1
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
2
|
Mahboubifar M, Zidorn C, Farag MA, Zayed A, Jassbi AR. Chemometric-based drug discovery approaches from natural origins using hyphenated chromatographic techniques. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:990-1016. [PMID: 38806406 DOI: 10.1002/pca.3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Isolation and characterization of bioactive components from complex matrices of marine or terrestrial biological origins are the most challenging issues for natural product chemists. Biochemometric is a new potential scope in natural product analytical science, and it is a methodology to find the compound's correlation to their bioactivity with the help of hyphenated chromatographic techniques and chemometric tools. OBJECTIVES The present review aims to evaluate the application of chemometric tools coupled to chromatographic techniques for drug discovery from natural resources. METHODS The searching keywords "biochemometric," "chemometric," "chromatography," "natural products bioassay," and "bioassay" were selected to search the published articles between 2010-2023 using different search engines including "Pubmed", "Web of Science," "ScienceDirect," and "Google scholar." RESULTS An initial stage in natural product analysis is applying the chromatographic hyphenated techniques in conjunction with biochemometric approaches. Among the applied chromatographic techniques, liquid chromatography (LC) techniques, have taken up more than half (53%) and also, mass spectroscopy (MS)-based chromatographic techniques such as LC-MS are the most widely used techniques applied in combination with chemometric methods for natural products bioassay. Considering the complexity of dataset achieved from chromatographic hyphenated techniques, chemometric tools have been increasingly employed for phytochemical studies in the context of determining botanicals geographical origin, quality control, and detection of bioactive compounds. CONCLUSION Biochemometric application is expected to be further improved with advancing in data acquisition methods, new efficient preprocessing, model validation and variable selection methods which would guarantee that the applied model to have good prediction ability in compound relation to its bioactivity.
Collapse
Affiliation(s)
- Marjan Mahboubifar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
3
|
Anthelmintic Agents from African Medicinal Plants: Review and Prospects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8023866. [PMID: 36624864 PMCID: PMC9825222 DOI: 10.1155/2022/8023866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 01/02/2023]
Abstract
Soil-transmitted helminthiasis affects more than 1.5 billion people globally and largely remains a sanitary problem in Africa. These infections place a huge economic burden on poor countries and affect livestock production, causing substantial economic losses and poor animal health. The emergence of anthelmintic resistance, especially in livestock, and the potential for its widespread in humans create a need for the development of alternative therapies. Medicinal plants play a significant role in the management of parasitic diseases in humans and livestock, especially in Africa. This report reviews anthelmintic studies that have been conducted on medicinal plants growing in Africa and published within the past two decades. A search was made in various electronic databases, and only full articles in English were included in the review. Reports show that aqueous and hydroalcoholic extracts and polar fractions obtained from these crude extracts form the predominant (80%) form of the extracts studied. Medicinal plants, extracts, and compounds with different chemical groups have been studied for their anthelmintic potential. Polyphenols and terpenoids are the most reported groups. More than 64% of the studies employed in vitro assays against parasitic and nonparasitic nematode models. Egg hatch inhibition, larval migration inhibition, and paralysis are the common parameters assessed in vitro. About 72% of in vivo models involved small ruminants, 15% rodents, and 5% chicken. Egg and worm burden are the main factors assessed in vivo. There were no reports on interventions in humans cited within the period under consideration. Also, few reports have investigated the potential of combining plant extracts with common anthelmintic drugs. This review reveals the huge potential of African medicinal plants as sources of anthelmintic agents and the dire need for in-depth clinical studies of extracts, fractions, and compounds from African plants as anthelmintic agents in livestock, companion animals, and humans.
Collapse
|
4
|
Evidente A. Microbial and Plant Derived Low Risk Pesticides Having Nematocidal Activity. Toxins (Basel) 2022; 14:toxins14120849. [PMID: 36548747 PMCID: PMC9787815 DOI: 10.3390/toxins14120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Microorganisms, virus, weeds, parasitic plants, insects, and nematodes are among the enemies that induce severe economic losses to agrarian production. Farmers have been forced to combat these enemies using different methods, including mechanical and agronomic strategies, since the beginning of agriculture. The development of agriculture, due to an increased request for food production, which is a consequence to the rapid and noteworthy growth of the world's population, requires the use of more efficient methods to strongly elevate the yield production. Thus, in the last five-to-six decades, a massive and extensive use of chemicals has occurred in agriculture, resulting in heavy negative consequences, such as the increase in environmental pollution and risks for human and animal health. These problems increased with the repetition of treatments, which is due to resistance that natural enemies developed against this massive use of pesticides. There are new control strategies under investigation to develop products, namely biopesticides, with high efficacy and selectivity but based on natural products which are not toxic, and which are biodegradable in a short time. This review is focused on the microbial and plant metabolites with nematocidal activity with potential applications in suitable formulations in greenhouses and fields.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Science, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy;
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
5
|
Laldingliani TBC, Thangjam NM, Zomuanawma R, Bawitlung L, Pal A, Kumar A. Ethnomedicinal study of medicinal plants used by Mizo tribes in Champhai district of Mizoram, India. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:22. [PMID: 35331291 PMCID: PMC8944157 DOI: 10.1186/s13002-022-00520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicinal plants have been used countless times for curing diseases mainly in developing countries. They are easily available with little to no side effects when compared to modern medicine. This manuscript encompasses information on ethnomedicinal plants in Champhai district, located in the North East Region (NER) of India. The region lies within Indo-Burma biodiversity hotspot. This study will be the first quantitative report on the ethnomedicinal plants used by the local tribes of this region. Knowledge of medicinal plants is mostly acquired by word of mouth, and the knowledge is dying among the local youths with the prevalence of modern medicine. Hence, there is urgency in deciphering and recording such information. METHODS Information was gathered through interviews with 200 informants across 15 villages of the Champhai district. From the data obtained, we evaluate indices such as used report (UR), frequency of citation (FC), informant consensus factor (Fic), cultural values (CVs) and relative importance (RI) for all the plant species. Secondary data were obtained from scientific databases such as Pubmed, Sci Finder and Science Direct. The scientific name of the plants was matched and arranged in consultation with the working list of all plant species ( http://www.theplantlist.org ). RESULTS Totally, 93 plant species from 53 families and 85 genera were recorded. The most common families are Euphorbiaceae and Asteraceae with six and five species representatives, respectively. Leaves were the most frequently used part of a plant and were usually used in the form of decoction. Curcuma longa has the most cultural value (27.28 CVs) with the highest used report (136 FC), and the highest RI value was Phyllanthus emblica. The main illness categories as per Frequency of citation were muscle/bone problem (0.962 Fic), gastro-intestinal disease (0.956 Fic) and skin care (0.953 Fic). CONCLUSION The people of Mizoram living in the Champhai district have an immense knowledge of ethnomedicinal plants. There were no side effects recorded for consuming ethnomedicinal plants. We observed that there is a scope of scientific validation of 10 plant species for their pharmacological activity and 13 species for the phytochemical characterisation or isolation of the phytochemicals. This might pave the path for developing a scientifically validated botanical or lead to semisyntheic derivatives intended for modern medicine.
Collapse
Affiliation(s)
- T B C Laldingliani
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - Nurpen Meitei Thangjam
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - R Zomuanawma
- Department of Botany, School of Life Science, Mizoram University, Aizawl, 796004, India
| | - Laldingngheti Bawitlung
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India
| | - Anirban Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, CIMAP, Lucknow, 226015, India
| | - Awadhesh Kumar
- Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
6
|
Tortorella E, Giugliano R, De Troch M, Vlaeminck B, de Viçose GC, de Pascale D. The Ethyl Acetate Extract of the Marine Edible Gastropod Haliotis tuberculata coccinea: a Potential Source of Bioactive Compounds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:892-903. [PMID: 34714443 DOI: 10.1007/s10126-021-10073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The phylum Mollusca represents one of the largest groups of marine invertebrates. Nowadays, molluscan shellfish belonging to the classes Bivalvia and Gastropoda are of commercial interest for fisheries and aquaculture. Although bioactive properties of bivalve molluscs have been widely investigated and several dietary supplements have been brought to the market, the bioactive potentialities of marine gastropods are poorly documented. The present study investigated the bioactive properties of tissue extracts derived from Haliotis tuberculata coccinea, or "European abalone," an edible abalone species distributed in the Mediterranean Sea and the northeast Atlantic Ocean. A bioactive organic compound-rich extract was obtained using ethyl acetate as extracting solvent. It showed antimicrobial activity towards the methicillin-resistant Staphylococcus epidermidis strain RP62A, the emerging multi-drug-resistant Stenotrophomonas maltophilia D71 and Staphylococcus aureus ATCC 6538P, being the most sensitive strain. It also showed anthelmintic activity, evaluated through the toxicity against the target model helminth Caenorhabditis elegans. In addition, the ethyl acetate extract demonstrated a selective cytotoxic activity on the cancer cell lines A375, MBA-MD 231, HeLa, and MCF7, at the concentration of 250 µg/mL. The fatty acid composition of the bioactive extract was also investigated through FAME analysis. The fatty acid profile showed 45% of saturated fatty acids (SAFA), 22% of monounsaturated fatty acids (MUFA), and 33% of polyunsaturated fatty acids (PUFA). The presence of some biologically important secondary metabolites in the extract was also analysed, revealing the presence of alkaloids, terpenes, and flavonoids.
Collapse
Affiliation(s)
- Emiliana Tortorella
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino, 111-80131, Naples, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli, " Via Santa Maria di Costantinopoli, 16-80138, Naples, Italy
| | - Marleen De Troch
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000, Gent, Belgium
| | - Bruno Vlaeminck
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000, Gent, Belgium
| | | | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino, 111-80131, Naples, Italy.
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
7
|
Jayawardene KLTD, Palombo EA, Boag PR. Natural Products Are a Promising Source for Anthelmintic Drug Discovery. Biomolecules 2021; 11:1457. [PMID: 34680090 PMCID: PMC8533416 DOI: 10.3390/biom11101457] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes infect almost all forms of life. In the human context, parasites are one of the major causative factors for physical and intellectual growth retardation in the developing world. In the agricultural setting, parasites have a great economic impact through a reduction in livestock performance or control cost. The main method of controlling these devastating conditions is the use of anthelmintic drugs. Unfortunately, there are only a few anthelmintic drug classes available in the market and significant resistance has developed in most of the parasitic species of livestock. Therefore, development of new anthelmintics with different modes of action is critical for sustainable parasitic control in the future. The drug development pipeline is broadly limited to two types of molecules, namely synthetic compounds and natural plant products. Compared to synthetic compounds, natural products are highly diverse, and many have historically proven valuable in folk medicine to treat various gastrointestinal ailments. This review focus on the use of traditional knowledge-based plant extracts in the development of new therapeutic leads, the approaches used as screening techniques, and common bottlenecks and opportunities in plant-based anthelmintic drug discovery.
Collapse
Affiliation(s)
- K. L. T. Dilrukshi Jayawardene
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Peter R. Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
8
|
Karpe AV, Hutton ML, Mileto SJ, James ML, Evans C, Shah RM, Ghodke AB, Hillyer KE, Metcalfe SS, Liu JW, Walsh T, Lyras D, Palombo EA, Beale DJ. Cryptosporidiosis Modulates the Gut Microbiome and Metabolism in a Murine Infection Model. Metabolites 2021; 11:metabo11060380. [PMID: 34208228 PMCID: PMC8230837 DOI: 10.3390/metabo11060380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptosporidiosis is a major human health concern globally. Despite well-established methods, misdiagnosis remains common. Our understanding of the cryptosporidiosis biochemical mechanism remains limited, compounding the difficulty of clinical diagnosis. Here, we used a systems biology approach to investigate the underlying biochemical interactions in C57BL/6J mice infected with Cryptosporidium parvum. Faecal samples were collected daily following infection. Blood, liver tissues and luminal contents were collected 10 days post infection. High-resolution liquid chromatography and low-resolution gas chromatography coupled with mass spectrometry were used to analyse the proteomes and metabolomes of these samples. Faeces and luminal contents were additionally subjected to 16S rRNA gene sequencing. Univariate and multivariate statistical analysis of the acquired data illustrated altered host and microbial energy pathways during infection. Glycolysis/citrate cycle metabolites were depleted, while short-chain fatty acids and D-amino acids accumulated. An increased abundance of bacteria associated with a stressed gut environment was seen. Host proteins involved in energy pathways and Lactobacillus glyceraldehyde-3-phosphate dehydrogenase were upregulated during cryptosporidiosis. Liver oxalate also increased during infection. Microbiome–parasite relationships were observed to be more influential than the host–parasite association in mediating major biochemical changes in the mouse gut during cryptosporidiosis. Defining this parasite–microbiome interaction is the first step towards building a comprehensive cryptosporidiosis model towards biomarker discovery, and rapid and accurate diagnostics.
Collapse
Affiliation(s)
- Avinash V. Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecosciences Precinct, Dutton Park, QLD 4102, Australia; (A.V.K.); (R.M.S.); (K.E.H.); (S.S.M.)
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (M.L.H.); (S.J.M.); (M.L.J.); (C.E.); (D.L.)
| | - Steven J. Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (M.L.H.); (S.J.M.); (M.L.J.); (C.E.); (D.L.)
| | - Meagan L. James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (M.L.H.); (S.J.M.); (M.L.J.); (C.E.); (D.L.)
| | - Chris Evans
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (M.L.H.); (S.J.M.); (M.L.J.); (C.E.); (D.L.)
| | - Rohan M. Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecosciences Precinct, Dutton Park, QLD 4102, Australia; (A.V.K.); (R.M.S.); (K.E.H.); (S.S.M.)
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Amol B. Ghodke
- Queensland Alliance for Agriculture and Food Innovation, Department of Horticulture, The University of Queensland, St Lucia, QLD 4072, Australia;
- BIO21 Institute, School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katie E. Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecosciences Precinct, Dutton Park, QLD 4102, Australia; (A.V.K.); (R.M.S.); (K.E.H.); (S.S.M.)
| | - Suzanne S. Metcalfe
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecosciences Precinct, Dutton Park, QLD 4102, Australia; (A.V.K.); (R.M.S.); (K.E.H.); (S.S.M.)
| | - Jian-Wei Liu
- Land and Water, Commonwealth Scientific and Industrial Research Organization Research and Innovation Park, Acton, ACT 2601, Australia; (J.-W.L.); (T.W.)
| | - Tom Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organization Research and Innovation Park, Acton, ACT 2601, Australia; (J.-W.L.); (T.W.)
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (M.L.H.); (S.J.M.); (M.L.J.); (C.E.); (D.L.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Ecosciences Precinct, Dutton Park, QLD 4102, Australia; (A.V.K.); (R.M.S.); (K.E.H.); (S.S.M.)
- Correspondence: ; Tel.: +61-7-3833-5774
| |
Collapse
|
9
|
Panda SK, Das R, Mai AH, De Borggraeve WM, Luyten W. Nematicidal Activity of Holigarna caustica (Dennst.) Oken Fruit Is Due to Linoleic Acid. Biomolecules 2020; 10:1043. [PMID: 32674325 PMCID: PMC7408404 DOI: 10.3390/biom10071043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 01/24/2023] Open
Abstract
Holigarna caustica (Dennst.) Oken is used by the tribes of Northeast India for the treatment of intestinal problems. Therefore, the present study was undertaken to investigate the active principles of this plant responsible for its anthelmintic activity, using bioassay-guided fractionation. An ethanol extract of H. caustica fruit was fractionated on a silica gel column, followed by HPLC, while nematicidal activity was followed throughout on Caenorhabditis (C.) elegans as a model organism. Our study constitutes the first nematicidal report for this plant. Bioassay-guided purification led to the isolation of one compound (IC50 = 0.4 µM) as the only active constituent in the most active fraction. The compound was identified as linoleic acid based on spectroscopic data (1H and 13C NMR and ESI-MS). No cytotoxicity was observed in the crude extract or in linoleic acid (up to 356 µM). The results support the use of H. caustica for the treatment of intestinal problems by traditional healers in India.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Zoology, North Orissa University, Baripada 757003, India; (R.D.); (W.L.)
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Raju Das
- Department of Zoology, North Orissa University, Baripada 757003, India; (R.D.); (W.L.)
- Nature’s Foster, P. Box. 41, Shastri Road, Bongaigaon, Assam 783380, India
| | - Anh Hung Mai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; (A.H.M.); (W.M.D.B.)
| | - Wim M. De Borggraeve
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; (A.H.M.); (W.M.D.B.)
| | - Walter Luyten
- Department of Zoology, North Orissa University, Baripada 757003, India; (R.D.); (W.L.)
| |
Collapse
|
10
|
Kumarasingha R, Young ND, Yeo TC, Lim DSL, Tu CL, Palombo EA, Shaw JM, Gasser RB, Boag PR. Transcriptional alterations in Caenorhabditis elegans following exposure to an anthelmintic fraction of the plant Picria fel-terrae Lour. Parasit Vectors 2019; 12:181. [PMID: 31023350 PMCID: PMC6485125 DOI: 10.1186/s13071-019-3429-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/03/2019] [Indexed: 01/18/2023] Open
Abstract
Background Natural compounds from plants are known to provide a source of anthelmintic molecules. In previous studies, we have shown that plant extracts from the plant Picria fel-terrae Lour. and particular fractions thereof have activity against the free-living nematode Caenorhabditis elegans, causing quite pronounced stress responses in this nematode. We have also shown that a fraction, designated Pf-fraction 5, derived from this plant has a substantial adverse effect on this worm; however, nothing is known about the molecular processes affected in the worm. In the present study, we explored this aspect. Results Key biological processes linked to upregulated genes (n = 214) included ‘response to endoplasmic reticulum stress’ and ‘lipid metabolism’, and processes representing downregulated genes (n = 357) included ‘DNA-conformation change’ and ‘cellular lipid metabolism’. Conclusions Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes. Electronic supplementary material The online version of this article (10.1186/s13071-019-3429-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasika Kumarasingha
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tiong-Chia Yeo
- Sarawak Biodiversity Centre, KM 20 Jalan Borneo Heights, Semengoh, Locked Bag 3032, 93990, Kuching, Sarawak, Malaysia
| | - Diana S L Lim
- Sarawak Biodiversity Centre, KM 20 Jalan Borneo Heights, Semengoh, Locked Bag 3032, 93990, Kuching, Sarawak, Malaysia
| | - Chu-Lee Tu
- Sarawak Biodiversity Centre, KM 20 Jalan Borneo Heights, Semengoh, Locked Bag 3032, 93990, Kuching, Sarawak, Malaysia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Jillian M Shaw
- Department of Health and Medical Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Peter R Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia. .,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018; 14:152. [PMID: 30830421 DOI: 10.1007/s11306-018-1449-2] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC-MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and 'in house' metabolite databases available. AIM OF REVIEW This review provides an overview of developments in GC-MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC-MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on GC-MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC-MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific & Industrial Research Organization (CSIRO), P.O. Box 2583, Brisbane, QLD, 4001, Australia.
| | - Farhana R Pinu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Trajan Scientific and Medical, 7 Argent Pl, Ringwood, 3134, Australia
| | - Mahesha M Poojary
- Chemistry Section, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, 3010, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, 3083, Australia.
| |
Collapse
|
12
|
Harahap U, Agustya HM, Azizah DU, Alfiah SW. Subchronic Toxicity Evaluation of Ethanol Extract of Picria fel-terrae Lour. Leaf in Wistar Rats. Sci Pharm 2018; 86:scipharm86030034. [PMID: 30181458 DOI: 10.3390/scipharm86030034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/26/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022] Open
Abstract
Picria fel-terrae extract has been investigated for its hepatoprotective activity. This current study was conducted to evaluate the subchronic toxic effect of Picria fel-terrae Lour. leaf extract. The subchronic toxicity of ethanol extract of P. fel-terrae leaf was evaluated by OECD (Organization for Economic Cooperation and Development) guidelines. The extract at doses of 125, 250, 500, 1000 mg/kg body weight (BW) were orally administered to the test animals for 90 days. Signs of toxicity and mortality were observed for 90 days and 118 days. The biochemistry, hematology, macropathology, relative organ weight and histopathology examination was also performed. The macroscopic and microscopic examinations of liver, lung, kidney, spleen and heart displayed normal color and texture after treatment, with ethanol extract P. fel-terrae leaf at doses of 125 and 250 mg/kg BW. The signs of toxicity, mortality, macroscopic and microscopic changes, as well as increasing biochemistry parameters were observed after treatment, with extract at the dose of 500 and 1000 mg/kg BW. However, the abnormal value of biochemistry parameters was returned to normal when the treatment was stopped. There was no effect on hematological parameters at all doses of extract. The ethanol extract P. fel-terrae leaf is untoxic for long-term use at dose 125 and 250 mg/kg BW. The toxic effect of P. fel-terrae at 500 and 1000 mg/kg BW was reversible.
Collapse
Affiliation(s)
- Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, 5 Jalan Almamater, USU-Kampus, Medan 20155, Indonesia.
| | - Hafiza Mitha Agustya
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, 5 Jalan Almamater, USU-Kampus, Medan 20155, Indonesia.
| | - Dira Ummul Azizah
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, 5 Jalan Almamater, USU-Kampus, Medan 20155, Indonesia.
| | - Syari Widia Alfiah
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, 5 Jalan Almamater, USU-Kampus, Medan 20155, Indonesia.
| |
Collapse
|
13
|
Liu M, Kipanga P, Mai AH, Dhondt I, Braeckman BP, De Borggraeve W, Luyten W. Bioassay-guided isolation of three anthelmintic compounds from Warburgia ugandensis Sprague subspecies ugandensis, and the mechanism of action of polygodial. Int J Parasitol 2018; 48:833-844. [PMID: 30031002 DOI: 10.1016/j.ijpara.2017.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Resistance to current anthelmintics has prompted the search for new drugs. Anthelmintic metabolites from medicinal plants could be good anthelmintic drug candidates. However, the compounds active against nematodes have not been identified in most medicinal plants with anthelmintic activity. In this study, we aimed to identify the active compounds against helminths in Warburgia ugandensis Sprague subspecies ugandensis (Canellaceae) and study the underlying mechanism of action. A bioassay-guided isolation of anthelmintic compounds from the plant was performed using a Caenorhabditis elegans (C. elegans) test model with a WMicrotracker instrument to monitor motility. Three active compounds were purified and identified by nuclear magnetic resonance and high resolution MS: warburganal (IC50: 28.2 ± 8.6 μM), polygodial (IC50: 13.1 ± 5.3 μM) and alpha-linolenic acid (ALA, IC50: 70.1 ± 17.5 μM). A checkerboard assay for warburganal and ALA as well as polygodial and ALA showed a fractional inhibitory concentration index of 0.41 and 0.37, respectively, suggesting that polygodial and ALA, as well as warburganal and ALA, have a synergistic effect against nematodes. A preliminary structure-activity relationship study for polygodial showed that the α,β-unsaturated 1,4-dialdehyde structural motif is essential for the potent activity. None of a panel of C. elegans mutant strains, resistant against major anthelmintic drug classes, showed significant resistance to polygodial, implying that polygodial may block C. elegans motility through a mechanism which differs from that of currently marketed drugs. Further measurements showed that polygodial inhibits mitochondrial ATP synthesis of C. elegans in a dose-dependent manner (IC50: 1.8 ± 1.0 μM). Therefore, we believe that the underlying mechanism of action of polygodial is probably inhibition of mitochondrial ATP synthesis. In conclusion, polygodial could be a promising anthelmintic drug candidate worth considering for further development.
Collapse
Affiliation(s)
- Maoxuan Liu
- Faculty of Pharmaceutical Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, 3000 Leuven, Belgium.
| | - Purity Kipanga
- Faculty of Pharmaceutical Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anh Hung Mai
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, 3000 Leuven, Belgium
| | - Ineke Dhondt
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Bart P Braeckman
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Wim De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, 3000 Leuven, Belgium
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Stroehlein AJ, Young ND, Gasser RB. Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnol Adv 2018; 36:915-934. [PMID: 29477756 DOI: 10.1016/j.biotechadv.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases are enzymes that play essential roles in the regulation of many cellular processes. Despite expansions in the fields of genomics, transcriptomics and bioinformatics, there is limited information on the kinase complements (kinomes) of most eukaryotic organisms, including parasitic worms that cause serious diseases of humans and animals. The biological uniqueness of these worms and the draft status of their genomes pose challenges for the identification and classification of protein kinases using established tools. In this article, we provide an account of kinase biology, the roles of kinases in diseases and their importance as drug targets, and drug discovery efforts in key socioeconomically important parasitic worms. In this context, we summarise methods and resources commonly used for the curation, identification, classification and functional annotation of protein kinase sequences from draft genomes; review recent advances made in the characterisation of the worm kinomes; and discuss the implications of these advances for investigating kinase signalling and developing small-molecule inhibitors as new anti-parasitic drugs.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Jiao Y, Preston S, Koehler AV, Stroehlein AJ, Chang BCH, Simpson KJ, Cowley KJ, Palmer MJ, Laleu B, Wells TNC, Jabbar A, Gasser RB. Screening of the 'Stasis Box' identifies two kinase inhibitors under pharmaceutical development with activity against Haemonchus contortus. Parasit Vectors 2017; 10:323. [PMID: 28679424 PMCID: PMC5499055 DOI: 10.1186/s13071-017-2246-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
Background In partnership with the Medicines for Malaria Venture (MMV), we screened a collection (‘Stasis Box’) of 400 compounds (which have been in clinical development but have not been approved for illnesses other than neglected infectious diseases) for inhibitory activity against Haemonchus contortus, in order to attempt to repurpose some of the compounds to parasitic nematodes. Methods We assessed the inhibition of compounds on the motility and/or development of exsheathed third-stage (xL3s) and fourth-stage (L4) larvae of H. contortus using a whole-organism screening assay. Results In the primary screen, we identified compound MMV690767 (also known as SNS-032) that inhibited xL3 motility by ~70% at a concentration of 20 μM after 72 h as well as compound MMV079840 (also known as AG-1295), which induced a coiled xL3 phenotype, with ~50% inhibition on xL3 motility. Subsequently, we showed that SNS-032 (IC50 = 12.4 μM) and AG-1295 (IC50 = 9.92 ± 1.86 μM) had a similar potency to inhibit xL3 motility. Although neither SNS-032 nor AG-1295 had a detectable inhibitory activity on L4 motility, both compounds inhibited L4 development (IC50 values = 41.24 μM and 7.75 ± 0.94 μM for SNS-032 and AG-1295, respectively). The assessment of the two compounds for toxic effects on normal human breast epithelial (MCF10A) cells revealed that AG-1295 had limited cytotoxicity (IC50 > 100 μM), whereas SNS-032 was quite toxic to the epithelial cells (IC50 = 1.27 μM). Conclusions Although the two kinase inhibitors, SNS-032 and AG-1295, had moderate inhibitory activity on the motility or development of xL3s or L4s of H. contortus in vitro, further work needs to be undertaken to chemically alter these entities to achieve the potency and selectivity required for them to become nematocidal or nematostatic candidates. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2246-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karla J Cowley
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Michael J Palmer
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215, Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215, Geneva, Switzerland
| | - Timothy N C Wells
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215, Geneva, Switzerland
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
A Community Multi-Omics Approach towards the Assessment of Surface Water Quality in an Urban River System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030303. [PMID: 28335448 PMCID: PMC5369139 DOI: 10.3390/ijerph14030303] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 02/04/2023]
Abstract
A multi-omics approach was applied to an urban river system (the Brisbane River (BR), Queensland, Australia) in order to investigate surface water quality and characterize the bacterial population with respect to water contaminants. To do this, bacterial metagenomic amplicon-sequencing using Illumina next-generation sequencing (NGS) of the V5-V6 hypervariable regions of the 16S rRNA gene and untargeted community metabolomics using gas chromatography coupled with mass spectrometry (GC-MS) were utilized. The multi-omics data, in combination with fecal indicator bacteria (FIB) counts, trace metal concentrations (by inductively coupled plasma mass spectrometry (ICP-MS)) and in-situ water quality measurements collected from various locations along the BR were then used to assess the health of the river ecosystem. Sites sampled represented the transition from less affected (upstream) to polluted (downstream) environments along the BR. Chemometric analysis of the combined datasets indicated a clear separation between the sampled environments. Burkholderiales and Cyanobacteria were common key factors for differentiation of pristine waters. Increased sugar alcohol and short-chain fatty acid production was observed by Actinomycetales and Rhodospirillaceae that are known to form biofilms in urban polluted and brackish waters. Results from this study indicate that a multi-omics approach enables a deep understanding of the health of an aquatic ecosystem, providing insight into the bacterial diversity present and the metabolic output of the population when exposed to environmental contaminants.
Collapse
|