1
|
Starynets K, Paunkov A, Wagner A, Kratochwill K, Klotz C, Leitsch D. Culturing of Giardia lamblia under microaerobic conditions can impact metronidazole susceptibility by inducing increased expression of antioxidant enzymes. Int J Parasitol Drugs Drug Resist 2025; 27:100585. [PMID: 39904006 PMCID: PMC11847123 DOI: 10.1016/j.ijpddr.2025.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The microaerophilic/anaerobic protist Giardia lamblia is a world-wide occurring parasite of the human small intestine. It causes giardiasis which manifests as diarrhoea accompanied by other sequelae. Giardiasis is most commonly treated with either the 5-nitroimidazole metronidazole or the benzimidazole albendazole. Unfortunately, the number of refractory cases is increasing, which is probably caused, at least in part, by drug resistance. However, most attempts to isolate metronidazole-resistant G. lamblia strains from patients have failed so far because the parasites were not resistant when tested in vitro. We hypothesized that this failure might be caused by drug assay conditions which are standardly anaerobic, and performed metronidazole susceptibility testing with two well studied strains, i.e. WB C6 and BRIS/87/HEPU/713 (strain 713) under microaerophilic conditions. Indeed, 713 proved to be less susceptible to metronidazole under microaerophilic conditions as compared to anaerobic conditions, and residual growth was even noted at concentrations of metronidazole similar to those in the serum of treated patients (i.e. about 100 μM). Further experiments showed that 713 also grows much faster under microaerobic conditions than WB C6. Reduced susceptibility to metronidazole under microaerobic conditions was also observed in a clinical isolate from a refractory giardiasis case. Two-dimensional gel electrophoresis showed that microaerobic growth was accompanied by the upregulation of superoxide reductase, a pyridoxamine 5'-phosphate oxidase putative domain-containing protein, and a TlpA-like protein in 713 but not in WB C6. All three proteins are known, or can be predicted to have antioxidant functions. Indeed, overexpression of pyridoxamine 5'-phosphate oxidase in WB C6 from a plasmid carrying the respective gene behind the arginine deiminase promoter significantly improved growth of the transfected cell line under microaerobic conditions. Moreover, similarly overexpressed superoxide reductase conferred significant protection against metronidazole. Our results suggest that oxygen concentrations can affect the outcomes of metronidazole treatment against G. lamblia.
Collapse
Affiliation(s)
- Kateryna Starynets
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, A-1090, Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, A-1090, Vienna, Austria; Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, A-1090, Vienna, Austria
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| |
Collapse
|
2
|
Caradec T, Plé C, Sicoli G, Petrov R, Pradel E, Sobieski C, Antoine R, Orio M, Herledan A, Willand N, Hartkoorn RC. Small molecule MarR modulators potentiate metronidazole antibiotic activity in aerobic E. coli by inducing activation by the nitroreductase NfsA. J Biol Chem 2024; 300:107431. [PMID: 38825006 PMCID: PMC11259696 DOI: 10.1016/j.jbc.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Antibiotic-resistant Enterobacterales pose a major threat to healthcare systems worldwide, necessitating the development of novel strategies to fight such hard-to-kill bacteria. One potential approach is to develop molecules that force bacteria to hyper-activate prodrug antibiotics, thus rendering them more effective. In the present work, we aimed to obtain proof-of-concept data to support that small molecules targeting transcriptional regulators can potentiate the antibiotic activity of the prodrug metronidazole (MTZ) against Escherichia coli under aerobic conditions. By screening a chemical library of small molecules, a series of structurally related molecules were identified that had little inherent antibiotic activity but showed substantial activity in combination with ineffective concentrations of MTZ. Transcriptome analyses, functional genetics, thermal shift assays, and electrophoretic mobility shift assays were then used to demonstrate that these MTZ boosters target the transcriptional repressor MarR, resulting in the upregulation of the marRAB operon and its downstream MarA regulon. The associated upregulation of the flavin-containing nitroreductase, NfsA, was then shown to be critical for the booster-mediated potentiation of MTZ antibiotic activity. Transcriptomic studies, biochemical assays, and electron paramagnetic resonance measurements were then used to show that under aerobic conditions, NfsA catalyzed 1-electron reduction of MTZ to the MTZ radical anion which in turn induced lethal DNA damage in E. coli. This work reports the first example of prodrug boosting in Enterobacterales by transcriptional modulators and highlights that MTZ antibiotic activity can be chemically induced under anaerobic growth conditions.
Collapse
Affiliation(s)
- Thibault Caradec
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Coline Plé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Giuseppe Sicoli
- CNRS UMR 8516, Univ. Lille, LASIRE - Laboratory of Advanced Spectroscopy on Interactions, Reactivity and Environment, Villeneuve d'Ascq, France
| | - Ravil Petrov
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Elizabeth Pradel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Cécilia Sobieski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Maylis Orio
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, Lille, France
| | - Ruben Christiaan Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France.
| |
Collapse
|
3
|
Jiang X, Li Y, Liu S, Sun H, Zheng M, Wan X, Zhu W, Feng X. Nanoscale dihydroartemisinin@zeolitic imidazolate frameworks for enhanced antigiardial activity and mechanism analysis. Front Vet Sci 2024; 11:1364287. [PMID: 38751803 PMCID: PMC11094645 DOI: 10.3389/fvets.2024.1364287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
An artificial semisynthetic material can be derived from artemisinin (ART) called dihydroartemisinin (DHA). Although DHA has enhanced antigiardial potential, its clinical application is limited because of its poor selectivity and low solubility. The drug's absorption has a direct impact on the cell, and mechanism research is limited to its destruction of the cytoskeleton. In this study, we used the zeolitic imidazolate framework-8 and loaded it with DHA (DHA@Zif-8) to improve its antigiardial potential. DHA@Zif-8 can enhance cellular uptake, increase antigiardial proliferation and encystation, and expand the endoplasmic reticulum compared with the DHA-treated group. We used RNA sequencing (RNA-seq) to investigate the antigiardial mechanism. We found that 126 genes were downregulated and 123 genes were upregulated. According to the KEGG and GO pathway analysis, the metabolic functions in G. lamblia are affected by DHA@Zif-8 NPs. We used real-time quantitative reverse transcription polymerase chain reaction to verify our results using the RNA-seq data. DHA@Zif-8 NPs significantly enhanced the eradication of the parasite from the stool in vivo. In addition, the intestinal mucosal injury caused by G. lamblia trophozoites markedly improved in the intestine. This research provided the potential of utilizing DHA@Zif-8 to develop an antiprotozoan drug for clinical applications.
Collapse
Affiliation(s)
- Xiaoming Jiang
- College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Yawei Li
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Shuainan Liu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Hongyu Sun
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Meiyu Zheng
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Xi Wan
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Wenhe Zhu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| | - Xianmin Feng
- College of Medicine, Yanbian University, Yanji, Jilin, China
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
4
|
Motyčková A, Voleman L, Najdrová V, Arbonová L, Benda M, Dohnálek V, Janowicz N, Malych R, Šuťák R, Ettema TJG, Svärd S, Stairs CW, Doležal P. Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis. PLoS Pathog 2023; 19:e1010773. [PMID: 37792908 PMCID: PMC10578589 DOI: 10.1371/journal.ppat.1010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.
Collapse
Affiliation(s)
- Alžběta Motyčková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Lenka Arbonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Martin Benda
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Natalia Janowicz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Róbert Šuťák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | | | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| |
Collapse
|
5
|
Berneburg I, Stumpf M, Velten AS, Rahlfs S, Przyborski J, Becker K, Fritz-Wolf K. Structure of Leishmania donovani 6-Phosphogluconate Dehydrogenase and Inhibition by Phosphine Gold(I) Complexes: A Potential Approach to Leishmaniasis Treatment. Int J Mol Sci 2023; 24:ijms24108615. [PMID: 37239962 DOI: 10.3390/ijms24108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
As unicellular parasites are highly dependent on NADPH as a source for reducing equivalents, the main NADPH-producing enzymes glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) of the pentose phosphate pathway are considered promising antitrypanosomatid drug targets. Here we present the biochemical characterization and crystal structure of Leishmania donovani 6PGD (Ld6PGD) in complex with NADP(H). Most interestingly, a previously unknown conformation of NADPH is visible in this structure. In addition, we identified auranofin and other gold(I)-containing compounds as efficient Ld6PGD inhibitors, although it has so far been assumed that trypanothione reductase is the sole target of auranofin in Kinetoplastida. Interestingly, 6PGD from Plasmodium falciparum is also inhibited at lower micromolar concentrations, whereas human 6PGD is not. Mode-of-inhibition studies indicate that auranofin competes with 6PG for its binding site followed by a rapid irreversible inhibition. By analogy with other enzymes, this suggests that the gold moiety is responsible for the observed inhibition. Taken together, we identified gold(I)-containing compounds as an interesting class of inhibitors against 6PGDs from Leishmania and possibly from other protozoan parasites. Together with the three-dimensional crystal structure, this provides a valid basis for further drug discovery approaches.
Collapse
Affiliation(s)
- Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Michaela Stumpf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Ann-Sophie Velten
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Jude Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Vallières C, Golinelli-Cohen MP, Guittet O, Lepoivre M, Huang ME, Vernis L. Redox-Based Strategies against Infections by Eukaryotic Pathogens. Genes (Basel) 2023; 14:genes14040778. [PMID: 37107536 PMCID: PMC10138290 DOI: 10.3390/genes14040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory responses, and can eventually lead to cell death. Specifically, disrupting redox balance, essentially by increasing pro-oxidative molecules and favouring hyperoxidation, is a smart strategy to eliminate cells and has been used for cancer treatment, for example. Selectivity between cancer and normal cells thus appears crucial to avoid toxicity as much as possible. Redox-based approaches are also employed in the case of infectious diseases to tackle the pathogens specifically, with limited impacts on host cells. In this review, we focus on recent advances in redox-based strategies to fight eukaryotic pathogens, especially fungi and eukaryotic parasites. We report molecules recently described for causing or being associated with compromising redox homeostasis in pathogens and discuss therapeutic possibilities.
Collapse
Affiliation(s)
- Cindy Vallières
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Olivier Guittet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michel Lepoivre
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Meng-Er Huang
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Laurence Vernis
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C, Aebischer T, Langeland N, Hanevik K. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia. Int J Parasitol Drugs Drug Resist 2022; 21:51-60. [PMID: 36682328 PMCID: PMC9871439 DOI: 10.1016/j.ijpddr.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Astrid L Gamlem
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kirsti B Hauge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Juha Vahokoski
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Krakovka S, Ribacke U, Miyamoto Y, Eckmann L, Svärd S. Characterization of Metronidazole-Resistant Giardia intestinalis Lines by Comparative Transcriptomics and Proteomics. Front Microbiol 2022; 13:834008. [PMID: 35222342 PMCID: PMC8866875 DOI: 10.3389/fmicb.2022.834008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Metronidazole (MTZ) is a clinically important antimicrobial agent that is active against both bacterial and protozoan organisms. MTZ has been used extensively for more than 60 years and until now resistance has been rare. However, a recent and dramatic increase in the number of MTZ resistant bacteria and protozoa is of great concern since there are few alternative drugs with a similarly broad activity spectrum. To identify key factors and mechanisms underlying MTZ resistance, we utilized the protozoan parasite Giardia intestinalis, which is commonly treated with MTZ. We characterized two in vitro selected, metronidazole resistant parasite lines, as well as one revertant, by analyzing fitness aspects associated with increased drug resistance and transcriptomes and proteomes. We also conducted a meta-analysis using already existing data from additional resistant G. intestinalis isolates. The combined data suggest that in vitro generated MTZ resistance has a substantial fitness cost to the parasite, which may partly explain why resistance is not widespread despite decades of heavy use. Mechanistically, MTZ resistance in Giardia is multifactorial and associated with complex changes, yet a core set of pathways involving oxidoreductases, oxidative stress responses and DNA repair proteins, is central to MTZ resistance in both bacteria and protozoa.
Collapse
Affiliation(s)
- Sascha Krakovka
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Wang C, Li X, Cheng T, Sun H, Jin L. Eradication of Porphyromonas gingivalis Persisters Through Colloidal Bismuth Subcitrate Synergistically Combined With Metronidazole. Front Microbiol 2021; 12:748121. [PMID: 34745052 PMCID: PMC8565575 DOI: 10.3389/fmicb.2021.748121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Microbial persisters enable the development of certain intrinsic strategies for survival with extreme tolerance to multiple antimicrobials. Porphyromonas gingivalis is considered to be the "keystone" periodontopathogen. Indeed, periodontitis, as a highly common inflammatory disease, is the major cause of severe tooth loss and edentulism in adults globally, and yet it is crucially involved in various systemic comorbidities like diabetes. We have recently revealed P. gingivalis persisters-induced perturbation of immuno-inflammatory responses and effective suppression of this key pathogen by bismuth drugs. This study further explored novel approaches to eradicating P. gingivalis persisters through synergistic combination of colloidal bismuth subcitrate (CBS) with traditional antibiotics. P. gingivalis (ATCC 33277) cells in planktonic and biofilm states were cultured to stationary phase, and then treated with metronidazole (100 mg/L), amoxicillin (100 mg/L), CBS, (100 μM) and combinations of these medications, respectively. Persister survival rate was calculated by colony-forming unit. Cell viability and cytotoxicity of CBS were assessed in human gingival epithelial cells (HGECs). Notably, CBS combined with metronidazole enabled the effective eradication of P. gingivalis persisters in planktonic mode, and nearly eliminated their existence in biofilm mode. Importantly, CBS exhibited no effects on the viability of HGECs, along with minimal cytotoxicity (<5%) even at a high concentration (400 μM). This pioneering study shows that P. gingivalis persisters could be well eliminated via the synergistic combination of CBS with metronidazole. Our findings may contribute to developing novel approaches to tackling periodontitis and inflammatory systemic comorbidities.
Collapse
Affiliation(s)
- Chuan Wang
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xuan Li
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Tianfan Cheng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Fernández-Lainez C, de la Mora-de la Mora I, García-Torres I, Enríquez-Flores S, Flores-López LA, Gutiérrez-Castrellón P, Yépez-Mulia L, Matadamas-Martínez F, de Vos P, López-Velázquez G. Multilevel Approach for the Treatment of Giardiasis by Targeting Arginine Deiminase. Int J Mol Sci 2021; 22:ijms22179491. [PMID: 34502400 PMCID: PMC8431557 DOI: 10.3390/ijms22179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Giardiasis represents a latent problem in public health due to the exceptionally pathogenic strategies of the parasite Giardia lamblia for evading the human immune system. Strains resistant to first-line drugs are also a challenge. Therefore, new antigiardial therapies are urgently needed. Here, we tested giardial arginine deiminase (GlADI) as a target against giardiasis. GlADI belongs to an essential pathway in Giardia for the synthesis of ATP, which is absent in humans. In silico docking with six thiol-reactive compounds was performed; four of which are approved drugs for humans. Recombinant GlADI was used in enzyme inhibition assays, and computational in silico predictions and spectroscopic studies were applied to follow the enzyme's structural disturbance and identify possible effective drugs. Inhibition by modification of cysteines was corroborated using Ellman's method. The efficacy of these drugs on parasite viability was assayed on Giardia trophozoites, along with the inhibition of the endogenous GlADI. The most potent drug against GlADI was assayed on Giardia encystment. The tested drugs inhibited the recombinant GlADI by modifying its cysteines and, potentially, by altering its 3D structure. Only rabeprazole and omeprazole decreased trophozoite survival by inhibiting endogenous GlADI, while rabeprazole also decreased the Giardia encystment rate. These findings demonstrate the potential of GlADI as a target against giardiasis.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico;
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Ignacio de la Mora-de la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; (I.d.l.M.-d.l.M.); (I.G.-T.); (S.E.-F.); (L.A.F.-L.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; (I.d.l.M.-d.l.M.); (I.G.-T.); (S.E.-F.); (L.A.F.-L.)
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; (I.d.l.M.-d.l.M.); (I.G.-T.); (S.E.-F.); (L.A.F.-L.)
| | - Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; (I.d.l.M.-d.l.M.); (I.G.-T.); (S.E.-F.); (L.A.F.-L.)
- CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico
| | | | - Lilian Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (L.Y.-M.); (F.M.-M.)
| | - Felix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (L.Y.-M.); (F.M.-M.)
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico; (I.d.l.M.-d.l.M.); (I.G.-T.); (S.E.-F.); (L.A.F.-L.)
- Correspondence: ; Tel.: +52-5510840900 (ext. 1726)
| |
Collapse
|
11
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
12
|
Shaulov Y, Sarid L, Trebicz-Geffen M, Ankri S. Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Antioxidants (Basel) 2021; 10:antiox10081240. [PMID: 34439488 PMCID: PMC8389260 DOI: 10.3390/antiox10081240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022] Open
Abstract
Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.
Collapse
|
13
|
Gehl V, Paunkov A, Leitsch D. A reassessment of the role of oxygen scavenging enzymes in the emergence of metronidazole resistance in trichomonads. Int J Parasitol Drugs Drug Resist 2021; 16:38-44. [PMID: 33962363 PMCID: PMC8113990 DOI: 10.1016/j.ijpddr.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 11/27/2022]
Abstract
Trichomonads are an order of parasitic protists which infect a wide range of hosts. The human parasite Trichomonas vaginalis and the bovine parasite Tritrichomonas foetus which also infects cats and swine are of considerable medical and veterinary importance, respectively. Since trichomonads are microaerophiles/anaerobes they are susceptible to 5-nitroimidazoles such as metronidazole. 5-nitroimidazoles are exclusively toxic to microaerophilic/anaerobic organisms because reduction, i.e. activation, of the drug can only occur in a highly reductive environment. 5-nitroimidazoles have remained a reliable treatment option throughout the last decades but drug resistance can be a problem. Clinical resistance to 5-nitroimidazoles has been studied in more detail in T. vaginalis and has been ascribed to defective oxygen scavenging mechanisms which lead to higher intracellular oxygen concentrations and, consequently, to less drug being reduced. Two enzymes, flavin reductase (FR) and NADH oxidase have been suggested to be the major oxygen scavenging enzymes in T. vaginalis. The loss, or at least an impairment of FR which reduces oxygen to hydrogen peroxide, has been proposed as the central mechanism that enables the emergence of 5-nitroimidazole resistance. In this study we explored if T. foetus also encodes a homolog of FR and if it is, likewise, involved in resistance. T. foetus was indeed found to express a FR but it was only weakly active as compared to the T. vaginalis homolog. Further, activity of FR in T. foetus was unchanged in metronidazole-resistant cell lines, ruling out that it has a role in metronidazole resistance. Finally, we measured oxygen scavenging rates in metronidazole-sensitive and -resistant cell lines and found that NADH oxidase and FR are not the major oxygen scavenging enzymes in trichomonads and that oxygen scavenging is possibly a consequence, rather than a cause of metronidazole resistance.
Collapse
Affiliation(s)
- Virág Gehl
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|
14
|
Loderstädt U, Frickmann H. Antimicrobial resistance of the enteric protozoon Giardia duodenalis - A narrative review. Eur J Microbiol Immunol (Bp) 2021; 11:29-43. [PMID: 34237023 PMCID: PMC8287975 DOI: 10.1556/1886.2021.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction As therapy-refractory giardiasis is an emerging health issue, this review aimed at summarizing mechanisms of reduced antimicrobial susceptibility in Giardia duodenalis and strategies to overcome this problem. Methods A narrative review on antimicrobial resistance in G. duodenalis was based upon a selective literature research. Results Failed therapeutic success has been observed for all standard therapies of giardiasis comprising nitroimidazoles like metronidazole or tinidazole as first line substances but also benznidazoles like albendazole and mebendazole, the nitrofuran furazolidone, the thiazolide nitazoxanide, and the aminoglycoside paromomycin. Multicausality of the resistance phenotypes has been described, with differentiated gene expression due to epigenetic and post-translational modifications playing a considerable bigger role than mutational base exchanges in the parasite DNA. Standardized resistance testing algorithms are not available and clinical evidence for salvage therapies is scarce in spite of research efforts targeting new giardicidal drugs. Conclusion In case of therapeutic failure of first line nitroimidazoles, salvage strategies including various options for combination therapy exist in spite of limited evidence and lacking routine diagnostic-compatible assays for antimicrobial susceptibility testing in G. duodenalis. Sufficiently powered clinical and diagnostic studies are needed to overcome both the lacking evidence regarding salvage therapy and the diagnostic neglect of antimicrobial resistance.
Collapse
Affiliation(s)
- Ulrike Loderstädt
- 1Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hagen Frickmann
- 2Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany.,3Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Giardiasis remains a common cause of diarrhea and intestinal enteropathy globally. Here we give an overview of clinical treatment studies and discuss potential mechanisms and molecular targets for in-vitro testing of drug resistance. RECENT FINDINGS Giardia is a cause of disease both in diarrheal and nondiarrheal cases. The prevalence of treatment refractory giardiasis is increasing. Recent studies reveal 5-nitroimidazole refractory infection occurs in up to 50% of cases. Mechanisms of drug resistance are not known. Placebo controlled studies of drug efficacy, taking the self-limiting course of giardiasis into account, has not been reported. No randomized controlled trials of treatment of refractory infection have been performed the last 25 years. Based on the clinical studies reported, combination treatment with a 5-nitroimidazole and a benzimidazole is more effective than repeated courses of 5-nitroimidazole or monotherapies in refractory cases. Quinacrine is effective in refractory cases, but potentially severe side effects limit its use. SUMMARY A combination of a 5-nitroimidazole and albendazole or mebendazole, and quinacrine monotherapy, are rational choices in nitroimidazole refractory infections, but randomized controlled studies are needed. Further research into more recent clinical isolates is necessary to uncover mechanisms for the increase in metronidazole refractory giardiasis observed during the last decade.
Collapse
|
16
|
Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. Int J Mol Sci 2021; 22:ijms22115943. [PMID: 34073021 PMCID: PMC8198924 DOI: 10.3390/ijms22115943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Infectious diseases caused by intestinal protozoan, such as Entamoeba histolytica (E. histolytica) and Giardia lamblia (G. lamblia) are a worldwide public health issue. They affect more than 70 million people every year. They colonize intestines causing primarily diarrhea; nevertheless, these infections can lead to more serious complications. The treatment of choice, metronidazole, is in doubt due to adverse effects and resistance. Therefore, there is a need for new compounds against these parasites. In this work, a structure-based virtual screening of FDA-approved drugs was performed to identify compounds with antiprotozoal activity. The glycolytic enzyme triosephosphate isomerase, present in both E. histolytica and G. lamblia, was used as the drug target. The compounds with the best average docking score on both structures were selected for the in vitro evaluation. Three compounds, chlorhexidine, tolcapone, and imatinib, were capable of inhibit growth on G. lamblia trophozoites (0.05–4.935 μg/mL), while folic acid showed activity against E. histolytica (0.186 μg/mL) and G. lamblia (5.342 μg/mL).
Collapse
|
17
|
Miyamoto Y, Aggarwal S, Celaje JJA, Ihara S, Ang J, Eremin DB, Land KM, Wrischnik LA, Zhang L, Fokin VV, Eckmann L. Gold(I) Phosphine Derivatives with Improved Selectivity as Topically Active Drug Leads to Overcome 5-Nitroheterocyclic Drug Resistance in Trichomonas vaginalis. J Med Chem 2021; 64:6608-6620. [PMID: 33974434 DOI: 10.1021/acs.jmedchem.0c01926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis causes the most common, nonviral sexually transmitted infection. Only metronidazole (Mz) and tinidazole are approved for treating trichomoniasis, yet resistance is a clinical problem. The gold(I) complex, auranofin, is active against T. vaginalis and other protozoa but has significant human toxicity. In a systematic structure-activity exploration, we show here that diversification of gold(I) complexes, particularly as halides with simple C1-C3 trialkyl phosphines or as bistrialkyl phosphine complexes, can markedly improve potency against T. vaginalis and selectivity over human cells compared to that of the existing antirheumatic gold(I) drugs. All gold(I) complexes inhibited the two most abundant isoforms of the presumed target enzyme, thioredoxin reductase, but a subset of compounds were markedly more active against live T. vaginalis than the enzyme, suggesting that alternative targets exist. Furthermore, all tested gold(I) complexes acted independently of Mz and were able to overcome Mz resistance, making them candidates for the treatment of Mz-refractory trichomoniasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shubhangi Aggarwal
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Jeff Joseph A Celaje
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Sozaburo Ihara
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jonathan Ang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dmitry B Eremin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Lisa A Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Valery V Fokin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Leitsch D, Mbouaka AL, Köhsler M, Müller N, Walochnik J. An unusual thioredoxin system in the facultative parasite Acanthamoeba castellanii. Cell Mol Life Sci 2021; 78:3673-3689. [PMID: 33599799 PMCID: PMC8038987 DOI: 10.1007/s00018-021-03786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
The free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii's response to oxidative stress. The role of the large TrxR, however, remains elusive.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Martina Köhsler
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
19
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Nitroreductase Activites in Giardia lamblia: ORF 17150 Encodes a Quinone Reductase with Nitroreductase Activity. Pathogens 2021; 10:pathogens10020129. [PMID: 33513906 PMCID: PMC7912051 DOI: 10.3390/pathogens10020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal diplomonadid Giardia lamblia is a causative agent of persistent diarrhea. Current treatments are based on nitro drugs, especially metronidazole. Nitro compounds are activated by reduction, yielding toxic intermediates. The enzymatic systems responsible for this activation are not completely understood. By fractionating cell free crude extracts by size exclusion chromatography followed by mass spectrometry, enzymes with nitroreductase (NR) activities are identified. The protein encoded by ORF 17150 found in two pools with NR activities is overexpressed and characterized. In pools of fractions with main NR activities, previously-known NRs are identified, as well as a previously uncharacterized protein encoded by ORF 17150. Recombinant protein 17150 is a flavoprotein with NADPH-dependent quinone reductase and NR activities. Besides a set of previously identified NRs, we have identified a novel enzyme with NR activity.
Collapse
|
21
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
22
|
Müller J, Vermathen M, Leitsch D, Vermathen P, Müller N. Metabolomic Profiling of Wildtype and Transgenic Giardia lamblia Strains by 1H HR-MAS NMR Spectroscopy. Metabolites 2020; 10:E53. [PMID: 32019059 PMCID: PMC7073884 DOI: 10.3390/metabo10020053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Giardia lamblia, a causative agent of persistent diarrhea in humans, domestic animals, and cattle, is usually treated with nitro compounds. Consequently, enzymes involved in anaerobic nitro reduction have been investigated in detail as potential targets. Their role within the normal metabolic context is, however, not understood. Using 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, we analyzed the metabolomes of G. lamblia trophozoites overexpressing three nitroreductases (NR1-NR3) and thioredoxin reductase (TrxR), most likely a scavenger of reactive oxygen species, as suggested by the results published in this study. We compared the patterns to convenient controls and to the situation in the nitro drug resistant strain C4 where NR1 is downregulated. We identified 27 metabolites in G. lamblia trophozoites. Excluding metabolites of high variability among different wildtype populations, only trophozoites overexpressing NR1 presented a distinct pattern of nine metabolites, in particular arginine catabolites, differing from the respective controls. This pattern matched a differential pattern between wildtype and strain C4. This suggests that NR1 interferes with arginine and thus energy metabolism. The exact metabolic function of NR1 (and the other nitroreductases) remains to be elucidated.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland;
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland;
| | - David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria;
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG Freiburgstr. 3, CH-3010 Bern, Switzerland;
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland;
| |
Collapse
|
23
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
24
|
A review on the druggability of a thiol-based enzymatic antioxidant thioredoxin reductase for treating filariasis and other parasitic infections. Int J Biol Macromol 2020; 142:125-141. [DOI: 10.1016/j.ijbiomac.2019.09.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023]
|
25
|
Müller J, Müller N. Nitroreductases of bacterial origin in Giardia lamblia: Potential role in detoxification of xenobiotics. Microbiologyopen 2019; 8:e904. [PMID: 31343119 PMCID: PMC7938412 DOI: 10.1002/mbo3.904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/05/2022] Open
Abstract
The anaerobic parasite Giardia lamblia, causative agent of persistent diarrhea, contains a family of nitroreductase genes most likely acquired by lateral transfer from anaerobic bacteria or archaebacteria. Two of these nitroreductases, containing a ferredoxin domain at their N-terminus, NR1, and NR2, have been characterized previously. Here, we present the characterization of a third member of this family, NR3. In functional assays, recombinant NR1 and NR3 reduced quinones like menadione and the antibiotic tetracycline, and-to much lesser extents-the nitro compound dinitrotoluene. Conversely, recombinant NR2 had no activity on tetracycline. Escherichia coli expressing NR3 were less susceptible to tetracycline, but more susceptible to the nitro compound metronidazole under semi-aerobic growth conditions. G. lamblia overexpressing NR1 and NR3, but not lines overexpressing NR2, are more susceptible to the nitro drug nitazoxanide. These findings suggest that NR3 is an active quinone reductase with a mode of action similar to NR1, but different from NR2. The biological function of this family of enzymes may reside in the use of xenobiotics as final electron acceptors. Thereby, these enzymes may provide at least two evolutionary advantages namely a higher potential to recycle NAD(P) as electron acceptors for the (fermentative) energy and intermediary metabolism, and the possibility to inactivate toxic xenobiotics produced by microorganisms living in concurrence inside the intestinal habitat.
Collapse
Affiliation(s)
- Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| |
Collapse
|
26
|
Abhishek S, Sivadas S, Satish M, Deeksha W, Rajakumara E. Dynamic Basis for Auranofin Drug Recognition by Thiol-Reductases of Human Pathogens and Intermediate Coordinated Adduct Formation with Catalytic Cysteine Residues. ACS OMEGA 2019; 4:9593-9602. [PMID: 31460050 PMCID: PMC6649031 DOI: 10.1021/acsomega.9b00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 05/13/2023]
Abstract
In all the living systems, reactive oxygen species (ROS) metabolism provides resistance against internal and external oxidative stresses. Auranofin (AF), an FDA-approved gold [Au(I)]-conjugated drug, is known to selectively target thiol-reductases, key enzymes involved in ROS metabolism. AF has been successfully tested for its inhibitory activity through biochemical studies, both in vitro and in vivo, against a diverse range of pathogens including protozoa, nematodes, bacteria, and so forth. Cocrystal structures of thiol-reductases complexed with AF revealed that Au(I) was coordinately linked to catalytic cysteines, but the mechanism of transfer of Au(I) from AF to catalytic cysteines still remains unknown. In this study, we have employed computational approaches to understand the interaction of AF with thiol-reductases of selected human pathogens. A similar network of interactions of AF was observed in all the studied enzymes. Also, we have shown that tailor-made analogues of AF can be designed against selective thiol-reductases for targeted inhibition. Molecular dynamics studies show that the AF-intermediates, tetraacetylthioglucose (TAG)-gold, and triethylphosphine (TP)-gold, coordinately linked to one of catalytic cysteines, remain stable in the binding pocket of thiol-reductases for Leishmania infantum and Plasmodium falciparum (PfTrxR). This suggests that the TP and TAG moieties of AF may be sequentially eliminated during the transfer of Au(I) to catalytic cysteines of the receptor.
Collapse
|
27
|
Saghaug CS, Klotz C, Kallio JP, Brattbakk HR, Stokowy T, Aebischer T, Kursula I, Langeland N, Hanevik K. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist 2019; 12:1221-1235. [PMID: 31190910 PMCID: PMC6519707 DOI: 10.2147/idr.s177997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Treatment-refractory Giardia cases have increased rapidly within the last decade. No markers of resistance nor a standardized susceptibility test have been established yet, but several enzymes and their pathways have been associated with metronidazole (MTZ) resistant Giardia. Very limited data are available regarding genetic variation in these pathways. We aimed to investigate genetic variation in metabolic pathway genes proposed to be involved in MTZ resistance in recently acquired, cultured clinical isolates. Methods: Whole genome sequencing of 12 assemblage A2 and 8 assemblage B isolates was done, to decipher genomic variation in Giardia. Twenty-nine genes were identified in a literature search and investigated for their single nucleotide variants (SNVs) in the coding/non-coding regions of the genes, either as amino acid changing (non-synonymous SNVs) or non-changing SNVs (synonymous). Results: In Giardia assemblage B, several genes involved in MTZ activation or oxidative stress management were found to have higher numbers of non-synonymous SNVs (thioredoxin peroxidase, nitroreductase 1, ferredoxin 2, NADH oxidase, nitroreductase 2, alcohol dehydrogenase, ferredoxin 4 and ferredoxin 1) than the average variation. For Giardia assemblage A2, the highest genetic variability was found in the ferredoxin 2, ferredoxin 6 and in nicotinamide adenine dinucleotide phosphate (NADPH) oxidoreductase putative genes. SNVs found in the ferredoxins and nitroreductases were analyzed further by alignment and homology modeling. SNVs close to the iron-sulfur cluster binding sites in nitroreductase-1 and 2 and ferredoxin 2 and 4 could potentially affect protein function. Flavohemoprotein seems to be a variable-copy gene, due to higher, but variable coverage compared to other genes investigated. Conclusion: In clinical Giardia isolates, genetic variability is common in important genes in the MTZ metabolizing pathway and in the management of oxidative and nitrosative stress and includes high numbers of non-synonymous SNVs. Some of the identified amino acid changes could potentially affect the respective proteins important in the MTZ metabolism.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway
| | - Hans-Richard Brattbakk
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Hordaland, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| |
Collapse
|
28
|
Müller J, Braga S, Heller M, Müller N. Resistance formation to nitro drugs in Giardia lamblia: No common markers identified by comparative proteomics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:112-119. [PMID: 30889439 PMCID: PMC6423486 DOI: 10.1016/j.ijpddr.2019.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
In order to elucidate the question whether resistance to nitro drugs in G. lamblia is due to common resistance markers, trophozoites of three resistant G. lamblia strains, namely C4, 1062ID10, and 713M3 were grown in the presence of the two nitro drugs metronidazole and nitazoxanide and compared to their corresponding wild-types WBC6, 106, and 713 by mass spectometry shotgun analysis of their proteomes. Depending on the strain and the nitro drug, more than 200 to 500 differentially expressed proteins were identified, but there were no common patterns across strains and drugs. All resistant strains underwent antigenic variation with distinct surface antigens like variant surface proteins or cysteine rich proteins depending on strain and nitro compound. A closer look on enzymes involved in nitroreduction and detoxification of nitro radicals, NO or O2 suggested the existence of distinct strategies for each drug and each strain. Therefore, we conclude that resistance to nitro drugs in G. lamblia is not correlated with a specific pattern of differentially expressed proteins and therefore seems not to be the result of a directed process. Is resistance to nitro drugs in G. lamblia due to common resistance markers? Three resistant strains were grown in the presence of two nitro drugs separately and compared to wild-types by MS shotgun analysis. More than 200 to 500 differentially expressed proteins identified depending on strain and drug. No common patterns across strains and drugs. Strain specific antigenic variation and strategies linked to nitro reduction.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| | - Sophie Braga
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| |
Collapse
|
29
|
Abstract
Giardia is the commonest parasitic diarrheal pathogen affecting humans and a frequent cause of waterborne/foodborne parasitic diseases worldwide. Prevalence of giardiasis is higher in children, living in poor, low hygiene settings in developing countries, and in travelers returning from highly endemic areas. The clinical picture of giardiasis is heterogeneous, with high variability in severity of clinical disease. It can become chronic or be followed by post-infectious sequelae. An alarming increase in cases refractory to the conventional treatment with nitroimidazoles (ie, metronidazole) has been reported in low prevalence settings, such as European Union countries, especially in patients returning from Asia. In view of its relevance, we aim in this review to recapitulate present clinical knowledge about Giardia, with a special focus on the challenge of treatment-refractory giardiasis. We propose a working definition of clinically drug-resistant giardiasis, summarize knowledge regarding resistance mechanisms, and discuss its clinical management according to research-based evidence and medical practice. Advances in development and identification of novel drugs and potential non-pharmacological alternatives are also reviewed with the overall aim to define knowledge gaps and suggest future directions for research.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy,
| | - Kurt Hanevik
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Pyrihová E, Motycková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, Roger A, Kolísko M, Doležal P. A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes. Genome Biol Evol 2018; 10:2813-2822. [PMID: 30265292 PMCID: PMC6200312 DOI: 10.1093/gbe/evy215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 11/14/2022] Open
Abstract
Mitochondria have evolved diverse forms across eukaryotic diversity in adaptation to anoxia. Mitosomes are the simplest and the least well-studied type of anaerobic mitochondria. Transport of proteins via TIM complexes, composed of three proteins of the Tim17 protein family (Tim17/22/23), is one of the key unifying aspects of mitochondria and mitochondria-derived organelles. However, multiple experimental and bioinformatic attempts have so far failed to identify the nature of TIM in mitosomes of the anaerobic metamonad protist, Giardia intestinalis, one of the few experimental models for mitosome biology. Here, we present the identification of a single G. intestinalis Tim17 protein (GiTim17), made possible only by the implementation of a metamonad-specific hidden Markov model. While very divergent in primary sequence and in predicted membrane topology, experimental data suggest that GiTim17 is an inner membrane mitosomal protein, forming a disulphide-linked dimer. We suggest that the peculiar GiTim17 sequence reflects adaptation to the unusual, detergent resistant, inner mitosomal membrane. Specific pull-down experiments indicate interaction of GiTim17 with mitosomal Tim44, the tethering component of the import motor complex. Analysis of TIM complexes across eukaryote diversity suggests that a "single Tim" translocase is a convergent adaptation of mitosomes in anaerobic protists, with Tim22 and Tim17 (but not Tim23), providing the protein backbone.
Collapse
Affiliation(s)
- Eva Pyrihová
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Alžbeta Motycková
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Natalia Wandyszewska
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Charles University, Praha 2, Czech Republic
| | - Gabriela Seydlová
- Department of Genetics and Microbiology, Charles University, Praha 2, Czech Republic
| | - Andrew Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Martin Kolísko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Biology Centre CAS, České Budějovice, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
31
|
Viability Screen of LOPAC 1280 Reveals Phosphorylation Inhibitor Auranofin as a Potent Inhibitor of Blastocystis Subtype 1, 4, and 7 Isolates. Antimicrob Agents Chemother 2018; 62:AAC.00208-18. [PMID: 29866860 DOI: 10.1128/aac.00208-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/26/2018] [Indexed: 01/23/2023] Open
Abstract
Blastocystis is an enteric parasite with extensive global prevalence. Studies have linked infection with this protist with a variety of gastrointestinal disorders, including irritable bowel syndrome. Due to the polymorphic nature of Blastocystis, studies on the parasite could be complicated, as results can be easily misinterpreted. Metronidazole is the commonly prescribed drug for Blastocystis infection, although there have been increasing reports of drug resistance. Hence, there is a need to identify alternative drugs to eliminate Blastocystis infection. In this study, LOPAC1280 was screened and drugs that can decrease the viability of three Blastocystis isolates in cultures were identified. Using apoptosis assay and imaging flow cytometry, phenotypic changes in Blastocystis cells after treatment were also analyzed to obtain insights into the possible mechanism of action of these drugs. Three drugs-diphenyleneiodonium chloride, auranofin, and BIX 01294 trihydrochloride hydrate-were effective against all three isolates tested. Repurposing of these drugs for Blastocystis treatment could be a way of combating metronidazole resistance relatively quickly and at a lower cost.
Collapse
|
32
|
Leitsch D, Williams CF, Hrdý I. Redox Pathways as Drug Targets in Microaerophilic Parasites. Trends Parasitol 2018; 34:576-589. [PMID: 29807758 DOI: 10.1016/j.pt.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways.
Collapse
Affiliation(s)
- David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Austria.
| | - Catrin F Williams
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ivan Hrdý
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
33
|
Müller J, Hemphill A, Müller N. Physiological aspects of nitro drug resistance in Giardia lamblia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:271-277. [PMID: 29738984 PMCID: PMC6039359 DOI: 10.1016/j.ijpddr.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/01/2022]
Abstract
For over 50 years, metronidazole and other nitro compounds such as nitazoxanide have been used as a therapy of choice against giardiasis and more and more frequently, resistance formation has been observed. Model systems allowing studies on biochemical aspects of resistance formation to nitro drugs are, however, scarce since resistant strains are often unstable in culture. In order to fill this gap, we have generated a stable metronidazole- and nitazoxanide-resistant Giardia lamblia WBC6 clone, the strain C4. Previous studies on strain C4 and the corresponding wild-type strain WBC6 revealed marked differences in the transcriptomes of both strains. Here, we present a physiological comparison between trophozoites of both strains with respect to their ultrastructure, whole cell activities such as oxygen consumption and resazurin reduction assays, key enzyme activities, and several metabolic key parameters such as NAD(P)+/NAD(P)H and ADP/ATP ratios and FAD contents. We show that nitro compound-resistant C4 trophozoites exhibit lower nitroreductase activities, lower oxygen consumption and resazurin reduction rates, lower ornithine-carbamyl-transferase activity, reduced FAD and NADP(H) pool sizes and higher ADP/ATP ratios than wildtype trophozoites. The present results suggest that resistance formation against nitro compounds is correlated with metabolic adaptations resulting in a reduction of the activities of FAD-dependent oxidoreductases.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
34
|
Abstract
BACKGROUND Giardia intestinalis is microaerophilic diarrhoea-causing protozoan common in countries with suboptimal sanitation. Standard treatment is with nitroimidazoles, but a growing number of refractory cases is being reported. Treatment failure has become increasingly prevalent in travellers who contract giardiasis in Asia. Clinicians are increasingly falling back on second-line and less well-known drugs to treat giardiasis. AIMS To review nitroimidazole-refractory G. intestinalis infection, examine the current efficacy of standard therapeutic agents, consider potential resistance mechanisms which could cause treatment failure and describe the practical aspects of managing this emerging clinical problem. SOURCES A PubMed search was conducted using combinations of the following terms: refractory, Giardia, giardiasis, resistance and treatment. Articles on the pharmacotherapy, drug resistance mechanisms and use of alternative agents in nitroimidazole-refractory giardiasis were reviewed. CONTENT We review the standard drugs for giardiasis, including their efficacy in initial treatment, mode of action and documented in vitro and in vivo drug resistance. We assess the efficacy of alternative drugs in nitroimidazole-refractory disease. Existing data suggest a potential advantage of combination treatment. IMPLICATIONS An optimal treatment strategy for refractory giardiasis has still to be determined, so there is no standard treatment regimen for nitroimidazole-refractory giardiasis. Further work on drug resistance mechanisms and the use of drug combinations in this condition is a priority.
Collapse
|
35
|
Click Chemistry-Facilitated Structural Diversification of Nitrothiazoles, Nitrofurans, and Nitropyrroles Enhances Antimicrobial Activity against Giardia lamblia. Antimicrob Agents Chemother 2017; 61:AAC.02397-16. [PMID: 28396548 DOI: 10.1128/aac.02397-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents.
Collapse
|
36
|
Ang CW, Jarrad AM, Cooper MA, Blaskovich MAT. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J Med Chem 2017; 60:7636-7657. [PMID: 28463485 DOI: 10.1021/acs.jmedchem.7b00143] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infectious diseases claim millions of lives every year, but with the advent of drug resistance, therapeutic options to treat infections are inadequate. There is now an urgent need to develop new and effective treatments. Nitroimidazoles are a class of antimicrobial drugs that have remarkable broad spectrum activity against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. While nitroimidazoles were discovered in the 1950s, there has been renewed interest in their therapeutic potential, particularly for the treatment of parasitic infections and tuberculosis. In this review, we summarize different classes of nitroimidazoles that have been described in the literature in the past five years, from approved drugs and clinical candidates to examples undergoing preclinical or early stage development. The relatively "nonspecific" mode of action and resistance mechanisms of nitromidazoles are discussed, and contemporary strategies to facilitate nitroimidazole drug development are highlighted.
Collapse
Affiliation(s)
- Chee Wei Ang
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Angie M Jarrad
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Matthew A Cooper
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Mark A T Blaskovich
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| |
Collapse
|
37
|
Brogi S, Fiorillo A, Chemi G, Butini S, Lalle M, Ilari A, Gemma S, Campiani G. Structural characterization of Giardia duodenalis thioredoxin reductase (gTrxR) and computational analysis of its interaction with NBDHEX. Eur J Med Chem 2017; 135:479-490. [PMID: 28477573 DOI: 10.1016/j.ejmech.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Giardia duodenalis is a microaerophilic parasite that colonizes the upper portions of the small intestine of humans. Giardia infection is a major contributor to diarrheal disease worldwide. Nitroheterocycles (e.g. metronidazole) or benzimidazoles (e.g. albendazole) are the most commonly used therapeutic agents. Unfortunately, their efficacy is reduced by low compliance or resistance phenomena. We recently discovered that the antitumoral drug 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is active against G. duodenalis trophozoites and its mode of action is linked to inhibition of thioredoxin reductase (gTrxR), a key component of Giardia redox system: gTrxR provides efficient defenses against reactive oxygen species (ROS), it is a target of 5-nitroimidazoles antiparasitic drugs and also contributes to their metabolism. However, the exact mechanism responsible for the gTrxR inhibition mediated by this chemical class of antigiardial compounds is yet to be defined. The definition of the structural determinants of activity against gTrxR could be important for the identification of novel drugs endowed with an innovative mode of action. With this aim, we solved the crystal structure of gTrxR and we analyzed in silico the binding mode of NBDHEX. The data presented herein could guide the development of NBDHEX derivatives tailored for selective inhibition of gTrxR as antigiardial agents.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Annarita Fiorillo
- CNR (Consiglio Nazionale delle Ricerche) - Istituto di Biologia e Patologia Molecolari (IBPM), c/o Dipartimento di Scienze Biochimiche P.le Aldo Moro 5, 00185, Roma, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Lalle
- Istituto Superiore di Sanità, Department of Infectious Diseases, viale Regina Elena 299, Rome, Italy.
| | - Andrea Ilari
- CNR (Consiglio Nazionale delle Ricerche) - Istituto di Biologia e Patologia Molecolari (IBPM), c/o Dipartimento di Scienze Biochimiche P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy.
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
38
|
Proteomic and functional analyses reveal pleiotropic action of the anti-tumoral compound NBDHEX in Giardia duodenalis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:147-158. [PMID: 28366863 PMCID: PMC5377010 DOI: 10.1016/j.ijpddr.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
Abstract
Giardiasis, a parasitic diarrheal disease caused by Giardia duodenalis, affects one billion people worldwide. Treatment relies only on a restricted armamentarium of drugs. The disease burden and the increase in treatment failure highlight the need for novel, safe and well characterized drug options. The antitumoral compound NBDHEX is effective in vitro against Giardia trophozoites and inhibits glycerol-3-phosphate dehydrogenase. Aim of this work was to search for additional NBDHEX protein targets. The intrinsic NBDHEX fluorescence was exploited in a proteomic analysis to select and detect modified proteins in drug treated Giardia. In silico structural analysis, intracellular localization and functional assays were further performed to evaluate drug effects on the identified targets. A small subset of Giardia proteins was covalently bound to the drug at specific cysteine residues. These proteins include metabolic enzymes, e.g. thioredoxin reductase (gTrxR), as well as elongation factor 1B-γ (gEF1Bγ), and structural proteins, e.g. α-tubulin. We showed that NBDHEX in vitro binds to recombinant gEF1Bγ and gTrxR, but only the last one could nitroreduce NBDHEX leading to drug modification of gTrxR catalytic cysteines, with concomitant disulphide reductase activity inhibition and NADPH oxidase activity upsurge. Our results indicate that NBDHEX reacts with multiple targets whose roles and/or functions are specifically hampered. In addition, NBDHEX is in turn converted to reactive intermediates extending its toxicity. The described NBDHEX pleiotropic action accounts for its antigiardial activity and encourages the use of this drug as a promising alternative for the future treatment of giardiasis.
Collapse
|
39
|
Ansell BRE, Baker L, Emery SJ, McConville MJ, Svärd SG, Gasser RB, Jex AR. Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines. Front Microbiol 2017; 8:398. [PMID: 28367140 PMCID: PMC5355454 DOI: 10.3389/fmicb.2017.00398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate:ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID10, 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid α-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID10 diverged from those in 713-r and WB-r (r ≤ 0.2), which were more similar to each other (r = 0.47). In 106-2ID10, a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Samantha J. Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala UniversityUppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| |
Collapse
|
40
|
Huang FC, Liu TS, Li SC, Shih MH, Shin JW, Lin WC. The effect of the disulfideisomerase domain containing protein in the defense against polyhexamethylene biguanide of highly tolerant Acanthamoeba at the trophozoite stage. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:251-257. [PMID: 27888770 PMCID: PMC5124359 DOI: 10.1016/j.ijpddr.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022]
Abstract
Acanthamoeba castellanii is a free-living protozoan pathogen capable of causing a blinding keratitis and fatal granulomatous encephalitis. Current treatment generally involves an hourly application of polyhexamethylene biguanide (PHMB) over a period of several days but this is not entirely effective against all strains/isolates. The tolerance mechanisms of PHMB in Acanthamoeba cells remain unclear. In this study, we found that the mRNA expression level of disulfideisomerase domain containing protein (PDI) increased rapidly in surviving cells of the highly PHMB-tolerant Acanthamoeba castellanii strain, NCKH_D, during PHMB treatment, but not in the ATCC standard strain. After PDI-specific silencing, NCKH_D was found to be more vulnerable to PHMB treatment. The results described above show that PDI is an important gene for PHMB tolerance ability in a highly PHMB-tolerant strain of Acanthamoeba and provide a new insight for more efficient medicine development for Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Fu-Chin Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tao-Shen Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Hsiu Shih
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jyh-Wei Shin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|