1
|
Kadam T, Agrawal S, Shetty S. Novel nanostructured lipid carriers with lurasidone hydrochloride for intranasal administration for improved bioavailability. Ther Deliv 2025; 16:419-429. [PMID: 40125944 DOI: 10.1080/20415990.2025.2477440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
AIM This research aims to develop nanostructured lipid carriers containing Lurasidone hydrochloride (LH) with Quality by Design (QbD) methodology to enhance its bioavailability, given LH's low water solubility (0.224 mg/ml) and bioavailability (9-19%). MATERIAL AND METHODS The optimized LH-NLC formulation contains Glyceryl monostearate (GMS) as solid lipid, Caproyl 90 as liquid lipid and co-surfactant, and Tween 80 as surfactant. The hot emulsification method was used to formulate the LH-NLC using a three-factor, three-level Box-Behnken design (BBD)for ascertaining functional relationships between particle size and entrapment efficiency (EE). Particle size, polydispersity index (PDI), zeta potential, surface morphology, percentage EE, and in vitro and ex-vivo release were assessed. Wistar rats were used to estimate plasma drug concentration after LH-NLC administration. RESULTS The developed formulation exhibited a particle size of 190.98 ± 4.72 nm, zeta potential of + 17.47 mV, and encapsulation efficiency of 94 ± 1.26% w/w. LH-NLCs showed a drug release rate of 95.37% within 24 hours. Intranasal administration of LH-NLCs resulted in 5.16 times higher bioavailability compared to intranasally administered lurasidone. CONCLUSION The study successfully applied QbD methodology to develop NLCs for LH with enhanced bioavailability, demonstrating improved drug entrapment and delivery efficacy for treating psychosis.
Collapse
Affiliation(s)
- Tanvi Kadam
- Department of Quality Assurance, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Surendra Agrawal
- Department of Quality Assurance, Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, India
| | - Saritha Shetty
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
2
|
Waqar MA, Khan IN, Zahra S, Shaheen F, Noureen S, Ahmad S, Siddique MI, Alvi MN. β-Cyclodextrin-functionalized nanocarriers for bromocriptine: development, evaluation and histopathological studies. J Microencapsul 2025:1-15. [PMID: 40207906 DOI: 10.1080/02652048.2025.2487034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Bromocriptine (BCM), a dopaminergic agonist used in Parkinson's disease treatment, has poor oral bioavailability due to extensive first-pass metabolism and limited gastrointestinal absorption. This study aimed to develop a β-cyclodextrin-functionalized bromocriptine nanoemulsion (oil-in-water) to enhance drug solubility, stability, and bioavailability while facilitating direct brain delivery via the intranasal route. The formulation was designed to overcome systemic metabolic barriers, improve drug permeation across the blood-brain barrier, and ensure sustained therapeutic effects with minimal systemic side effects. Nano-emulsions were prepared using high-shear homogenization. Characterization was performed using scanning electron microscopy (SEM) for morphological analysis. Globule size and zeta potential were measured using Malvern Zetasizer. Fourier Transform Infrared Spectroscopy (FTIR) was used for structural analysis, while X-ray diffraction (XRD) assessed crystallinity. Differential Scanning Calorimetry (DSC) was conducted for thermal analysis. Drug content and in-vitro drug release were evaluated using UV-visible spectroscopy. Stability studies were performed using centrifugation and freeze-thaw methods. Docking studies and Histopathological evaluation were also performed of the prepared formulations. Morphological studies revealed nano-sized globular particles with a mean diameter of 117.2 nm and a low polydispersity index (PDI 0.810), indicating uniformity. The nanoemulsion exhibited a zeta potential of -10.5 mV, ensuring colloidal stability. The encapsulation efficiency (EE%) of the optimized formulation (F4) was 95.36(% w/w,) with a drug load of approximately 9.5(% w/w). In-vitro drug release reached 85.65%, with permeation release of 78.44% and 70.13% ex-vivo. The formulation remained stable under freeze-thaw and centrifugation conditions. Cell toxicity assessments demonstrated excellent biocompatibility, with no significant cytotoxic effects observed in histopathological evaluations. This nanoemulsion presents a promising alternative to oral bromocriptine for Parkinson's treatment.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Iqra Noor Khan
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Shabab Zahra
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Farwa Shaheen
- Department of Pharmacy, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Saba Noureen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Shakeel Ahmad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Saudia Arabia
| | - Muhammad Nadeem Alvi
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
5
|
Rathi R, Mehetre NM, Goyal S, Singh I, Huanbutta K, Sangnim T. Advanced Drug Delivery Technologies for Enhancing Bioavailability and Efficacy of Risperidone. Int J Nanomedicine 2024; 19:12871-12887. [PMID: 39640049 PMCID: PMC11618854 DOI: 10.2147/ijn.s492684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Multidisciplinary research has been conducted on novel drug delivery technologies to maximize therapeutic advantages while curtailing undesirable reactions. Drugs under BCS Class II often have a low bioavailability because the dissolution phase limits the absorption efficiency. In this review, risperidone was used as a pharmacological model to examine the impact of solubility enhancement at the primary administration site for such pharmaceuticals. For tackling drug-related pertains like disease diagnostics, therapy, and prophylactic measures at the cellular or molecular levels, implementing nanocarriers in therapeutics has significant potential. The comprehensive pharmaceutical compositions of risperidone nano-microparticles that have been developed to alleviate psychosis are highlighted in the study, which also illustrates potential future developments in such domains.
Collapse
Affiliation(s)
- Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Patiala, PB, India
| | | | - Shuchi Goyal
- Chitkara College of Pharmacy, Chitkara University, Patiala, PB, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala, PB, India
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Tanikan Sangnim
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
6
|
Bseiso EA, Sheta NM, Abdel-Haleem KM. Recent progress in nanoparticulate-based intranasal delivery for treating of different central nervous system diseases. Pharm Dev Technol 2024; 29:913-929. [PMID: 39340392 DOI: 10.1080/10837450.2024.2409807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Nermin M Sheta
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Khaled M Abdel-Haleem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| |
Collapse
|
7
|
Sardu ML, Poggesi I. Pharmacokinetics of intranasal drugs, still a missed opportunity? Xenobiotica 2024; 54:424-438. [PMID: 38687903 DOI: 10.1080/00498254.2024.2349046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The intranasal (IN) route of administration is important for topical drugs and drugs intended to act systemically. More recently, direct nose-to-brain input was considered to bypass the blood-brain barrier.Processes related to IN absorption and nose-to-brain distribution are complex and depend, sometimes in contrasting ways, on chemico-physical and structural parameters of the compounds, and on formulation options.Due to the intricacies of these processes and despite the large number of articles published on many different IN compounds, it appears that absorption after IN dosing is not yet fully understood. In particular, at variance of the understanding and modelling approaches that are available for predicting the pharmacokinetics (PK) following oral administration of xenobiotics, it appears that there is not a similar understanding of the chemico-physical and structural determinants influencing drug absorption and disposition of compounds after IN administration, which represents a missed opportunity for this research field. This is even more true regarding the understanding of the direct nose-to-brain input. Due to this, IN administrations may represent an interesting and open research field for scientists aiming to develop PK property predictions tools, mechanistic PK models describing rate and extent of IN absorption, and translational tools to anticipate the clinical PK following IN dosing based on in vitro and in vivo non clinical experiments.This review intends to provide: i) some basic knowledge related to the physiology of PK after IN dosing, ii) a non-exhaustive list of preclinical and clinical examples related to compounds explored for the potential nose-to-blood and nose-to-brain passage, and iii) the identification of some areas requiring improvements, the understanding of which may facilitate the development of IN drug candidates.
Collapse
Affiliation(s)
| | - Italo Poggesi
- Clinical Pharmacology, Modeling and Simulation, GSK, Verona, Italy
| |
Collapse
|
8
|
Sipos B, Katona G, Csóka I. Risperidone-Loaded Nasal Thermosensitive Polymeric Micelles: Quality by Design-Based Formulation Study. Pharmaceutics 2024; 16:703. [PMID: 38931827 PMCID: PMC11206254 DOI: 10.3390/pharmaceutics16060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (G.K.); (I.C.)
| | | | | |
Collapse
|
9
|
Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics 2024; 16:481. [PMID: 38675142 PMCID: PMC11055100 DOI: 10.3390/pharmaceutics16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The nose-to-brain drug-delivery system has emerged as a promising strategy to overcome the challenges associated with conventional drug administration for central nervous system disorders. This emerging field is driven by the anatomical advantages of the nasal route, enabling the direct transport of drugs from the nasal cavity to the brain, thereby circumventing the blood-brain barrier. This review highlights the significance of the anatomical features of the nasal cavity, emphasizing its high permeability and rich blood supply that facilitate rapid drug absorption and onset of action, rendering it a promising domain for neurological therapeutics. Exploring recent developments and innovations in different nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, micelles, nanoemulsions, nanosuspensions, carbon nanotubes, mesoporous silica nanoparticles, and nanogels unveils their diverse functions in improving drug-delivery efficiency and targeting specificity within this system. To minimize the potential risk of nanoparticle-induced toxicity in the nasal mucosa, this article also delves into the latest advancements in the formulation strategies commonly involving surface modifications, incorporating cutting-edge materials, the adjustment of particle properties, and the development of novel formulations to improve drug stability, release kinetics, and targeting specificity. These approaches aim to enhance drug absorption while minimizing adverse effects. These strategies hold the potential to catalyze the advancement of safer and more efficient nose-to-brain drug-delivery systems, consequently revolutionizing treatments for neurological disorders. This review provides a valuable resource for researchers, clinicians, and pharmaceutical-industry professionals seeking to advance the development of effective and safe therapies for central nervous system disorders.
Collapse
Affiliation(s)
- Shivani Gandhi
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Divyesh H. Shastri
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
10
|
Alam P, Shakeel F, Alshehri S, Alhaiti A, Alqarni MH, Foudah AI, Aljarba TM. Analysis of the greenness to determine risperidone in commercial products using a green stability-indicating HPTLC method. ARAB J CHEM 2024; 17:105693. [DOI: 10.1016/j.arabjc.2024.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
11
|
Patil AS, Chougale SS, Kokatanr U, Hulyalkar S, Hiremath RD, Japti V, Masareddy R. Formulation and evaluation of itraconazole-loaded nanoemulgel for efficient topical delivery to treat fungal infections. Ther Deliv 2024; 15:165-179. [PMID: 38282577 DOI: 10.4155/tde-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: The clinical application of conventional oral dosage form of itraconazole is limited due to its poor bioavailability. The aim of the study was to develop nanoemulgel of Itraconazole for topical delivery. Method: Nanoemulsions were prepared, optimized and further incorporated into a gel and evaluated for homogeneity, pH, viscosity, spreadability, in vitro drug release and skin irritation studies. Results: Cumulative drug release from nanoemulsions was within the range of 37.24 to 47.63% at 10 h. Drug release % for all the nanoemulgel formulations at10 h was 32.39, 39.75 and 45.9% respectively. Nanoemulgel was non-irritant as demonstrated by skin irritation studies in animals. Conclusion: Itraconazole nanoemulgels were proved to be potential for effective topical delivery of drug with enhanced bioavailability.
Collapse
Affiliation(s)
- Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Samradni S Chougale
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Umashri Kokatanr
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Sujay Hulyalkar
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Ravindra D Hiremath
- KDCA's Institute of Pharmacy (Government Aided Institute) Airport Road, Ujalaiwadi, Kolhapur, 416004, Maharashtra, India
| | - Veerkumar Japti
- Department of Quality Assurance, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Rajashree Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| |
Collapse
|
12
|
Gandhi GR, Hillary VE, Athesh K, da Cruz Ramos MLC, de Oliveira Krauss GP, Jothi G, Sridharan G, Sivasubramanian R, Hariharan G, Vasconcelos ABS, Montalvão MM, Ceasar SA, da Silva Calisto VK, Gurgel RQ. The Use of Nanocarriers to Enhance the Anti-neuroinflammatory Potential of Dietary Flavonoids in Animal Models of Neurodegenerative Diseases: A Systematic Review. Mini Rev Med Chem 2024; 24:1293-1305. [PMID: 37691188 DOI: 10.2174/1389557523666230907093441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have become a common and growing cause of mortality and morbidity worldwide, especially in older adults. The natural flavonoids found in fruits and vegetables have been shown to have therapeutic effects against many diseases, including NDs; however, in general, flavonoids have limited bioavailability to the target cells. One promising strategy to increase bioavailability is to entrap them in nanocarriers. OBJECTIVE This article aims to review the potential role of nanocarriers in enhancing the antineuroinflammatory efficacy of flavonoids in experimentally induced ND. METHODS A literature search was conducted in the scientific databases using the keywords "neurodegenerative", "anti-neuroinflammatory", "dietary flavonoids," "nanoparticles", and "therapeutic mechanisms". RESULTS A total of 289 articles were initially identified, of which 45 articles reported on flavonoids. After completion of the selection process, five articles that met the criteria of the review were selected for analysis. Preclinical studies identified in this review showed that nanoencapsulated flavonoids attenuated cognitive impairment and seizure, improved behavioral patterns, and reduced levels of astrocytes. Importantly, they exhibited strong antioxidant properties, increasing the levels of antioxidant enzymes and reducing oxidative stress (OS) biomarkers. Moreover, nanocarrier-complexed flavonoids decreased the levels of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nod-like receptor protein 3 inflammasome activation (NLRP3). They also had remarkable effects on important ND-related neurotransmitters, improved cognitive function via cholinergic neurotransmission, and increased prefrontal cortical and hippocampal norepinephrine (NE) and 5-hydroxytryptamine (5-HT). CONCLUSION Nanoencapsulated flavonoids should, therefore, be considered a novel therapeutic approach for the treatment of NDs.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Division of Phytochemistry and Drug-Design, Rajagiri College of Social Sciences (Autonomous), Kochi, 683104, India
| | - Varghese Edwin Hillary
- Department of Biosciences, Division of Phytochemistry and Drug-Design, Rajagiri College of Social Sciences (Autonomous), Kochi, 683104, India
- Department of Biosciences, Division of Plant Molecular Biology and Biotechnology, Rajagiri College of Social Sciences, Kochi 683104, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | | | | | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | - Rengaraju Sivasubramanian
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | | | - Monalisa Martins Montalvão
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, 49060108, Brazil
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Division of Plant Molecular Biology and Biotechnology, Rajagiri College of Social Sciences, Kochi 683104, India
| | - Valdete Kaliane da Silva Calisto
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, 49060108, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, 49060108, Brazil
| |
Collapse
|
13
|
Kumar V, Nair SC. Nano Lipid Carriers as a Promising Drug Delivery Carrier for Neurodegenerative Disorders - An Overview of Recent Advances. Recent Pat Biotechnol 2024; 18:2-21. [PMID: 38205772 DOI: 10.2174/1872208317666230320164219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 01/12/2024]
Abstract
The last few decades have seen a rise in the number of deaths caused by neurological disorders. The blood-brain barrier (BBB), which is very complex and has multiple mechanisms, makes drug delivery to the brain challenging for many scientists. Lipid nanoparticles (LNPs) such as nanoemulsions, solid-lipid nanoparticles, liposomes, and nano lipid carriers (NLCs) exhibit enhanced bioavailability and flexibility among these nanocarriers. NLCs are found to be very effective. In the last few decades, they have been a center of attraction for controlled drug delivery. According to the current global status of specific neurological disorders, out of all LNPs, NLC significantly reduces the cross-permeability of drugs through the BBB due to their peculiar properties. They offer a host of advantages over other carriers because of their biocompatibility, safety, non-toxicity, non-irritating behavior, stability, high encapsulation efficiency, high drug loading, high drug targeting, control of drug release, and ease in manufacturing. The biocompatible lipid matrix is ideally suited as a drug carrier system due to the nano-size range. For certain neurological conditions such as Parkinsonism, Alzheimer's, Epilepsy, Multiple sclerosis, and Brain cancer, we examined recent advances in NLCs to improve brain targeting of bioactive with special attention to formulation aspects and pharmacokinetic characteristics. This article also provides a brief overview of a critical approach for brain targeting, i.e., direct nose-to-brain drug delivery and some recent patents published on NLC".
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sreeja C Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| |
Collapse
|
14
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
15
|
Dighe S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal Drug Delivery by Nanotechnology: Advances in and Challenges for Alzheimer's Disease Management. Pharmaceutics 2023; 16:58. [PMID: 38258068 PMCID: PMC10820353 DOI: 10.3390/pharmaceutics16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative condition, is characterized by a gradual decline in cognitive functions. Current treatment approaches primarily involve the administration of medications through oral, parenteral, and transdermal routes, aiming to improve cognitive function and alleviate symptoms. However, these treatments face limitations, such as low bioavailability and inadequate permeation. Alternative invasive methods, while explored, often entail discomfort and require specialized assistance. Therefore, the development of a non-invasive and efficient delivery system is crucial. Intranasal delivery has emerged as a potential solution, although it is constrained by the unique conditions of the nasal cavity. An innovative approach involves the use of nano-carriers based on nanotechnology for intranasal delivery. This strategy has the potential to overcome current limitations by providing enhanced bioavailability, improved permeation, effective traversal of the blood-brain barrier, extended retention within the body, and precise targeting of the brain. The comprehensive review focuses on the advancements in designing various types of nano-carriers, including polymeric nanoparticles, metal nanoparticles, lipid nanoparticles, liposomes, nanoemulsions, Quantum dots, and dendrimers. These nano-carriers are specifically tailored for the intranasal delivery of therapeutic agents aimed at combatting Alzheimer's disease. In summary, the development and utilization of intranasal delivery systems based on nanotechnology show significant potential in surmounting the constraints of current Alzheimer's disease treatment strategies. Nevertheless, it is essential to acknowledge regulatory as well as toxicity concerns associated with this route; meticulous consideration is required when engineering a carrier. This comprehensive review underscores the potential to revolutionize Alzheimer's disease management and highlights the importance of addressing regulatory considerations for safe and effective implementations. Embracing this strategy could lead to substantial advancements in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Sayali Dighe
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sunil Jog
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
- Indoco Remedies Private Limited, Mumbai 400098, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
16
|
Tawfik MA, Eltaweel MM, Fatouh AM, Shamsel-Din HA, Ibrahim AB. Brain targeting of zolmitriptan via transdermal terpesomes: statistical optimization and in vivo biodistribution study by 99mTc radiolabeling technique. Drug Deliv Transl Res 2023; 13:3059-3076. [PMID: 37273147 PMCID: PMC10624728 DOI: 10.1007/s13346-023-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Zolmitriptan (ZT) is a potent second generation triptan, commonly administered to alleviate migraine attacks. ZT suffers various limitations; massive hepatic first pass metabolism, P-gp efflux transporters susceptibility, and limited (≈40%) oral bioavailability. Transdermal route of administration could be explored to enhance its bioavailability. A 23.31 full factorial design was constructed to developed twenty-four ZT loaded terpesomes via thin film hydration technique. The influence of drug: phosphatidylcholine ratio, terpene type, terpene concentration and sodium deoxycholate concentration on the characterization of the developed ZT-loaded terpesomes was assessed. Particle size (PS), zeta potential (ZP), ZT entrapment efficiency (EE%), drug loading (DL%) and drug released percentages after 6 h (Q6h) were the selected dependent variables. Further morphological, crystallinity, and in-vivo histopathological studies were conducted for the optimum terpesomes (T6). 99mTc-ZT and 99mTc-ZT-T6 gel were radio-formulated for in-vivo biodistribution studies in mice following transdermal application of 99mTc-ZT-T6 gel, relative to 99mTc-ZT oral solution. T6 terpesomes [comprising ZT and phosphatidylcholine (1:15), cineole (1% w/v) and sodium deoxycholate (0.1% w/v)] were optimum with respect to spherical PS (290.2 nm), ZP (-48.9 mV), EE% (83%), DL% (3.9%) and Q6h (92.2%) with desirability value of 0.85. The safety of the developed T6 terpesomes was verified by the in-vivo histopathological studies. 99mTc-ZT-T6 gel showed maximum brain concentration (5 ± 0.1%ID/ g) with highest brain to blood ratio of 1.92 ± 0.1 at 4 h post transdermal application. Significant improvement of ZT brain relative bioavailability (529%) and high brain targeting efficiency (315%) were revealed with 99mTc-ZT-T6 gel, which confirmed successful ZT delivery to the brain. Terpesomes could be safe, successful systems capable of improving ZT bioavailability with high brain targeting efficiency.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Fatouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
17
|
Rana SJ, Zafar S, Shahzad A, Basit M, Mudassir J, Akhlaq M, Chohan TA, Arshad MS. Preparation of Tamsulosin Hydrochloride-Loaded Mucoadhesive In Situ Gelling Polymeric Formulation for Nasal Delivery in Geriatrics. AAPS PharmSciTech 2023; 24:242. [PMID: 38017208 DOI: 10.1208/s12249-023-02700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
This study aimed to prepare tamsulosin hydrochloride (HCl)-loaded in situ gelling formulation by using hydroxypropyl methylcellulose (HPMC), gellan gum, poloxamer 188, and benzalkonium chloride. Physicochemical evaluation of formulations included determination of pH, viscosity, gelation time, gel strength, drug content, and sterility. In silico study was performed to analyze interactions between polymers, drug, and mucin glycoprotein. In vitro degradation time, drug release, ex vivo mucoadhesion time, permeation, in vivo pharmacokinetics, and stability studies were performed to assess the formulation. Formulations were transparent and displayed acceptable physicochemical attributes. Tamsulosin HCl and polymers interacted via non-covalent interactions. HPMC formed hydrogen bonds, hydrophobic and van der Waals interactions with mucin protein while the drug formed hydrogen bonds only. Gel formulation degraded in simulated nasal fluid within 24 h. In situ gelling formulation showed 83.8 ± 1.7% drug release and remained adhered to the mucosa for 24.5 ± 1 h. A higher (~ 1.85 times) drug permeation was recorded through mucosa within 6 h by in situ gelling formulation when compared to control counterparts (aqueous solution of drug and in situ gelling formulation without poloxamer 188). Nasal administration of tamsulosin HCl by using in situ gelling formulation led to a ~ 3.3 and ~ 3.5 times, respectively, higher Cmax (maximum plasma concentration) and AUCtotal (total area under the curve) than the orally administered aqueous solution. Relative bioavailability of drug delivered by nasal in situ gelling formulation was 3.5 times the oral counterpart. These results indicated that the prepared in situ gelling formulation can act as a promising candidate for systemic administration of tamsulosin HCl.
Collapse
Affiliation(s)
- Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Aqeel Shahzad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Basit
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
18
|
Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS MATERIALS AU 2023; 3:600-619. [PMID: 38089666 PMCID: PMC10636777 DOI: 10.1021/acsmaterialsau.3c00032] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 02/13/2024]
Abstract
Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.
Collapse
Affiliation(s)
- Meenu Mehta
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thuy Anh Bui
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xinpu Yang
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yagiz Aksoy
- Cancer
Diagnosis and Pathology Group, Kolling Institute of Medical Research,
Royal North Shore Hospital, St Leonards NSW 2065 Australia - Sydney
Medical School, University of Sydney, Sydney NSW 2006 Australia
| | - Ewa M. Goldys
- Graduate
School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale
Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Wei Deng
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
19
|
Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Rani C, Saharan R, Kumar S, Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. SCIENTIFICA 2023; 2023:6640103. [PMID: 37928749 PMCID: PMC10625491 DOI: 10.1155/2023/6640103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The pharmaceutical sector has made considerable strides recently, emphasizing improving drug delivery methods to increase the bioavailability of various drugs. When used as a medication delivery method, nanoemulsions have multiple benefits. Their small droplet size, which is generally between 20 and 200 nanometers, creates a significant interfacial area for drug dissolution, improving the solubility and bioavailability of drugs that are weakly water-soluble. Additionally, nanoemulsions are a flexible platform for drug administration across various therapeutic areas since they can encapsulate hydrophilic and hydrophobic medicines. Nanoemulsion can be formulated in multiple dosage forms, for example, gels, creams, foams, aerosols, and sprays by using low-cost standard operative processes and also be taken orally, topically, topically, intravenously, intrapulmonary, intranasally, and intraocularly. The article explores nanoemulsion formulation and production methods, emphasizing the role of surfactants and cosurfactants in creating stable formulations. In order to customize nanoemulsions to particular medication delivery requirements, the choice of components and production techniques is crucial in assuring the stability and efficacy of the finished product. Nanoemulsions are a cutting-edge technology with a lot of potential for improving medication bioavailability in a variety of therapeutic contexts. They are a useful tool in the creation of innovative pharmaceutical formulations due to their capacity to enhance drug solubility, stability, and delivery. Nanoemulsions are positioned to play a crucial role in boosting medication delivery and enhancing patient outcomes as this field of study continues to advance.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Suresh Kumar
- Ganpati Institute of Pharmacy, Yamunanagar, Haryana 135102, India
| | - Geeta
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K R Mangalam University, Gurugram, Haryana 122103, India
| |
Collapse
|
20
|
Waqar M, Zaman M, Hameed H, Jamshaid M, Irfan A, Shazly GA, Paiva-Santos AC, Bin Jardan YA. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS OMEGA 2023; 8:38191-38203. [PMID: 37867680 PMCID: PMC10586443 DOI: 10.1021/acsomega.3c04444] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
St. John's wort in western Europe has been extensively utilized for the treatment of mild to moderate depression. Hypericin, a red pigment, is found to be responsible for its antidepressant activity. The aim of the current study was to prepare a nanoemulsion (O/W) of hypericin designed for immediate delivery of the drug to the brain for the treatment of depression. The nanoemulsion was prepared by means of a homogenization technique, and that was followed by its physicochemical evaluation. Tween-80, Span-80, β-cyclodextrin, ethanol, and eucalyptus oil were utilized for the manufacturing of the nanoemulsion. Morphological studies have revealed globular structures of nanosize that were confirmed by the zeta analysis. The consistency of particles was revealed by the low polydispersity values. pH values of all formulations lay within the range of nasal pH. The viscosity of the prepared formulations was affected by the increase in concentrations of β-cyclodextrin. After passing from the centrifugation and freeze-thaw studies, the prepared formulations showed good stability. Formulation F2 having a composition of oil phase (0.125 mL), aqueous phase (1.25 mL), and β-cyclodextrin (8%) showed the best results out of all the formulations, and F2 had a pH of 5.7, 5.35 cP viscosity, 1.332 refractive index, 148.8 globule size, and -10.8 zeta potential. The mean percentage drug release and in vitro and ex vivo percentage drug permeations were observed to be 71.75, 76, and 75.07%, respectively. Meanwhile, formulation F2 showed the maximum drug release and permeation. In vivo behavior studies including the open field test, elevated plus maze test, and tail suspension test were conducted to see the antidepressant effect of hypericin along with comparison with a commercially available treatment. In conclusion, the prepared formulation shows good efficacy as an antidepressant and can be considered as a natural alternative over synthetic drugs.
Collapse
Affiliation(s)
- Muhammad
Ahsan Waqar
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Gamal A. Shazly
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Elkomy MH, Abo El-Ela FI, Zaki RM, Alsaidan OA, Elmowafy M, Zafar A, Shalaby K, Abdelgawad MA, Omar HA, Salama R, Eid HM. Intranasal Nanotransferosomal Gel for Quercetin Brain Targeting: II. Antidepressant Effect in an Experimental Animal Model. Pharmaceutics 2023; 15:2095. [PMID: 37631309 PMCID: PMC10457845 DOI: 10.3390/pharmaceutics15082095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Quercetin (QER) demonstrated antidepressant effects in rats exhibiting anxiety and depressive-like behaviors. In an attempt to improve QER's antidepressant activity, a QER-loaded transferosome (QER-TFS) thermosensitive gel for intranasal administration was formulated and optimized. The therapeutic effectiveness of the optimized formulation was assessed in a depressed rat model by conducting a behavioral analysis. Behavioral study criteria such as immobility, swimming, climbing, sucrose intake, number of crossed lines, rearing, active interaction, and latency to feed were all considerably enhanced by intranasal treatment with the QER-TFS in situ gel in contrast to other formulations. A nasal histopathological study indicated that the QER-TFS thermosensitive gel was safe for the nasal mucosa. An immunohistochemical analysis showed that the animals treated with the QER-TFS thermosensitive gel had the lowest levels of c-fos protein expression, and brain histopathological changes in the depressed rats were alleviated. According to pharmacodynamic, immunohistochemical, and histopathological experiments, the intranasal administration of the QER-TFS thermosensitive gel substantially alleviated depressive symptoms in rats. However, extensive preclinical investigations in higher animal models are needed to anticipate its effectiveness in humans.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Omar A. Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Hany A. Omar
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rania Salama
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia;
- Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
22
|
Naser SS, Singh D, Preetam S, Kishore S, Kumar L, Nandi A, Simnani FZ, Choudhury A, Sinha A, Mishra YK, Suar M, Panda PK, Malik S, Verma SK. Posterity of nanoscience as lipid nanosystems for Alzheimer's disease regression. Mater Today Bio 2023; 21:100701. [PMID: 37415846 PMCID: PMC10320624 DOI: 10.1016/j.mtbio.2023.100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aβ peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Dibyangshee Singh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Faizan Zarreen Simnani
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Sumira Malik
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| |
Collapse
|
23
|
Ghazwani M, Vasudevan R, Kandasamy G, Manusri N, Devanandan P, Puvvada RC, Veeramani VP, Paulsamy P, Venkatesan K, Chidmabaram K, Dhurke R. Formulation of Intranasal Mucoadhesive Thermotriggered In Situ Gel Containing Mirtazapine as an Antidepressant Drug. Gels 2023; 9:457. [PMID: 37367128 DOI: 10.3390/gels9060457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The purpose of the present work was to develop nanoemulsion-based formulations of mirtazapine for intranasal delivery using a spray actuator to target the brain for treating depression. Research on the solubility of medications in different oils, surfactants, co-surfactants, and solvents has been done. Using pseudo-ternary phase diagrams, the various ratios of the surfactant and co-surfactant mix were computed. Thermotriggered nanoemulsion was formulated using different concentrations of poloxamer 407 (i.e., 15%, 15.5%, 16%, 16.5% up to 22%). Similarly, mucoadhesive nanoemulsion using 0.1% Carbopol and water-based plain nanoemulsions were also prepared for comparative assessment. The developed nanoemulsions were analyzed for physicochemical properties, i.e., physical appearance, pH, viscosity, and drug content. Drug-excipient incompatibility was determined by Fourier transform infrared spectral (FTIR) analysis and differential scanning calorimetry (DSC). In vitro drug diffusion studies were conducted for optimized formulations. Among the three formulations, RD1 showed the highest percentage of drug release. Ex vivo drug diffusion studies were conducted on freshly excised sheep nasal mucosa with Franz diffusion cell simulated nasal fluid (SNF) for all three formulations up to 6 h, and the thermotriggered nanoemulsion (RD1) showed 71.42% drug release with 42.64 nm particle size and a poly dispersity index of 0.354. The zeta potential was found to be -6.58. Based on the above data, it was concluded that thermotriggered nanoemulsion (RD1) has great potential to be used as an intranasal gel for treating depression in patients. It can offer great benefits by reducing dosing frequency and improving bioavailability of mirtazapine by direct nose-to-brain delivery.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Naredla Manusri
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Praveen Devanandan
- Department of Pharmacy Practice, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Ranadheer Chowdary Puvvada
- Department of Pharmacy Practice, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Vinoth Prabhu Veeramani
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Krishnaraju Venkatesan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kumarappan Chidmabaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Rajeshri Dhurke
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| |
Collapse
|
24
|
Dudeja I, Mankoo RK, Singh A. Citric acid crosslinked ternary blended (polyvinyl alcohol, lignin, lemongrass essential oil/nanoemulsions) biopolymeric hydrogel films: structural, functional, antioxidant, antifungal and biodegradable properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
25
|
Simón JA, Utomo E, Pareja F, Collantes M, Quincoces G, Otero A, Ecay M, Domínguez-Robles J, Larrañeta E, Peñuelas I. Radiolabeled Risperidone microSPECT/CT Imaging for Intranasal Implant Studies Development. Pharmaceutics 2023; 15:pharmaceutics15030843. [PMID: 36986704 PMCID: PMC10054269 DOI: 10.3390/pharmaceutics15030843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I− took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants.
Collapse
Affiliation(s)
- Jon Ander Simón
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Emilia Utomo
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Félix Pareja
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - María Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (M.C.); (E.L.)
| | - Gemma Quincoces
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Aarón Otero
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 41012 Seville, Spain
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
- Correspondence: (M.C.); (E.L.)
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
26
|
Gadhave D, Gupta A, Khot S, Tagalpallewar A, Kokare C. Nose-to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:315-333. [PMID: 36037930 DOI: 10.1016/j.pharma.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Oral delivery of paliperidone palmitate (PPD), a potent antipsychotic agent, has been reported with a potential risk of very serious drug-induced adverse events such as tachycardia, hyperprolactinemia, sexual dysfunction, and neutropenia. Alternatively, the potential of nasal delivery has also been explored to treat CNS complications by delivering the medicines directly to the brain bypassing the blood-brain barrier. Hence, the objectives of current work were to formulate, design, optimize, and investigate the therapeutic potency of PPD-loaded intranasal in-situ gel (PPGISG) in the treatment of schizophrenia. PPD-nanoemulsion (PNE) was fabricated using water titration technique, was further optimized via Box-Behnken design. Furthermore, the optimized PNE was evaluated for parameters such as globule size, polydispersity index, zeta potential, and % entrapment efficiency were found to be 21.44±1.58nm, 0.268±0.02, -25.56±1.6mV, and 99.89±0.25%, respectively. PNE was further converted to PPGISG utilizing two polymers, poloxamer, and guar gum. Simultaneously, ex-vivo permeation for PNE, PPGISG, and PPD-suspension was found to be 211.40±4.8, 297.89±3.9 and 98.66±1.6μg/cm2, respectively. While PPGISG nanoparticles showed 1.58 and 5.65-folds more Jss than PNE and PPD-suspension. Behavioral studies confirmed that no extrapyramidal symptoms were observed in experimental animals post intranasal administration. Finally, the outcomes of the in-vivo hemato-compatibility study proved that intranasal formulation did not cause any alteration in leukocytes, RBCs, and neutrophils count. Therefore, intranasal delivery of PPGISG can be considered a novel tool for the safe delivery of PPD in schizophrenic patients.
Collapse
Affiliation(s)
- D Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, 413130, Maharashtra, India.
| | - A Gupta
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - S Khot
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - A Tagalpallewar
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; School of Pharmacy, Department of Pharmaceutics, MIT World Peace University, Pune, 411038, Maharashtra, India
| | - C Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
27
|
Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023; 15:772. [PMID: 36986633 PMCID: PMC10058399 DOI: 10.3390/pharmaceutics15030772] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
28
|
Prasad S, Dangi JS. Targeting efficacy and anticancer activity of polymeric nanoparticles of SN-38 on colon cancer cell lines. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
Background
Colorectal cancer is the third most prevailing cancer in the whole world. Chemotherapeutic agents which are used for treatment have severe side effects and also have unwanted exposure to healthy cells. In the present study, polymeric nanoparticles of SN-38 were prepared (using cationic and anionic polymers). They were optimized by Box Behnken design and characterized for its physicochemical properties and in vitro drug release. Optimized formulation (CsENP) was evaluated for its targeting efficacy by Gamma Scintigraphy studies on Swiss Albino mice and in vitro Cytotoxic assay against colon cancer cell line, viz. HT-29.
Results
The images of Whole body gamma scintigraphy imaging of Swiss Albino mice show that CsENP remained intact till 2 h and after that at 4 h imaging it started dispersing and releasing drug which continued till 20 h. In Organ distribution studies, no radioactivity was traced in heart from the formulation. Even in liver, spleen, kidney and lung trace radioactivity was seen after 6 h. In case of CsENP radioactivity was seen in small intestine after 2 h and maximum (87.8% radioactivity) is seen in colon and rectum area after 4 h. At equivalent concentrations, the in vitro cell viability of HT-29 cells after 72 h incubation time showed that CsENP have enhanced cytotoxicity.
Conclusions
The results obtained of Whole body gamma scintigraphy imaging and organ distribution of Swiss Albino mice show that CsENP is Colon targeting and was found to be effective against colon cancer cell lines.
Collapse
|
29
|
Intranasally administered thermosensitive gel for brain-targeted delivery of rhynchophylline to treat Parkinson's disease. Colloids Surf B Biointerfaces 2023; 222:113065. [PMID: 36473372 DOI: 10.1016/j.colsurfb.2022.113065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The aim of this study is to overcome the obstacle of the blood-brain barrier (BBB) in therapeutic drugs of Parkinson's disease (PD), like rhynchophylline (RIN) entry by intranasal administration and to solve the problem of short residence time of drugs in the nasal cavity by the dosage form design of thermosensitive gel. We first conducted a study of the screening of absorption enhancers and 3% hydroxypropyl-β-cyclodextrin (HP-β-CD) was effective to improve the nasal mucosal permeability of RIN. By adjusting the ratio of different components in order to make the gel with adhesion and rapid gelation which were determined to be Poloxamer 407 (P407) 20%, Poloxamer 188 (P188) 1%, polyethylene glycol 6000 (PEG-6000) 1% and HP-β-CD 3%. In addition, the characterization showed that the thermosensitive gel was network cross-linked, rapidly gelation upon entry into the nasal cavity and was stable as semi-solid state with adhesion as well as sustained release properties. Moreover, pharmacokinetic study was performed to evaluate the bioavailability and brain targeting of RIN thermosensitive gel and which were 1.6 times and 2.1 times higher than those of oral administration. We also evaluated the anti-PD effects of RIN thermosensitive gel in-vitro as well as in-vivo. The results showed that RIN thermosensitive gel was effective in repairing the motor function impairment, dysregulated expression levels of oxidative stress factors, and positive neuronal damage within the substantia nigra and dopamine caused by PD. The constructed intranasal drug administration strategy through thermosensitive gel provided a new choice for targeted treatment of PD together with other central nervous system diseases.
Collapse
|
30
|
Kannavou M, Karali K, Katsila T, Siapi E, Marazioti A, Klepetsanis P, Calogeropoulou T, Charalampopoulos I, Antimisiaris SG. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15020419. [PMID: 36839740 PMCID: PMC9967044 DOI: 10.3390/pharmaceutics15020419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Intranasal administration offers an alternative and promising approach for direct nose-to-brain delivery. Herein, we developed two chitosan (CHT)-coated (and uncoated) nanoformulations of BNN27 (a synthetic C-17-spiro-dehydroepiandrosterone analogue), liposomes (LIPs), and nanoemulsions (NEs), and compared their properties and brain disposition (in vitro and in vivo). LIPs were formulated by thin film hydration and coated with CHT by dropwise addition. BNN27-loaded NEs (BNEs) were developed by spontaneous emulsification and optimized for stability and mucoadhesive properties. Mucoadhesive properties were evaluated by mucin adherence. Negatively charged CHT-coated LIPs (with 0.1% CHT/lipid) demonstrated the highest coating efficiency and mucoadhesion. BNEs containing 10% w/w Capmul-MCM and 0.3% w/w CHT demonstrated the optimal properties. Transport of LIP or NE-associated rhodamine-lipid across the blood-brain barrier (in vitro) was significantly higher for NEs compared to LIPs, and the CHT coating demonstrated a negative effect on transport. However, the CHT-coated BNEs demonstrated higher and faster in vivo brain disposition following intranasal administration compared to CHT-LIPs. For both BNEs and LIPs, CHT-coating resulted in the increased (in vivo) brain disposition of BNN27. Current results prove that CHT-coated NEs consisting of compatible nasal administration ingredients succeeded in to delivering more BNN27 to the brain (and faster) compared to the CHT-coated LIPs.
Collapse
Affiliation(s)
- Maria Kannavou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Antonia Marazioti
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Pavlos Klepetsanis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
- Correspondence: ; Tel.: +30-610962332
| |
Collapse
|
31
|
Shirsath K, Agrawal YO. A Potential Strategy for Treating Parkinson's Disease Through Intranasal Nanoemulsions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1137-1145. [PMID: 35733314 DOI: 10.2174/1871527321666220622163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Intranasal delivery has great potential to cross the blood-brain barrier and deliver the drug molecule into the central nervous system faster than the traditional methods. The olfactory neuronal and trigeminal pathways both are involved in intranasal delivery. The nano-technology is an innovative strategy for the nose to brain delivery. The mucoadhesive nanoemulsion formulation is a modified technology that increases the duration of drug accumulation and provides prolonged delivery at a targeted site. The nanoemulsion formulation oil, surfactant, and co-surfactant components maintain lower surface tension and particle coalescence. The globule dimension and zeta potential are affected in brain targeting. The globule size of the innovative formulation should be < 200 nm for drug permeation because, in humans, the average axon magnitude ranges from around 100 to 700 nm. Furthermore, modified technology of nanoemulsions like nanogel and nanoemulsion in-situ gel provide a great advantage to cure neurodegenerative disorders. Therefore, focusing on the innovative pharmaceutical approaches of nanoemulsion in intranasal drug delivery, the current review provides insight into the applications of nanoemulsion in neurodegenerative disorders like Parkinson's disease, which are due to the depletion of dopamine in substania nigra resulting in cardinal motor activity bradykinesia and tremors. The review also touches upon the pathways for intranasal delivery of nanoemulsion, the pathogenesis of Parkinson's disease, and the future direction of the research on intranasal nanoemulsion.
Collapse
Affiliation(s)
- Krushna Shirsath
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
32
|
Mathure D, Sutar AD, Ranpise H, Pawar A, Awasthi R. Preparation and Optimization of Liposome Containing Thermosensitive In Situ Nasal Hydrogel System for Brain Delivery of Sumatriptan Succinate. Assay Drug Dev Technol 2023; 21:3-16. [PMID: 36576871 DOI: 10.1089/adt.2022.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Drug absorption is improved by the intranasal route's wide surface area and avoidance of first-pass metabolism. For the treatment of central nervous system diseases such as migraine, intranasal administration delivers the medication to the brain. The study's purpose was to develop an in situ nasal hydrogel that contained liposomes that were loaded with sumatriptan succinate (SS). A thin-film hydration approach was used to create liposomes, and a 32 factorial design was used to optimize them. The optimized liposomes had a spherical shape, a 171.31 nm particle size, a high drug encapsulation efficiency of 83.54%, and an 8-h drug release of 86.11%. To achieve in situ gel formation, SS-loaded liposomes were added to the liquid gelling system of poloxamer-407, poloxamer-188, and sodium alginate. The final product was tested for mucoadhesive strength, viscosity, drug content, gelation temperature, and gelation time. Following intranasal delivery, in vivo pharmacokinetic investigations showed a significant therapeutic concentration of the medication in the brain with a Cmax value of 167 ± 78 ng/mL and an area under the curve value of 502 ± 63 ng/min·mL. For SS-loaded liposomal thermosensitive nasal hydrogel, significantly higher values of the nose-to-brain targeting parameters, that is, drug targeting index (2.61) and nose-to-brain drug direct transport (57.01%), confirmed drug targeting to the brain through the nasal route. Liposomes containing thermosensitive in situ hydrogel demonstrated potential for intranasal administration of SS.
Collapse
Affiliation(s)
- Dyandevi Mathure
- Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Ashish Dilip Sutar
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | | | - Atmaram Pawar
- Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Dehradun, India
| |
Collapse
|
33
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
34
|
George MY, El-Derany MO, Ahmed Y, Zaher M, Ibrahim C, Waleed H, Khaled H, Khaled G, Saleh A, Alshafei H, Alshafei R, Ahmed N, Ezz S, Ashraf N, Ibrahim SS. Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway. Expert Opin Drug Deliv 2023; 20:159-174. [PMID: 36446395 DOI: 10.1080/17425247.2023.2153831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVES The present study aims to formulate and evaluate the efficacy of chrysin-loaded nanoemulsion (CH NE) against lithium/pilocarpine-induced epilepsy in rats, as well as, elucidate its effect on main epilepsy pathogenesis cornerstones; neuronal hyperactivity, oxidative stress, and neuroinflammation. METHODS NEs were characterized by droplet size, zeta potential, pH, in vitro release, accelerated and long-term stability studies. Anti-convulsant efficacy of the optimized formula and underlying mechanisms involved were assessed and compared to that from CH suspension given orally at a 30 folds higher dose. RESULTS Optimized formula displayed a droplet size of 48.09 ± 0.83 nm, PDI 0.25 ± 0.011, sustained release, and good stability. CH treatment reduced seizures scoring, corrected behavioral and histological changes induced by Li/Pilo. Moreover, CH restored neurotransmitters balance and oxidative stress markers levels. Besides, CH induced microglia polarization from M1 to M2 hindering inflammation induced by Li/Pilo. Also, CH restored energy metabolism homeostasis via regulating protein expression of AMPK/SIRT-1/PGC-1α pathway markers. CH NE formulation was found to significantly enhance drug delivery to rats' hippocampus compared to CH suspension. CONCLUSION Our findings prove the therapeutic efficacy of CH NE at a lower dose which could be a potential brain targeting platform to combat epilepsy.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Yasmine Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Malvina Zaher
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Caroline Ibrahim
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Habiba Waleed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hajar Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehad Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Saleh
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Huda Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rahma Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nirmeen Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Ezz
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Ashraf
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
35
|
Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:119-152. [PMID: 35910081 PMCID: PMC9308891 DOI: 10.1007/s40005-022-00589-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
Abstract
Background Cranial nerve-related diseases such as brain tumors, Alzheimer's disease, and epilepsy are serious diseases that continue to threaten human. Brain-related diseases are increasing worldwide, including in the United States and Korea, and these increases are closely related to the exposure to harmful substances and excessive stress caused by rapid industrialization and environmental pollution. Drug delivery to the brain is very important for the effective prevention and treatment of brain-related diseases. However, due to the presence of the blood-brain barrier and the extensive first-pass metabolism effect, the general routes of administration such as oral and intravenous routes have limitations in drug delivery to the brain. Therefore, as an alternative, the nasal-brain drug delivery route is attracting attention as a route for effective drug delivery to the brain. Areas covered This review includes physiological factors, advantages, limitations, current application status, especially in clinical applications, and the necessary factors for consideration in formulation development related to nasal-brain drug delivery. Expert opinion The nasal-brain drug delivery route has the advantage of enhancing drug delivery to the brain locally, mainly through the olfactory route rather than the systemic circulation. The nasal-brain lymphatic system has recently attracted attention, and it has been implied that the delivery of anticancer drugs to the brain nervous system is possible effectively. However, there are limitations such as low drug permeability, as well as nasal mucosa and the mucociliary system, as obstacles in nasal-brain drug delivery. Therefore, to overcome the limitations of nasal-brain drug delivery, the use of nanocarriers and mucoadhesive agents is being attempted. However, very few drugs have been officially approved for clinical application via the nasal-brain drug delivery route. This is probably because the understanding of and related studies on nasal-brain drug delivery are limited. In this review, we tried to explore the major considerations and target factors in drug delivery through the nasal-brain route based on physiological knowledge and formulation research information. This will help to provide a mechanistic understanding of drug delivery through the nasal-brain route and bring us one step closer to developing effective formulations and drugs in consideration of the key factors for nasal-brain drug delivery.
Collapse
|
36
|
Bseiso EA, AbdEl-Aal SA, Nasr M, Sammour OA, El Gawad NAA. Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality. Drug Deliv 2022; 29:2469-2480. [PMID: 35892291 PMCID: PMC9341381 DOI: 10.1080/10717544.2022.2104405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke accounts for about 87% of all strokes, causing long-term disability in adults, and is the second leading cause of death worldwide. In search of new therapeutic modalities, the use of neuroprotective agents loaded in nanocarriers to be delivered by noninvasive means (i.e. via intranasal route) became a popular approach. In the current study, melatonin (MEL) was loaded in lipidic nanocapsules (LNCs) prepared using the phase inversion method, and characterized in terms of size, polydispersity, zeta potential, in vitro drug release, viscosity, storage stability, and ex vivo permeation across sheep nasal mucosa. Moreover, MEL-LNCs were tested for efficacy in cerebral ischemia/reperfusion (I/R/) injury model through histopathological assessment, and analysis of oxidative stress markers, pro-inflammatory cytokines, and apoptotic markers. Results showed that LNCs exhibited particle size ranging from 18.26 to 109.8 nm, negative zeta potential, good storage stability, spherical morphology, and a burst release followed by a sustained release pattern. LNCs exhibited 10.35 folds higher permeation of MEL than the drug solution across sheep nasal mucosa. Post-ischemic intranasal administration of MEL-LNCs revealed lowering of oxidative stress manifested by a decrease in malondialdehyde levels, and elevation of glutathione and superoxide dismutase levels, lowering of the inflammatory markers tumor necrosis factor-α, NO, myeloperoxidase, and significant inhibition of Caspase-3 activity as an apoptotic marker. Western blot analysis delineated a recovery of protein expression Nrf-2 and HO-1 with downregulation in the parent inflammatory markers nuclear factor kappa B p65, inducible nitric oxide synthase, Bax, and Cytochrome C expressions, and upregulation of B-cell lymphoma-2 Bcl-2, hence promoting neuronal survival. This was supported by histological evidence, revealing significant restoration of hippocampal neurons. In light of the above, it can be concluded that MEL-LNCs could be a promising delivery system for nose to brain delivery for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Sarah A AbdEl-Aal
- Pharmacology and Toxicology Division, Department of Pharmacy, KUT University College, Al Kut, Wasit52001, Iraq
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nabaweya A Abd El Gawad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
37
|
Nemade SM, Kakad SP, Kshirsagar SJ, Padole TR. Development of nanoemulsion of antiviral drug for brain targeting in the treatment of neuro-AIDS. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Delivery of drugs via the nasal route directly to the brain utilizing the olfactory pathway is purportedly known to be a more efficient method to deliver neuro-therapeutics to the brain by circumventing the BBB, thereby increasing the bioavailability of these drugs in the brain. The main objective of the project work is to improve the bioavailability of the antiretroviral drug and to minimize the side effects of this therapy which are observed at the higher side in the chronic HIV treatment. The advantage of nasal drug delivery is its noninvasiveness and self-administration. Nanoformulation provides fast onset of action and helps to achieve site-specific delivery. In the current work, nanoemulsion formulation was developed with a ternary phase system. In vitro characterization of nanoemulsion was performed.
Result
Optimized batch B2 had a zeta potential of − 18.7 mV showing a stable emulsion system and a particle size of 156.2 nmin desirable size range. Batch B2 has the least variation in globule size with PDI 0.463. Results from ex vivo studies revealed that developed nanoemulsion (B2) possessed a higher rate of drug release compared to other formulations.
Conclusion
Phase diagrams indicated more width of the nanoemulsion region with an increase in surfactant ratio. Stable nanoemulsion was prepared with a combination of surfactant and co-surfactants. Nanoemulsions could prove one of the best alternatives for brain delivery of potent medications.
Graphical Abstract
Collapse
|
38
|
Kaur A, Nigam K, Tyagi A, Dang S. A Preliminary Pharmacodynamic Study for the Management of Alzheimer’s Disease Using Memantine-Loaded PLGA Nanoparticles. AAPS PharmSciTech 2022; 23:298. [DOI: 10.1208/s12249-022-02449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
|
39
|
Bahadur S, Jha MK. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Patil MU, Rajput AP, Belgamwar VS, Chalikwar SS. Development and characterization of amphotericin B nanoemulsion-loaded mucoadhesive gel for treatment of vulvovaginal candidiasis. Heliyon 2022; 8:e11489. [PMID: 36411885 PMCID: PMC9674507 DOI: 10.1016/j.heliyon.2022.e11489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Despite being recognized as the "gold standard" for treating azole-resistant vulvovaginal candidiasis, amphotericin B (AmB), an amphoteric molecule, has not been widely used due to serious issues with solubility and permeability. In light of the aforementioned, the objective of the present study was to increase AmB's therapeutic efficacy by formulating it into an o/w nanoemulsion (AmB-NE) system. Furthermore, to facilitate AmB-NE's retention within the vaginal cavity, it was loaded into a mixture of Carbopol® 974P and Aloe vera-based gel (CA gel). Briefly, in the present study, a kinetically stable batch of formulated AmB-NE having a globule size of 76.52 ± 3.11 nm, PDI of 0.342 ± 0.032, and zeta potential of -22.32 ± 0.88 mV was incorporated into the CA gel base. This AmB-NE loaded gel (AmB-NE gel) exhibited a non-Fickian/anomalous diffusion from the hydrophilic matrix. The texture analysis of AmB-NE gel revealed that the prepared gel was a non-drip, soft, easy to spread, and sufficiently cohesive gel that could reside in the vaginal cavity, which was confirmed by our ex-vivo retention test, which revealed that AmB-NE loaded gel could stay in the vaginal cavity for approximately 11 h. Ex-vivo skin permeation studies revealed that AmB-NE is 4.26 times more permeable than AmB-coarse gel, implying that AmB-NE facilitates AmB entry into the vaginal epithelial layers. Furthermore, in-vivo vaginal lavage studies revealed that AmB-NE gel permeated 7.03-fold more than AmB-coarse gel. Prepared AmB-NE gel was stable in refrigerated condition and showed no histopathological toxicity. Thus, the present study suggests that AmB-NE gel could eliminate the existing problem of AmB and that it could serve as an alternative option to treat vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Mrunal U. Patil
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra State, India
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix-Marseille-Université (luminy), 163, Avenue luminy, 13288 Marseille, France
| | - Amarjitsing P. Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Veena S. Belgamwar
- University Department of Pharmaceutical Sciences Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur 440033, Maharashtra, India
| | - Shailesh S. Chalikwar
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra State, India
| |
Collapse
|
41
|
Ibrahim A, Abdel Gaber SA, Fawzi Kabil M, Ahmed-Farid OA, Hirsch AK, El-Sherbiny IM, Nasr M. Baicalin lipid nanocapsules for treatment of glioma: Characterization, mechanistic cytotoxicity, and pharmacokinetic evaluation. Expert Opin Drug Deliv 2022; 19:1549-1560. [DOI: 10.1080/17425247.2022.2139370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | | | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
42
|
Arora D, Bhatt S, Kumar M, Verma R, Taneja Y, Kaushal N, Tiwari A, Tiwari V, Alexiou A, Albogami S, Alotaibi SS, Mittal V, Singla RK, Kaushik D, Batiha GES. QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer's therapeutics. Front Aging Neurosci 2022; 14:960246. [PMID: 36034142 PMCID: PMC9407039 DOI: 10.3389/fnagi.2022.960246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects a wide range of populations and is the primary cause of death in various countries. The treatment of AD is still restricted to oral conventional medicines that act only superficially. Fabrication of intranasal solid lipid nanoparticulate system for the uptake of therapeutic agents will act as a convincing approach with limited off-site toxicity and increased pharmacological activity. The objective of this study was to formulate, optimize, and evaluate the efficiency of rivastigmine tartrate (RT)-loaded intranasal solid lipid nanoparticles (SLNs) employing the solvent-evaporation diffusion method. To optimize the formulation parameters, the central composite design (CCD) was used. Lipid concentration (X1) and surfactant concentration (X2) were considered to be independent variables, while particle size (Y1), percentage entrapment efficiency (Y2), and percentage drug release (Y3) were considered as responses. The solid lipid was glyceryl monostearate, while the surfactant was polysorbate 80. The optimized formulation has a particle size of 110.2 nm, % entrapment efficiency of 82.56%, and % drug release of 94.86%. The incompatibility of drug excipients was established by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Nasal histopathology tests on sheep mucosa revealed that the developed SLNs were safe to utilize for intranasal delivery with no toxicity. Ex vivo permeation investigations revealed that the flux and diffusion coefficients for RT solid lipid nanoparticles and RT solution were 3.378 g/cm2 /h and 0.310-3 cm2 /h, respectively. Stability studies demonstrated that the developed SLNs were stable when stored under various storage conditions. The viability and vitality of adopting a lipid particle delivery system for improved bioavailability via the intranasal route were also established in the in vivo pharmacokinetic investigations. According to the histopathological and pharmacokinetic investigations, the developed formulations were safe, non-lethal, efficient, and robust. These results suggest the potentiality provided by rivastigmine tartrate-loaded solid lipid nanoparticles for nasal delivery.
Collapse
Affiliation(s)
- Deepshi Arora
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Gurugram, Haryana, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Gurugram, Haryana, India
| | - Yugam Taneja
- Zeon Lifesciences Pvt. Ltd., Paonta Sahib, Himachal Pradesh, India
| | - Nikita Kaushal
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | | | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Moradabad, UP, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med Austria, Wien, Austria
| | | | | | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Gaber El-Saber Batiha
- Faculty of Veterinary Medicine, Department of Pharmacology and Therapeutics, Damanhour University, Damanhour, Egypt
| |
Collapse
|
43
|
Utomo E, Domínguez-Robles J, Moreno-Castellanos N, Stewart SA, Picco CJ, Anjani QK, Simón JA, Peñuelas I, Donnelly RF, Larrañeta E. Development of intranasal implantable devices for schizophrenia treatment. Int J Pharm 2022; 624:122061. [PMID: 35908633 DOI: 10.1016/j.ijpharm.2022.122061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
Abstract
In this work the preparation and characterisation of intranasal implants for the delivery of risperidone (RIS) is described. The aim of this work is to develop better therapies to treat chronic conditions affecting the brain such as schizophrenia. This type of systems combines the advantages of intranasal drug delivery with sustained drug release. The resulting implants were prepared using biodegradable materials, including poly(caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). These polymers were combined with water-soluble compounds, such as poly(ethylene glycol) (PEG) 600, PEG 3000, and Tween® 80 using a solvent-casting method. The resulting implants contained RIS loadings ranging between 25 and 50%. The obtained implants were characterised using a range of techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Moreover, in vitro RIS release was evaluated showing that the addition of water-soluble compounds exhibited significant faster release profiles compared to pristine PCL and PLGA-based implants. Interestingly, PCL-based implants containing 25% of RIS and PLGA-based implants loaded with 50% of RIS showed sustained drug release profiles up to 90 days. The former showed faster release rates over the first 28 days but after this period PLGA implants presented higher release rates. The permeability of RIS released from the implants through a model membrane simulating nasal mucosa was subsequently evaluated showing desirable permeation rate of around 2 mg/day. Finally, following in vitro biocompatibility studies, PCL and PLGA-based implants showed acceptable biocompatibility. These results suggested that the resulting implants displayed potential of providing prolonged drug release for brain-targeting drugs.
Collapse
Affiliation(s)
- Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- CICTA, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya, No. 43, Makassar 90234, Indonesia
| | - Jon Ander Simón
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
44
|
Intranasally administered melatonin core-shell polymeric nanocapsules: A promising treatment modality for cerebral ischemia. Life Sci 2022; 306:120797. [PMID: 35841976 DOI: 10.1016/j.lfs.2022.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
AIMS The neurohormone melatonin (MEL) has been reported as a promising neuroprotective molecule, however it suffers pharmaceutical limitations such as poor solubility and low bioavailability, which hinder its pharmacological and clinical potential. In the current work, MEL was loaded in core-shell nanocarrier system; polymeric nanocapsules (PNCs), and assessed for its potential in cerebral ischemia reperfusion injury rat model when administered intranasally. KEY FINDINGS Adopting a D-optimal factorial design, MEL-PNCs were successfully formulated using the nanoprecipitation technique. MEL-PNCs exhibited a particle size ranging from 143.5 to 444 nm, negative zeta potential values ranging from -24.2 to -38.7 mV, cumulative release % for MEL ranging from 36.79 to 41.31 % over 8 h period, with overall good storage properties. The selected MEL-PNCs formulation displayed 8-fold higher permeation than the drug solution across sheep nasal mucosa. MEL-PNCs administered intranasally decreased oxidative stress and hippocampal inflammation, and the histological examination revealed the significant restoration of hippocampal neurons. SIGNIFICANCE MEL-PNCs administered intranasally could be a promising treatment modality in brain ischemia.
Collapse
|
45
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
46
|
Meirinho S, Rodrigues M, Ferreira CL, Oliveira RC, Fortuna A, Santos AO, Falcão A, Alves G. Intranasal delivery of lipid-based nanosystems as a promising approach for brain targeting of the new-generation antiepileptic drug perampanel. Int J Pharm 2022; 622:121853. [PMID: 35623483 DOI: 10.1016/j.ijpharm.2022.121853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/19/2022] [Indexed: 01/29/2023]
Abstract
Perampanel (PER), a new-generation antiepileptic drug effective against different types of seizures, has already demonstrated a potential in status epilepticus therapy. Considering the growing interest of intranasal (IN) administration for nose-to-brain delivery, PER could be envisioned as a good candidate for this route, especially if formulated in a lipid-based nanosystem. With that purpose, a hydrophobic formulation (FO1.2) and a self-microemulsifying drug delivery system (SMEDDS) (FH5) loaded with PER were developed and characterized. Following PER IN administration (1 mg/kg) to mice, its pharmacokinetics was characterized and compared with intravenous and oral routes. Histopathological toxicity was also examined after a 7-day repeated dose study. FH5 homogeneously formed nanodroplets upon dispersion (20.07 ± 0.03 nm), showing a sustained in vitro PER release profile up to 4 h. By IN route, PER brain delivery was more extensive with FH5 (Cmax and AUC of 52.32 ng/g and 190.35 ng.h/g for FO1.2; 93.87 ng/g and 257.75 ng.h/g for FH5). Maximum brain concentration and total brain exposure were higher than those obtained after oral dosage, with maximum PER concentrations reached significantly faster than post-oral administration (15 min vs 2 h). An improvement in PER plasmatic concentration was also obtained, demonstrated by high relative bioavailability values (134.1% for FH5 and 107.8% for FO1.2). PER absolute plasma bioavailability after IN delivery was 55.5% for FH5 and 44.6% for FO1.2, ensuring a somewhat improved targeting of PER to the brain by the IN route compared to the IV route. No signs of toxicity were found by histopathologic evaluation. Results suggest that IN administration of PER might be a feasible and safe approach for acute and chronic epilepsy management, especially using delivery systems as SMEDDS.
Collapse
Affiliation(s)
- Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI-IPG-Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polythecnic of Guarda, 6300-559 Guarda, Portugal
| | - Catarina L Ferreira
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rui Caetano Oliveira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Adriana O Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
47
|
Tripathi K, K. Manna N. Enhanced Brain Uptake and Behaviour Study of Buspirone Loaded in situ Nanoemulsion Gel. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.543.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Abo El-Enin HA, Elkomy MH, Naguib IA, Ahmed MF, Alsaidan OA, Alsalahat I, Ghoneim MM, Eid HM. Lipid Nanocarriers Overlaid with Chitosan for Brain Delivery of Berberine via the Nasal Route. Pharmaceuticals (Basel) 2022; 15:281. [PMID: 35337079 PMCID: PMC8955068 DOI: 10.3390/ph15030281] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to design, optimize, and evaluate berberine-laden nanostructured lipid carriers overlaid with chitosan (BER-CTS-NLCs) for efficient brain delivery via the intranasal route. The nanostructured lipid carriers containing berberine (BER-NLCs) were formulated via hot homogenization and ultrasonication strategy and optimized for the influence of a variety of causal variables, including the amount of glycerol monostearate (solid lipid), poloxamer 407 (surfactant) concentration, and oleic acid (liquid lipid) amount, on size of the particles, entrapment, and the total drug release after 24 h. The optimal BER-NLCs formulation was then coated with chitosan. Their diameter, in vitro release, surface charge, morphology, ex vivo permeability, pH, histological, and in vivo (pharmacokinetics and brain uptake) parameters were estimated. BER-CTS-NLCs had a size of 180.9 ± 4.3 nm, sustained-release properties, positive surface charge of 36.8 mV, and augmented ex-vivo permeation via nasal mucosa. The histopathological assessment revealed that the BER-CTS-NLCs system is safe for nasal delivery. Pharmacokinetic and brain accumulation experiments showed that animals treated intranasally with BER-CTS-NLCs had substantially greater drug levels in the brain. The ratios of BER brain/blood levels at 30 min, AUCbrain/AUCblood, drug transport percentage, and drug targeting efficiency for BER-CTS-NLCs (IN) were higher compared to BER solution (IN), suggesting enhanced brain targeting. The optimized nanoparticulate system is speculated to be a successful approach for boosting the effect of BER in treating CNS diseases, such as Alzheimer's disease, through intranasal therapy.
Collapse
Affiliation(s)
- Hadel A. Abo El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia;
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Omar A. Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia;
| | - Izzeddin Alsalahat
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK;
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, P.O. Box 71666, Ad Diriyah 13713, Saudi Arabia;
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
49
|
Nigam K, Kaur A, Tyagi A, Manda K, Goswami N, Nematullah M, Khan F, Gabrani R, Gauba P, Dang S. In vitro & In vivo evaluations of PLGA nanoparticle based combinatorial drug therapy for Baclofen and Lamotrigine for neuropathic pain management. J Microencapsul 2022; 39:95-109. [PMID: 35147068 DOI: 10.1080/02652048.2022.2041751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Baclofen and Lamotrigine via PLGA nanoparticles were developed for nose-to-brain delivery for treatment of Neuropathic pain. METHODS Nanoparticles were prepared using modified nano-precipitation method. The prepared NPs were characterized and further in vitro and in vivo studies were performed. RESULTS The Bcf-Ltg-PLGA-NPs were ∼177.7nm with >75%(w/w) drugs encapsulated. In vitro dissolution studies suggested zero-order release profiles following Korsmeyer-Peppas model. In vitro cytotoxicity and staining studies on mammalian cells showed dose dependant cytotoxicity where nanoparticles were significantly less toxic(>95% cell-viability). ELISA studies on RAW-macrophages showed Bcf-Ltg-PLGA-NPs as potential pro-inflammatory-cytokines inhibitor. In vivo gamma-scintigraphy studies on rats showed intra-nasal administration of 99mTc-Bcf-Ltg-PLGA-NPs showed Cmax 3.6%/g at Tmax=1.5h with DTE% as 191.23% and DTP% = 38.61% in brain. Pharmacodynamics evaluations on C57BL/6J mice showed significant reduction in licks/bites during inflammation induced phase II pain. CONCLUSION The findings concluded that combination of these drugs into single nanoparticle-based formulation has potential for pain management.
Collapse
Affiliation(s)
- Kuldeep Nigam
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, NOIDA, India, 201309
| | - Atinderpal Kaur
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, NOIDA, India, 201309
| | - Amit Tyagi
- Institute of Nuclear medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India, 110054
| | - Kailash Manda
- Institute of Nuclear medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India, 110054
| | - Nidhi Goswami
- Institute of Nuclear medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India, 110054
| | - Md Nematullah
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India, 110062
| | - Farah Khan
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India, 110062
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, NOIDA, India, 201309
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, NOIDA, India, 201309
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, NOIDA, India, 201309
| |
Collapse
|
50
|
Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:133-148. [PMID: 34982185 DOI: 10.1007/s00210-021-02196-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Neuroinflammation (NIF) plays an essential role in the pathology of neurological disorders like Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy. Despite progress in the drug discovery and development of new drugs, drug delivery to the central nervous system (CNS) still represents the challenge due to the presence of the blood-brain barrier (BBB). Targeting NIF may require an adequate amount of drug to cross the BBB. Recently, the intranasal (IN) drug administration has attracted increasing attention as a reliable method to cross the BBB and treat neurological disorders. On the other hand, using optimized nanoparticles may improve the IN delivery limitations, increase the mucoadhesive properties, and prevent drug degradation. NPs can carry and deliver drugs to the CNS by bypassing the BBB. In this review, we described briefly the NIF as a pathologic feature of CNS diseases. The potential treatment possibilities with IN transfer of NP-loaded drugs will enhance the establishment of more efficient nanoformulations and delivery systems.
Collapse
|