930-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. Methods Children aged 6–59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. Results No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72–76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. Conclusion In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.
Collapse
Affiliation(s)
| | - Samaly S Svigel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Pedro Aíde
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Lídia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arsénio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Crizólgo Salvador
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sónia Enosse
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Abuchahama Saifodine
- United States President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | | | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Rose Zulliger
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Centers for Disease Control and Prevention, Maputo, Mozambique
| | - Ira Goldman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric S Halsey
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Atlanta, GA, USA
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique. .,National Directorate of Public Health, Ministry of Health, Maputo, Mozambique.
| |
Collapse
|
6
|
Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther 2021; 20:353-372. [PMID: 34348573 DOI: 10.1080/14787210.2021.1962291] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Since the spread of chloroquine resistance in Plasmodium falciparum in the 1960s, recommendations have been made on how to respond to antimalarial resistance. Only with the advent of artemisinin partial resistance were large scale efforts made in the Greater Mekong Subregion to carry out recommendations in a coordinated and well-funded manner. Independent emergence of parasites partially resistant to artemisinins has now been reported in Rwanda. AREAS COVERED We reviewed past recommendations and activities to respond to resistance as well as the research ongoing into new ways to stop or delay the spread of resistant parasites. EXPERT OPINION Inadequate information limits the options and support for a strong, coordinated response to artemisinin partial resistance in Africa, making better phenotypic and genotypic surveillance a priority. A response to resistance needs to address factors that may have hastened the emergence and could speed the spread, including overuse of drugs and lack of access to quality treatment. New ways to use the existing treatments in the response to resistance such as multiple first-lines are currently impeded by the limited number of drugs available.
Collapse
Affiliation(s)
| | - Pedro Alonso
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
7
|
Ontoua SS, Kouna LC, Oyegue-Liabagui SL, Voumbo-Matoumona DF, Moukodoum DN, Imboumy-Limoukou RK, Lekana-Douki JB. Differential Prevalences of Pfmdr1 Polymorphisms in Symptomatic and Asymptomatic Plasmodium falciparum Infections in Lastoursville: A Rural Area in East-Central Gabon. Infect Drug Resist 2021; 14:2873-2882. [PMID: 34335033 PMCID: PMC8318719 DOI: 10.2147/idr.s304361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Plasmodium falciparum malaria remains a major public health challenge in sub-Saharan Africa. Plasmodium falciparum drug resistance mediated by polymorphisms in the Pfmdr1 gene contributes to the persistence of the disease on the African continent. This study investigated P. falciparum infection features and differences in the Pfmdr1 genotypes between symptomatic and asymptomatic malaria cases in a rural area in east-central Gabon. Patients and Methods A total of 875 children aged from 5 to 185 months were screened for P falciparum infection using Optima-IT® rapid diagnostic tests and standard microscopy. Pfmdr1 polymorphisms at codons 86, 184 and 1246 were investigated using PCR-RFLP. Results Among the 448 P. falciparum-infected children, 57.08% (n=250) were symptomatic and 42.92% (n=198) were asymptomatic (p < 0.0001). In a sub-set of 79 isolates, the Pfmdr1 wild-type N86 was more prevalent in symptomatic (100%) than in asymptomatic infections (70.7%) (p=0.007). The mutant 86Y and mixed 86N/Y genotypes were observed only in asymptomatic infections. The Y184 and 184F genotype prevalences (39.1% vs 19.4% and 60.9% vs 80.6%, respectively) were not significantly different between the two groups (p=0.097). The prevalence of the wild-type D1246 differed significantly between symptomatic (10.3%) and asymptomatic (100%) (p < 0.0001). The NFD and YFD haplotypes were more prevalent in asymptomatic than in symptomatic infections [(61.9% vs 31%; p=0.005) and (16.7% vs 0.0%; p=0.01)], whereas the NYD and YYD haplotypes were not significantly different between the two groups [(21.4% vs 14.3%, p=0.39) and (0.0% vs 7.1%, p=0.24)]. Conclusion Our results confirm a high transmission of P. falciparum infection in rural Gabon, with a high prevalence of asymptomatic carriage. The higher prevalences of wild-type N86 in symptomatic infections and of D1246 in asymptomatic infections suggest a pathogenicity associated with polymorphisms in Pfmdr1. These results highlight the need to monitor the efficacy of artemisinin-based combination therapies in Gabon.
Collapse
Affiliation(s)
- Steede Seinnat Ontoua
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Lady Charlene Kouna
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Sandrine Lydie Oyegue-Liabagui
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon.,Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université de Sciences et Techniques de Masuku (USTM), Franceville, BP 876, Gabon
| | - Dominique Fatima Voumbo-Matoumona
- Départements des Masters/Licences, Parcours-Types des Sciences Biologiques, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, Congo
| | - Diamella Nancy Moukodoum
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Romeo Karl Imboumy-Limoukou
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon.,Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé (USS), Libreville, BP 4009, Gabon
| |
Collapse
|
8
|
Kishoyian G, Njagi ENM, Orinda GO, Kimani FT, Thiongo K, Matoke-Muhia D. Efficacy of artemisinin-lumefantrine for treatment of uncomplicated malaria after more than a decade of its use in Kenya. Epidemiol Infect 2021; 149:e27. [PMID: 33397548 PMCID: PMC8057502 DOI: 10.1017/s0950268820003167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The resistance of Plasmodium falciparum to antimalarial drugs remains a major impairment in the treatment and eradication of malaria globally. Following the introduction of artemisinin-based combination therapy (ACT), there have been reports of delayed parasite clearance. In Kenya, artemether-lumefantrine (AL) is the recommended first-line treatment of uncomplicated malaria. This study sought to assess the efficacy of AL after a decade of use as the preferred method of managing malarial infections in Kenya. We assessed clinical and parasitological responses of children under 5 years between May and November 2015 in Chulaimbo sub-County, Kisumu, Kenya. Patients aged between 6 and 60 months with uncomplicated P. falciparum mono-infection, confirmed through microscopy, were enrolled in the study. The patients were admitted at the facility for 3 days, treated with a standard dose of AL, and then put under observation for the next 28 days for the assessment of clinical and parasitological responses. Of the 90 patients enrolled, 14 were lost to follow-up while 76 were followed through to the end of the study period. Seventy-five patients (98.7%) cleared the parasitaemia within a period of 48 h while one patient (1.3%) cleared on day 3. There was 100% adequate clinical and parasitological response. All the patients cleared the parasites on day 3 and there were no re-infections observed during the stated follow-up period. This study, therefore, concludes that AL is highly efficacious in clearing P. falciparum parasites in children aged ≥6 and ≤60 months. The study, however, underscores the need for continued monitoring of the drug to forestall both gradual ineffectiveness and possible resistance to the drug in all target users.
Collapse
Affiliation(s)
- Gabriel Kishoyian
- Department of Medical Laboratory Sciences, Kenya Medical Training College, P.O. Box2268-40100, Kisumu, Kenya
| | - Eliud N. M. Njagi
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O.BOX 43844-00100, Nairobi, Kenya
| | - George O. Orinda
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O.BOX 43844-00100, Nairobi, Kenya
| | - Francis T. Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Kevin Thiongo
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
9
|
Windle ST, Lane KD, Gadalla NB, Liu A, Mu J, Caleon RL, Rahman RS, Sá JM, Wellems TE. Evidence for linkage of pfmdr1, pfcrt, and pfk13 polymorphisms to lumefantrine and mefloquine susceptibilities in a Plasmodium falciparum cross. Int J Parasitol Drugs Drug Resist 2020; 14:208-217. [PMID: 33197753 PMCID: PMC7677662 DOI: 10.1016/j.ijpddr.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Lumefantrine and mefloquine are used worldwide in artemisinin-based combination therapy (ACT) of malaria. Better understanding of drug susceptibility and resistance is needed and can be obtained from studies of genetic crosses. METHODS Drug response phenotypes of a cross between Plasmodium falciparum lines 803 (Cambodia) and GB4 (Ghana) were obtained as half-maximal effective concentrations (EC50s) and days to recovery (DTR) after 24 h exposure to 500 nM lumefantrine. EC50s of mefloquine, halofantrine, chloroquine, and dihydroartemisinin were also determined. Quantitative trait loci (QTL) analysis and statistical tests with candidate genes were used to identify polymorphisms associated with response phenotypes. RESULTS Lumefantrine EC50s averaged 5.8-fold higher for the 803 than GB4 parent, and DTR results were 3-5 and 16-18 days, respectively. In 803 × GB4 progeny, outcomes of these two lumefantrine assays showed strong inverse correlation; these phenotypes also correlated strongly with mefloquine and halofantrine EC50s. By QTL analysis, lumefantrine and mefloquine phenotypes mapped to a chromosome 5 region containing codon polymorphisms N86Y and Y184F in the P. falciparum multidrug resistance 1 protein (PfMDR1). Statistical tests of candidate genes identified correlations between inheritance of PfK13 Kelch protein polymorphism C580Y (and possibly K189T) and lumefantrine and mefloquine susceptibilities. Correlations were detected between lumefantrine and chloroquine EC50s and polymorphisms N326S and I356T in the CVIET-type P. falciparum chloroquine resistance transporter (PfCRT) common to 803 and GB4. CONCLUSIONS Correlations in this study suggest common mechanisms of action in lumefantrine, mefloquine, and halofantrine responses. PfK13 as well as PfMDR1 and PfCRT polymorphisms may affect access and/or action of these arylaminoalcohol drugs at locations of hemoglobin digestion and heme metabolism. In endemic regions, pressure from use of lumefantrine or mefloquine in ACTs may drive selection of PfK13 polymorphisms along with versions of PfMDR1 and PfCRT associated with lower susceptibility to these drugs.
Collapse
Affiliation(s)
- Sean T Windle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Kristin D Lane
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Nahla B Gadalla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Anna Liu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Ramoncito L Caleon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Rifat S Rahman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA.
| |
Collapse
|
10
|
Krieger MS, Denison CE, Anderson TL, Nowak MA, Hill AL. Population structure across scales facilitates coexistence and spatial heterogeneity of antibiotic-resistant infections. PLoS Comput Biol 2020; 16:e1008010. [PMID: 32628660 PMCID: PMC7365476 DOI: 10.1371/journal.pcbi.1008010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Antibiotic-resistant infections are a growing threat to human health, but basic features of the eco-evolutionary dynamics remain unexplained. Most prominently, there is no clear mechanism for the long-term coexistence of both drug-sensitive and resistant strains at intermediate levels, a ubiquitous pattern seen in surveillance data. Here we show that accounting for structured or spatially-heterogeneous host populations and variability in antibiotic consumption can lead to persistent coexistence over a wide range of treatment coverages, drug efficacies, costs of resistance, and mixing patterns. Moreover, this mechanism can explain other puzzling spatiotemporal features of drug-resistance epidemiology that have received less attention, such as large differences in the prevalence of resistance between geographical regions with similar antibiotic consumption or that neighbor one another. We find that the same amount of antibiotic use can lead to very different levels of resistance depending on how treatment is distributed in a transmission network. We also identify parameter regimes in which population structure alone cannot support coexistence, suggesting the need for other mechanisms to explain the epidemiology of antibiotic resistance. Our analysis identifies key features of host population structure that can be used to assess resistance risk and highlights the need to include spatial or demographic heterogeneity in models to guide resistance management.
Collapse
Affiliation(s)
- Madison S. Krieger
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Carson E. Denison
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Thayer L. Anderson
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Martin A. Nowak
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alison L. Hill
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
11
|
Mwaiswelo R, Ngasala B. Evaluation of residual submicroscopic Plasmodium falciparum parasites 3 days after initiation of treatment with artemisinin-based combination therapy. Malar J 2020; 19:162. [PMID: 32316974 PMCID: PMC7175519 DOI: 10.1186/s12936-020-03235-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmodium falciparum resistance against artemisinin has not emerged in Africa; however, there are reports of the presence of polymerase chain reaction-determined residual submicroscopic parasitaemia detected on day 3 after artemisinin-based combination therapy (ACT). These residual submicroscopic parasites are thought to represent tolerant/resistant parasites against artemisinin, the fast-acting component of the combination. This review focused on residual submicroscopic parasitaemia, what it represents, and its significance on the emergence and spread of artemisinin resistance in Africa. Presence of residual submicroscopic parasitemia on day 3 after treatment initiation leaves question on whether successful treatment is attained with ACT. Thus there is a need to determine the potential public health implication of the PCR-determined residual submicroscopic parasitaemia observed on day 3 after ACT. Robust techniques, such as in vitro cultivation, should be used to evaluate if the residual submicroscopic parasites detected on day 3 after ACT are viable asexual parasites, or gametocytes, or the DNA of the dead parasites waiting to be cleared from the circulation. Such techniques would also evaluate the transmissibility of these residual parasites.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Bill Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Mwaiswelo R, Ngasala B, Jovel I, Xu W, Larsson E, Malmberg M, Gil JP, Premji Z, Mmbando BP, Mårtensson A. Prevalence of and Risk Factors Associated with Polymerase Chain Reaction-Determined Plasmodium falciparum Positivity on Day 3 after Initiation of Artemether-Lumefantrine Treatment for Uncomplicated Malaria in Bagamoyo District, Tanzania. Am J Trop Med Hyg 2020; 100:1179-1186. [PMID: 30860013 PMCID: PMC6493965 DOI: 10.4269/ajtmh.18-0729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prevalence of and risk factors associated with polymerase chain reaction (PCR)-determined Plasmodium falciparum positivity were assessed on day 3 after initiation of treatment, pre-implementation and up to 8 years post-deployment of artemether–lumefantrine as first-line treatment for uncomplicated malaria in Bagamoyo district, Tanzania. Samples originated from previously reported trials conducted between 2006 and 2014. Cytochrome b-nested PCR was used to detect malaria parasites from blood samples collected on a filter paper on day 3. Chi-square and McNemar chi-squared tests, logistic regression models, and analysis of variance were used as appropriate. Primary outcome was based on the proportion of patients with day 3 PCR-determined P. falciparum positivity. Overall, 256/584 (43.8%) of screened patients had day 3 PCR-determined positivity, whereas only 2/584 (0.3%) had microscopy-determined asexual parasitemia. Day 3 PCR-determined positivity increased from 28.0% (14/50) in 2006 to 74.2% (132/178) in 2007–2008 and declined, thereafter, to 36.0% (50/139) in 2012–2013 and 27.6% (60/217) in 2014. When data were pooled, pretreatment microscopy-determined asexual parasitemia ≥ 100,000/µL, hemoglobin < 10 g/dL, age < 5 years, temperature ≥ 37.5°C, and year of study 2007–2008 and 2012–2013 were significantly associated with PCR-determined positivity on day 3. Significant increases in P. falciparum multidrug resistance gene 1 N86 and P. falciparum chloroquine resistant transporter K76 across years were not associated with PCR-determined positivity on day 3. No statistically significant association was observed between day 3 PCR-determined positivity and PCR-adjusted recrudescence. Day 3 PCR-determined P. falciparum positivity remained common in patients treated before and after implementation of artemether–lumefantrine in Bagamoyo district, Tanzania. However, its presence was associated with pretreatment characteristics. Trials registration numbers: NCT00336375, ISRCTN69189899, NCT01998295, and NCT02090036.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Department of Microbiology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Billy Ngasala
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala Universitet, Uppsala, Sweden.,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Irina Jovel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Weiping Xu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maja Malmberg
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jose Pedro Gil
- Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala Universitet, Uppsala, Sweden
| | - Zul Premji
- Aga Khan University Hospital, Nairobi, Kenya
| | - Bruno P Mmbando
- Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala Universitet, Uppsala, Sweden
| |
Collapse
|
13
|
No evidence of P. falciparum K13 artemisinin conferring mutations over a 24-year analysis in Coastal Kenya, but a near complete reversion to chloroquine wild type parasites. Antimicrob Agents Chemother 2019:AAC.01067-19. [PMID: 31591113 PMCID: PMC6879256 DOI: 10.1128/aac.01067-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers, which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over 2 decades of changing antimalarial drug policy in Kenya. Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers, which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over 2 decades of changing antimalarial drug policy in Kenya. We did not detect any of the validated kelch 13 (k13) artemisinin resistance markers; nonetheless, a single k13 allele, K189T, was maintained at a stable high frequency (>10%) over time. There was a distinct shift from chloroquine-resistant transporter (crt)-76, multidrug-resistant gene 1 (mdr1)-86 and mdr1-1246 chloroquine (CQ) resistance alleles to a 99% prevalence of CQ-sensitive alleles in the population, following the withdrawal of CQ from routine use. In contrast, the dihydropteroate synthetase (dhps) double mutant (437G and 540E) associated with sulfadoxine-pyrimethamine (SP) resistance was maintained at a high frequency (>75%), after a change from SP to artemisinin combination therapies (ACTs). The novel cysteine desulfurase (nfs) K65 allele, implicated in resistance to lumefantrine in a West African study, showed a gradual significant decline in allele frequency pre- and post-ACT introduction (from 38% to 20%), suggesting evidence of directional selection in Kenya, potentially not due to lumefantrine. The high frequency of CQ-sensitive parasites circulating in the population suggests that the reintroduction of CQ in combination therapy for the treatment of malaria can be considered in the future. However, the risk of a reemergence of CQ-resistant parasites circulating below detectable levels or being reintroduced from other regions remains.
Collapse
|
14
|
Apinjoh TO, Ouattara A, Titanji VPK, Djimde A, Amambua-Ngwa A. Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar J 2019; 18:217. [PMID: 31242921 PMCID: PMC6595576 DOI: 10.1186/s12936-019-2844-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite’s genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Amed Ouattara
- School of Medicine, University of Maryland, College Park, Baltimore, USA
| | - Vincent P K Titanji
- Faculty of Science, Engineering and Technology, Cameroon Christian University, Bali, Cameroon
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
15
|
Achol E, Ochaya S, Malinga GM, Edema H, Echodu R. High prevalence of Pfmdr-1 N86 and D1246 genotypes detected among febrile malaria outpatients attending Lira Regional Referral Hospital, Northern Uganda. BMC Res Notes 2019; 12:235. [PMID: 31014391 PMCID: PMC6480777 DOI: 10.1186/s13104-019-4269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To determine the prevalence of Plasmodium falciparum multi-drug resistant gene-1 (Pfmdr-1) N86Y and D1246Y genotypes among febrile malaria outpatients attending Lira Regional Referral Hospital, Uganda. RESULTS Overall, 92.3% (n = 48/52) and 90% (n = 45/50) of the parasites detected carried the wild type alleles 1246D and N86, respectively. Only 7.7% (n = 4/52) and 10% (n = 5/50) of these P. falciparum isolates carried the Pfmdr-1 mutant alleles 1246Y and 86Y, respectively. Our results show high prevalence of wild type alleles N86 and D1246 in P. falciparum isolates from Lira Regional Referral Hospital, which could translate to a decreased sensitivity to artemether-lumefantrine. Continued monitoring of prevalence of single nucleotide polymorphisms is warranted to timely inform malaria treatment policies and guidelines.
Collapse
Affiliation(s)
- Emmanuel Achol
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda.,Gulu University Bioscience Research Laboratories, P.O. Box 166, Gulu, Uganda
| | - Stephen Ochaya
- Department of Immunology and Microbiology, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Geoffrey M Malinga
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda.,Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Hillary Edema
- Gulu University Bioscience Research Laboratories, P.O. Box 166, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda. .,Gulu University Bioscience Research Laboratories, P.O. Box 166, Gulu, Uganda.
| |
Collapse
|
16
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku EA. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar J 2019; 18:76. [PMID: 30871535 PMCID: PMC6419488 DOI: 10.1186/s12936-019-2716-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine, a previous highly efficacious, easy to use and affordable anti-malarial agent was withdrawn from malaria endemic regions due to high levels of resistance. This review collated evidence from published-reviewed articles to establish prevalence of Pfcrt 76T and Pfmdr-1 86Y alleles in malaria affected countries following official discontinuation of chloroquine use. Methods A review protocol was developed, registered in PROSPERO (#CRD42018083957) and published in a peer-reviewed journal. Article search was done in PubMed, Scopus, Lilacs/Vhl and Embase databases by two experienced librarians (AK, RS) for the period 1990-to-Febuary 2018. Mesh terms and Boolean operators (AND, OR) were used. Data extraction form was designed in Excel spread sheet 2007. Data extraction was done by three reviewers (NL, BB and MO), discrepancies were resolved by discussion. Random effects analysis was done in Open Meta Analyst software. Heterogeneity was established using I2-statistic. Results A total of 4721 citations were retrieved from article search (Pubmed = 361, Lilac/vhl = 28, Science Direct = 944, Scopus = 3388). Additional targeted search resulted in three (03) eligible articles. After removal of duplicates (n = 523) and screening, 38 articles were included in the final review. Average genotyping success rate was 63.6% (18,343/28,820) for Pfcrt K76T and 93.5% (16,232/17,365) for Pfmdr-1 86Y mutations. Prevalence of Pfcrt 76T was as follows; East Africa 48.9% (2528/5242), Southern Africa 18.6% (373/2163), West Africa 58.3% (3321/6608), Asia 80.2% (1951/2436). Prevalence of Pfmdr-1 86Y was; East Africa 32.4% (1447/5722), Southern Africa 36.1% (544/1640), West Africa 52.2% (1986/4200), Asia 46.4% (1276/2217). Over half, 52.6% (20/38) of included studies reported continued unofficial chloroquine use following policy change. Studies done in Madagascar and Kenya reported re-emergence of chloroquine sensitive parasites (IC50 < 30.9 nM). The average time (years) since discontinuation of chloroquine use to data collection was 8.7 ± 7.4. There was high heterogeneity (I2 > 95%). Conclusion The prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites have steadily declined since discontinuation of chloroquine use. However, Pfcrt K76T and Pfmdr-1 N86Y mutations still persist at moderate frequencies in most malaria affected countries.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda.,Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
17
|
Muiruri P, Juma DW, Ingasia LA, Chebon LJ, Opot B, Ngalah BS, Cheruiyot J, Andagalu B, Akala HM, Nyambati VCS, Ng'ang'a JK, Kamau E. Selective sweeps and genetic lineages of Plasmodium falciparum multi-drug resistance (pfmdr1) gene in Kenya. Malar J 2018; 17:398. [PMID: 30376843 PMCID: PMC6208105 DOI: 10.1186/s12936-018-2534-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.
Collapse
Affiliation(s)
- Peninah Muiruri
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Denis W Juma
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Luicer A Ingasia
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Lorna J Chebon
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Benjamin Opot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Bidii S Ngalah
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Jelagat Cheruiyot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Ben Andagalu
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Hoseah M Akala
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Venny C S Nyambati
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Joseph K Ng'ang'a
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Edwin Kamau
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya.
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from The Gambia. Sci Rep 2018; 8:9687. [PMID: 29946063 PMCID: PMC6018809 DOI: 10.1038/s41598-018-28017-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Genome sequences of 247 Plasmodium falciparum isolates collected in The Gambia in 2008 and 2014 were analysed to identify changes possibly related to the scale-up of antimalarial interventions that occurred during this period. Overall, there were 15 regions across the genomes with signatures of positive selection. Five of these were sweeps around known drug resistance and antigenic loci. Signatures at antigenic loci such as thrombospodin related adhesive protein (Pftrap) were most frequent in eastern Gambia, where parasite prevalence and transmission remain high. There was a strong temporal differentiation at a non-synonymous SNP in a cysteine desulfarase (Pfnfs) involved in iron-sulphur complex biogenesis. During the 7-year period, the frequency of the lysine variant at codon 65 (Pfnfs-Q65K) increased by 22% (10% to 32%) in the Greater Banjul area. Between 2014 and 2015, the frequency of this variant increased by 6% (20% to 26%) in eastern Gambia. IC50 for lumefantrine was significantly higher in Pfnfs-65K isolates. This is probably the first evidence of directional selection on Pfnfs or linked loci by lumefantrine. Given the declining malaria transmission, the consequent loss of population immunity, and sustained drug pressure, it is important to monitor Gambian P. falciparum populations for further signs of adaptation.
Collapse
|
19
|
Why some sites are responding better to anti-malarial interventions? A case study from western Kenya. Malar J 2017; 16:498. [PMID: 29284476 PMCID: PMC5747174 DOI: 10.1186/s12936-017-2145-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Background In sub-Saharan Africa, malaria interventions over the last decades have been successful in reducing both mortality and morbidity. In western Kenya however some areas experience contrasting outcomes of the ongoing interventions while the causes for this observation remains not yet clearly known. Methods The WHO insecticide (deltamethrin) susceptibility test of the common malaria vectors was studied. Multiple surveys on household use and hospital prescriptions of antimalarial drugs from 2003 to 2015 were done. Along with this, cross sectional surveys on their availability in the local drug dispensing outlets were also done in 2015. Monthly precipitations and air temperature data was collected along with systematic review on abundance and composition of common malaria vectors in the study area before and during interventions. The above factors were used to explain the possible causes of contrasting outcome of malaria interventions between the three study sites. Results Areas with malaria resurgence or sustained high transmission (Kombewa and Marani) showed higher composition of Anopheles funestus sensu lato (s.l.) than the previously abundant Anopheles gambiae sensu stricto (s.s.) and the later had higher composition to an area with a sustained infection decline (Iguhu). Anopheles gambiae s.l. from Kombewa showed highest resistance (50% mortality) upon exposure to WHO deltamethrin discriminating dosage of 0.75% while those from Marani and Iguhu had reduced resistance status (both had a mean mortality of 91%). Sampled An. funestus s.l. from Marani were also highly resistant to deltamethrin as 57% of the exposed vectors survived. An increasing of mean air temperature by 2 °C was noted for Marani and Iguhu from 2013 to 2015 and was accompanied by an increased rainfall at Marani. Community drug use and availability in selling outlets along with prescription in hospitals were not linked to the struggling control of the disease. Conclusions The malaria vector species composition shift, insecticide resistance and climatic warming were the likely cause of the contrasting outcome of malaria intervention in western Kenya. Surveillance of malaria parasite and vector dynamics along with insecticide resistance and vector biting behaviour monitoring are highly recommended in these areas.
Collapse
|
20
|
Conrad MD, Mota D, Foster M, Tukwasibwe S, Legac J, Tumwebaze P, Whalen M, Kakuru A, Nayebare P, Wallender E, Havlir DV, Jagannathan P, Huang L, Aweeka F, Kamya MR, Dorsey G, Rosenthal PJ. Impact of Intermittent Preventive Treatment During Pregnancy on Plasmodium falciparum Drug Resistance-Mediating Polymorphisms in Uganda. J Infect Dis 2017; 216:1008-1017. [PMID: 28968782 PMCID: PMC5853776 DOI: 10.1093/infdis/jix421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/17/2017] [Indexed: 11/13/2022] Open
Abstract
Background In a recent trial of intermittent preventive treatment in pregnancy (IPTp) in Uganda, dihydroartemisinin-piperaquine (DP) was superior to sulfadoxine-pyrimethamine (SP) in preventing maternal and placental malaria. Methods We compared genotypes using sequencing, fluorescent microsphere, and quantitative polymerase chain reaction assays at loci associated with drug resistance in Plasmodium falciparum isolated from subjects receiving DP or SP. Results Considering aminoquinoline resistance, DP was associated with increased prevalences of mutations at pfmdr1 N86Y, pfmdr1 Y184F, and pfcrt K76T compared to SP (64.6% vs 27.4%, P < .001; 93.9% vs 59.2%, P < .001; and 87.7% vs 75.4%, P = .03, respectively). Increasing plasma piperaquine concentration at the time of parasitemia was associated with increasing pfmdr1 86Y prevalence; no infections with the N86 genotype occurred with piperaquine >2.75 ng/mL. pfkelch13 propeller domain polymorphisms previously associated with artemisinin resistance were not identified. Recently identified markers of piperaquine resistance were uncommon and not associated with DP. Considering antifolate resistance, SP was associated with increased prevalence of a 5-mutation haplotype (pfdhfr 51I, 59R, and 108N; pfdhps 437G and 581G) compared to DP (90.8% vs 60.0%, P = .001). Conclusions IPTp selected for genotypes associated with decreased sensitivity to treatment regimens, but genotypes associated with clinically relevant DP resistance in Asia have not emerged in Uganda.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Prasanna Jagannathan
- University of California, San Francisco,Stanford University, Palo Alto, California
| | | | | | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda,Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Philip J Rosenthal
- University of California, San Francisco,Correspondence: P. J. Rosenthal, University of California, San Francisco, Box 0811, San Francisco, CA 94143 ()
| |
Collapse
|
21
|
Mwaiswelo R, Ngasala B, Gil JP, Malmberg M, Jovel I, Xu W, Premji Z, Mmbando BP, Björkman A, Mårtensson A. Sustained High Cure Rate of Artemether-Lumefantrine against Uncomplicated Plasmodium falciparum Malaria after 8 Years of Its Wide-Scale Use in Bagamoyo District, Tanzania. Am J Trop Med Hyg 2017; 97:526-532. [PMID: 28829723 DOI: 10.4269/ajtmh.16-0780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We assessed the temporal trend of artemether-lumefantrine (AL) cure rate after 8 years of its wide-scale use for treatment of uncomplicated Plasmodium falciparum malaria from 2006 to 2014 in Bagamoyo district, Tanzania. Trend analysis was performed for four studies conducted in 2006, 2007-2008, 2012-2013, and 2014. Patients with acute uncomplicated P. falciparum malaria were enrolled, treated with standard AL regimen and followed-up for 3 (2006), 28 (2014), 42 (2012-2013), or 56 (2007-2008) days for clinical and laboratory evaluation. Primary outcome was day 28 polymerase chain reaction (PCR)-adjusted cure rate across years from 2007 to 2014. Parasite clearance was slower for the 2006 and 2007-2008 cohorts with less than 50% of patients cleared of parasitemia on day 1, but was rapid for the 2012-2013 and 2014 cohorts. Day 28 PCR-adjusted cure rate was 168/170 (98.8%) (95% confidence interval [CI], 97.2-100), 122/127 (96.1%) (95% CI, 92.6-99.5), and 206/207 (99.5%) (95% CI, 98.6-100) in 2007-2008, 2012-2013, and 2014, respectively. There was no significant change in the trend of cure rate between 2007 and 2014 (χ2trend test = 0.06, P = 0.90). Pretreatment P. falciparum multidrug-resistant gene 1 (Pfmdr1) N86 prevalence increased significantly across years from 13/48 (27.1%) in 2006 to 183/213 (85.9%) in 2014 (P < 0.001), and P. falciparum chloroquine resistance transporter gene (Pfcrt) K76 prevalence increased significantly from 24/47 (51.1%) in 2006 to 198/205 (96.6%) in 2014 (P < 0.001). The AL cure rate remained high after 8 years of its wide-scale use in Bagamoyo district for the treatment of uncomplicated P. falciparum malaria despite an increase in prevalence of pretreatment Pfmdr1 N86 and Pfcrt K76 between 2006 and 2014.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - J Pedro Gil
- Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Irina Jovel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Weiping Xu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zul Premji
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Bruno P Mmbando
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Reteng P, Vrisca V, Sukarno I, Djarkoni IH, Kalangi JA, Jacobs GE, Runtuwene LR, Eshita Y, Maeda R, Suzuki Y, Mongan AE, Warouw SM, Yamagishi J, Tuda J. Genetic polymorphisms in Plasmodium falciparum chloroquine resistance genes, pfcrt and pfmdr1, in North Sulawesi, Indonesia. BMC Res Notes 2017; 10:147. [PMID: 28376874 PMCID: PMC5379540 DOI: 10.1186/s13104-017-2468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/24/2017] [Indexed: 01/25/2023] Open
Abstract
Background Malaria still poses one of the major threats to human health. Development of effective antimalarial drugs has decreased this threat; however, the emergence of drug-resistant Plasmodium falciparum, a cause of Malaria, is disconcerting. The antimalarial drug chloroquine has been effectively used, but resistant parasites have spread worldwide. Interestingly, the withdrawal of the drug reportedly leads to an increased population of susceptible parasites in some cases. We examined the prevalence of genomic polymorphisms in a malaria parasite P. falciparum, associated with resistance to an antimalarial drug chloroquine, after the withdrawal of the drug from Indonesia. Results Blood samples were collected from 95 malaria patients in North Sulawesi, Indonesia, in 2010. Parasite DNA was extracted and analyzed by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) for pfcrt and pfmdr1. In parallel, multiplex amplicon sequencing for the same genes was carried out with Illumina MiSeq. Of the 59 cases diagnosed as P. falciparum infection by microscopy, PCR–RFLP analysis clearly identified the genotype 76T in pfcrt in 44 cases. Sequencing analysis validated the identified genotypes in the 44 cases and demonstrated that the haplotype in the surrounding genomic region was exclusively SVMNT. Results of pfmdr1 were successfully obtained for 51 samples, where the genotyping results obtained by the two methods were completely consistent. In pfmdr1, the 86Y mutant genotype was observed in 45 cases (88.2%). Conclusions Our results suggest that the prevalence of the mutated genotypes remained dominant even 6 years after the withdrawal of chloroquine from this region. Diversified haplotype of the resistance-related locus, potentially involved in fitness costs, unauthorized usage of chloroquine, and/or a short post-withdrawal period may account for the observed high persistence of prevalence. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2468-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Reteng
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Visia Vrisca
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Inka Sukarno
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Ilham Habib Djarkoni
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Jane Angela Kalangi
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - George Eduardo Jacobs
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Lucky Ronald Runtuwene
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yuki Eshita
- Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.,Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Ryuichiro Maeda
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Arthur Elia Mongan
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Sarah Maria Warouw
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan. .,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
| | - Josef Tuda
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu, Manado, 95115, Indonesia
| |
Collapse
|
23
|
Kateera F, Nsobya SL, Tukwasibwe S, Hakizimana E, Mutesa L, Mens PF, Grobusch MP, van Vugt M, Kumar N. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop 2016; 164:329-336. [PMID: 27647575 PMCID: PMC10600949 DOI: 10.1016/j.actatropica.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
Faced with intense levels of chloroquine (CQ) resistance in Plasmodium falciparum malaria, Rwanda replaced CQ with amodiaquine (AQ)+sulfadoxine-pyrimethamine (SP) in 2001, and subsequently with artemether-lumefantrine (AL) in 2006, as first-line treatments for uncomplicated malaria. Following years of discontinuation of CQ use, re-emergence of CQ-susceptible parasites has been reported in countries including Malawi, Kenya and Tanzania. In contrast, high levels of SP resistant mutant parasites continue to be reported even in countries of presumed reduced SP drug selection pressure. The prevalence and distributions of genetic polymorphisms linked with CQ and SP resistance at two sites of different malaria transmission intensities are described here to better understand drug-related genomic adaptations over time and exposure to varying drug pressures in Rwanda. Using filter paper blood isolates collected from P. falciparum infected patients, DNA was extracted and a nested PCR performed to identify resistance-mediating polymorphisms in the pfcrt, pfmdr1, pfdhps and pfdhfr genes. Amplicons from a total of 399 genotyped samples were analysed by ligase detection reaction fluorescent microsphere assay. CQ susceptible pfcrt 76K and pfmdr1 86N wild-type parasites were found in about 50% and 81% of isolates, respectively. Concurrently, SP susceptible pfdhps double (437G-540E), pfdhfr triple (108N-51I-59R), quintuple pfdhps 437G-540E/pfdhfr 51I-59R-108N and sextuple haplotypes were found in about 84%, 85%, 74% and 18% of isolates, respectively. High-level SP resistance associated pfdhfr 164L and pfdhps 581G mutant prevalences were noted to decline. Mutations pfcrt 76T, pfdhfr 59R and pfdhfr 164L were found differentially distributed between the two study sites with the pfdhfr 164L mutants found only at Ruhuha site, eastern Rwanda. Overall, sustained intense levels of SP resistance mutations and a recovery of CQ susceptible parasites were found in this study following 7 years and 14 years of drug withdrawal from use, respectively. Most likely, the sustained high prevalence of resistant parasites is due to the use of DHFR/DHPS inhibitors like trimethoprim-sulfamethoxazole (TS) for the treatment of and prophylaxis against bacterial infections among HIV infected individuals as well as the continued use of IPTp-SP within the East and Central African regions for malaria prevention among pregnant women. With regard to CQ, the slow recovery of CQ susceptible parasites may have been caused partly by the continued use of CQ and/or CQ mimicking antimalarial drugs like AQ in spite of policies to withdraw it from Rwanda and the neighbouring countries of Uganda and Tanzania. Continued surveillance of P. falciparum CQ and SP associated polymorphisms is recommended for guiding future rational drug policy-making and mitigation of future risk of anti-malaria drug resistance development.
Collapse
Affiliation(s)
- Fredrick Kateera
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Sam L Nsobya
- Molecular Research Laboratory, Infectious Disease Research Collaboration (IDRC), New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda; School of Biomedical Science, College of Medicine, Makerere University, Uganda.
| | - Steven Tukwasibwe
- Molecular Research Laboratory, Infectious Disease Research Collaboration (IDRC), New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda.
| | - Emmanuel Hakizimana
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda; Malaria & Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda.
| | - Leon Mutesa
- College of Medicine & Health Sciences, University of Rwanda, PO Box 3286, Kigali, Rwanda.
| | - Petra F Mens
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands; Royal Tropical Institute/Koninklijk Instituutvoor de Tropen, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands.
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Michèle van Vugt
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne Infectious Disease Research Centre, Tulane University, 333S Liberty Street, Mail code 8317, New Orleans, LA 70112, United States.
| |
Collapse
|
24
|
Genetically Determined Response to Artemisinin Treatment in Western Kenyan Plasmodium falciparum Parasites. PLoS One 2016; 11:e0162524. [PMID: 27611315 PMCID: PMC5017781 DOI: 10.1371/journal.pone.0162524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya.
Collapse
|
25
|
Kar NP, Chauhan K, Nanda N, Kumar A, Carlton JM, Das A. Comparative assessment on the prevalence of mutations in the Plasmodium falciparum drug-resistant genes in two different ecotypes of Odisha state, India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 41:47-55. [PMID: 26988711 PMCID: PMC4868809 DOI: 10.1016/j.meegid.2016.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 01/14/2023]
Abstract
Considering malaria as a local and focal disease, epidemiological understanding of different ecotypes of malaria can help in devising novel control measures. One of the major hurdles in malaria control lies on the evolution and dispersal of the drug-resistant malaria parasite, Plasmodium falciparum. We herewith present data on genetic variation at the Single Nucleotide Polymorphism (SNP) level in four different genes of P. falciparum (Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps) that confer resistance to different antimalarials in two different eco-epidemiological settings, i.e. Hilly-Forest (HF) and Riverine-Plain (RP), in a high malaria endemic district of Odisha state, India. Greater frequency of antimalarial resistance conferring SNPs and haplotypes was observed in all four genes in P. falciparum, and Pfdhps was the most variable gene among the four. No significant genetic differentiation could be observed in isolates from HF and RP ecotypes. Twelve novel, hitherto unreported nucleotide mutations could be observed in the Pfmdr1 and Pfdhps genes. While the Pfdhps gene presented highest haplotype diversity, the Pfcrt gene displayed the highest nucleotide diversity. When the data on all the four genes were complied, the isolates from HF ecotype were found to harbour higher average nucleotide diversity than those coming from RP ecotype. High and positive Tajima's D values were obtained for the Pfcrt and Pfdhfr genes in isolates from both the HF and RP ecotypes, with statistically significant deviation from neutrality in the RP ecotype. Different patterns of Linkage Disequilibrium (LD) among SNPs located in different drug-resistant genes were found in the isolates collected from HF and RP ecotypes. Whereas in the HF ecotype, SNPs in the Pfmdr1 and Pfdhfr were significantly associated, in the RP ecotype, SNPs located in Pfcrt were associated with Pfmdr1, Pfdhfr and Pfdhps. These findings provide a baseline understanding on how different micro eco-epidemiological settings influence evolution and spread of different drug resistance alleles. Our findings further suggest that drug resistance to chloroquine and sulfadoxine-pyrimethamine is approaching fixation level, which requires urgent attention of malaria control programme in India.
Collapse
Affiliation(s)
- Narayani Prasad Kar
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| | - Kshipra Chauhan
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| | - Nutan Nanda
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| | - Ashwani Kumar
- National Institute of Malaria Research, DHS Building, Campal, Panaji, Field Unit, Goa-403001, India
| | - Jane M. Carlton
- Department of Biology, New York University, 12 Waverly Place, New York, NY 10009, U.S.A
| | - Aparup Das
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| |
Collapse
|
26
|
Abstract
Aiming to develop new artemisinin-based combination therapy (ACT) for malaria, antimalarial effect of a new series of pyrrolidine-acridine hybrid in combination with artemisinin derivatives was investigated. Synthesis, antimalarial and cytotoxic evaluation of a series of hybrid of 2-(3-(substitutedbenzyl)pyrrolidin-1-yl)alkanamines and acridine were performed and mode of action of the lead compound was investigated. In vivo pharmacodynamic properties (parasite clearance time, parasite reduction ratio, dose and regimen determination) against multidrug resistant (MDR) rodent malaria parasite and toxicological parameters (median lethal dose, liver function test, kidney function test) were also investigated. 6-Chloro-N-(4-(3-(3,4-dimethoxybenzyl)pyrrolidin-1-yl)butyl)-2-methoxyacridin-9-amine (15c) has shown a dose dependent haem bio-mineralization inhibition and was found to be the most effective and safe compound against MDR malaria parasite in Swiss mice model. It displayed best antimalarial potential with artemether (AM) in vitro as well as in vivo. The combination also showed favourable pharmacodynamic properties and therapeutic response in mice with established MDR malaria infection and all mice were cured at the determined doses. The combination did not show toxicity at the doses administered to the Swiss mice. Taken together, our findings suggest that compound 15c is a potential partner with AM for the ACT and could be explored for further development.
Collapse
|
27
|
In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity. Antimicrob Agents Chemother 2015; 59:7540-7. [PMID: 26392510 DOI: 10.1128/aac.01894-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023] Open
Abstract
Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.
Collapse
|
28
|
Emergence of sulfadoxine-pyrimethamine resistance in Indian isolates of Plasmodium falciparum in the last two decades. INFECTION GENETICS AND EVOLUTION 2015; 36:190-198. [PMID: 26319997 DOI: 10.1016/j.meegid.2015.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 01/15/2023]
Abstract
Genotyping the sulfadoxine-pyrimethamine (SP) genes will help in identifying the genes under drug selection and the emergence of resistance in dhfr and dhps genes. India is an important hotspot for studying malaria due to the immense climatic diversity prevalent in the country. The central and eastern parts of the country are most vulnerable sites where malaria cases are reported throughout the year. From different regions of the country 173 field isolates were genotyped at various loci in dhfr and dhps genes collected between 1994 and 2013. This encompasses the period before antimalarial resistance emerged and the period after the use of combination therapy was made mandatory in the country. We observed the rise of resistant SP alleles from very low frequencies (in the year 1994) to steadily rising (in the year 2000) and maintaining this increasing trend subsequently (in the year 2013) as shown by the sequence analysis of dhfr and dhps genes. This study assessed the prevalence of mutations in dhfr and dhps genes associated with SP resistance in samples indicative of increase in resistance levels of Plasmodium falciparum to SP even after the change in malaria treatment policy in the country.
Collapse
|
29
|
Kiarie WC, Wangai L, Agola E, Kimani FT, Hungu C. Chloroquine sensitivity: diminished prevalence of chloroquine-resistant gene marker pfcrt-76 13 years after cessation of chloroquine use in Msambweni, Kenya. Malar J 2015; 14:328. [PMID: 26296743 PMCID: PMC4546357 DOI: 10.1186/s12936-015-0850-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum resistance to chloroquine (CQ) denied healthcare providers access to a cheap and effective anti-malarial drug. Resistance has been proven to be due to point mutations on the parasite’s pfcrt gene, particularly on codon 76, resulting in an amino acid change from lysine to threonine. This study sought to determine the prevalence of the pfcrt K76T mutation 13 years after CQ cessation in Msambweni, Kenya. Methods Finger-prick whole blood was collected on 3MM Whatman® filter paper from 99 falciparum malaria patients. Parasite DNA was extracted via the Chelex method from individual blood spots and used as template in nested PCR amplification of pfcrt. Apo1 restriction enzyme was used to digest the amplified DNA to identify the samples as wild type or sensitive at codon 76. Prevalence figures of the mutant pfcrt 76T gene were calculated by dividing the number of samples bearing the mutant gene with the total number of samples multiplied by 100 %. Chi square tests were used to test the significance of the findings against previous prevalence figures. Results Out of 99 clinical samples collected in 2013, prevalence of the mutant pfcrt 76T gene stood at 41 %. Conclusion The results indicate a significant [χ2 test, P ≤ 0.05 (2006 vs 2013)] reversal to sensitivity by the P. falciparum population in the study site compared to the situation reported in 2006 at the same study site. This could primarily be driven by diminished use of CQ in the study area in line with the official policy. Studies to establish prevalence of the pfcrt 76T gene could be expanded countrywide to establish the CQ sensitivity status and predict a date when CQ may be re-introduced as part of malaria chemotherapy.
Collapse
Affiliation(s)
- William Chege Kiarie
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), PO Box 54840-00200, Nairobi, Kenya. .,Kenya Medical Research Institute, Centre for Biotechnology Research and Development (KEMRI, CBRD), PO Box 54840-00200, Nairobi, Kenya.
| | - Laura Wangai
- School of Health Sciences, Kirinyaga University College (Constituent College of JKUAT), P.O. Box 143-10300, Kerugoya, Kenya.
| | - Eric Agola
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development (KEMRI, CBRD), PO Box 54840-00200, Nairobi, Kenya.
| | - Francis T Kimani
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development (KEMRI, CBRD), PO Box 54840-00200, Nairobi, Kenya.
| | - Charity Hungu
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development (KEMRI, CBRD), PO Box 54840-00200, Nairobi, Kenya.
| |
Collapse
|
30
|
Achieng AO, Muiruri P, Ingasia LA, Opot BH, Juma DW, Yeda R, Ngalah BS, Ogutu BR, Andagalu B, Akala HM, Kamau E. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether-lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:92-9. [PMID: 26236581 PMCID: PMC4501530 DOI: 10.1016/j.ijpddr.2015.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023]
Abstract
Artemether–lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995–2003) and 745 after (post-ACT; 2008–2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995–1996 to 93.2% in 2014 and 0.0% in 2002–2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use of AL in western Kenya. The prevalence of pfcrt K76 increased from 6.4% in 1995 to 93.2% in 2014 and pfmdr1 N86 from 0% in 2002 to 92.4% in 2014. 100% of pre-ACTs parasites carried T+YYY haplotype whereas 99.3% post-ACTs parasites carried K+NFD haplotype. There is resurgence of chloroquine sensitive parasite in western Kenya. AL is still highly efficacious but there are drastic genetic changes taking place in the parasite population.
Collapse
Affiliation(s)
- Angela O Achieng
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Peninah Muiruri
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya ; Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Luicer A Ingasia
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Dennis W Juma
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Bidii S Ngalah
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya ; Institute of Tropical Medicine and Infectious Diseases, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Bernhards R Ogutu
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| | - Edwin Kamau
- Department of Emerging Infectious Diseases, United States Army Medical Research Unit-Kenya/Kenya Medical Research Institute, Kisumu, Kenya
| |
Collapse
|
31
|
Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, Bejon P, Noor AM. Changing Malaria Prevalence on the Kenyan Coast since 1974: Climate, Drugs and Vector Control. PLoS One 2015; 10:e0128792. [PMID: 26107772 PMCID: PMC4479373 DOI: 10.1371/journal.pone.0128792] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/30/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Progress toward reducing the malaria burden in Africa has been measured, or modeled, using datasets with relatively short time-windows. These restricted temporal analyses may miss the wider context of longer-term cycles of malaria risk and hence may lead to incorrect inferences regarding the impact of intervention. METHODS 1147 age-corrected Plasmodium falciparum parasite prevalence (PfPR2-10) surveys among rural communities along the Kenyan coast were assembled from 1974 to 2014. A Bayesian conditional autoregressive generalized linear mixed model was used to interpolate to 279 small areas for each of the 41 years since 1974. Best-fit polynomial splined curves of changing PfPR2-10 were compared to a sequence of plausible explanatory variables related to rainfall, drug resistance and insecticide-treated bed net (ITN) use. RESULTS P. falciparum parasite prevalence initially rose from 1974 to 1987, dipped in 1991-92 but remained high until 1998. From 1998 onwards prevalence began to decline until 2011, then began to rise through to 2014. This major decline occurred before ITNs were widely distributed and variation in rainfall coincided with some, but not all, short-term transmission cycles. Emerging resistance to chloroquine and introduction of sulfadoxine/pyrimethamine provided plausible explanations for the rise and fall of malaria transmission along the Kenyan coast. CONCLUSIONS Progress towards elimination might not be as predictable as we would like, where natural and extrinsic cycles of transmission confound evaluations of the effect of interventions. Deciding where a country lies on an elimination pathway requires careful empiric observation of the long-term epidemiology of malaria transmission.
Collapse
Affiliation(s)
- Robert W. Snow
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eliud Kibuchi
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Stella W. Karuri
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Gilbert Sang
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Caroline W. Gitonga
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Charles Mwandawiro
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Philip Bejon
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Centre for Geographic Medicine-Coast, KEMRI-Wellcome Trust programme, Kilifi, Kenya
| | - Abdisalan M. Noor
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|