1
|
Porbaha P, Ansari R, Kiafar MR, Bashiry R, Khazaei MM, Dadbakhsh A, Azadi A. A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles. AAPS PharmSciTech 2024; 25:208. [PMID: 39237678 DOI: 10.1208/s12249-024-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.
Collapse
Affiliation(s)
- Pedram Porbaha
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Ansari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Rahman Bashiry
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
2
|
Bretti G, McGinty S, Pontrelli G. Modelling smart drug release with functionally graded materials. Comput Biol Med 2023; 164:107294. [PMID: 37562324 DOI: 10.1016/j.compbiomed.2023.107294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Functionally graded materials (FGMs), possessing properties that vary smoothly from one region to another, have been receiving increasing attention in recent years, particularly in the aerospace, automotive and biomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potential of FGMs in the context of drug delivery, where the unique material characteristics offer the potential of fine-tuning drug-release for the desired application. Specifically, we develop a mathematical model of drug release from a thin film FGM, based upon a spatially-varying drug diffusivity. We demonstrate that, depending on the functional form of the diffusivity (related to the material properties) a wide range of drug release profiles may be obtained. Interestingly, the shape of these release profiles are not, in general, achievable from a homogeneous medium with a constant diffusivity.
Collapse
Affiliation(s)
- Gabriella Bretti
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19 00185 Rome, Italy
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19 00185 Rome, Italy.
| |
Collapse
|
3
|
Heidari F, Jafari SM, Ziaiifar AM, Malekjani N. Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Adv Colloid Interface Sci 2022; 299:102567. [PMID: 34839180 DOI: 10.1016/j.cis.2021.102567] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Double emulsions (DEs), known as emulsions of emulsions, are dispersion systems in which the droplets of one dispersed liquid are further dispersed in another liquid, producing double-layered liquid droplets. These systems are widely used in the food and pharmaceutical industries due to their ability to co-encapsulate both hydrophilic and hydrophobic bioactive compounds. However, they are sensitive and unstable and their controlled release is challenging. In this study, first, the stability of DEs and their release mechanisms are reviewed. Then, the factors affecting their stability, and the release of bioactive compounds are studied. Finally, modeling of the release in DEs is discussed. This information can be useful to optimize the formulation of DEs in order to utilize them in different industries.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran.
| | - Aman Mohammad Ziaiifar
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Mathematical modelling of drug delivery from pH-responsive nanocontainers. Comput Biol Med 2021; 131:104238. [PMID: 33618104 DOI: 10.1016/j.compbiomed.2021.104238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
Abstract
Targeted drug delivery systems represent a promising strategy to treat localised disease with minimum impact on the surrounding tissue. In particular, polymeric nanocontainers have attracted major interest because of their structural and morphological advantages and the variety of polymers that can be used, allowing the synthesis of materials capable of responding to the biochemical alterations of the environment. While experimental methodologies can provide much insight, the generation of experimental data across a wide parameter space is usually prohibitively time consuming and/or expensive. To better understand the influence of varying design parameters on the release profile and drug kinetics involved, appropriately-designed mathematical models are of great benefit. Here, we developed a continuum-scale mathematical model to describe drug transport within, and release from, a hollow nanocontainer consisting of a core and a pH-responsive polymeric shell. Our two-layer mathematical model accounts for drug dissolution and diffusion and includes a mechanism to account for trapping of drug molecules within the shell. We conduct a sensitivity analysis to assess the effect of varying the model parameters on the overall behaviour of the system. To demonstrate the usefulness of our model, we focus on the particular case of cancer treatment and calibrate the model against release profile data for two anti-cancer therapeutical agents. We show that the model is capable of capturing the experimentally observed pH-dependent release.
Collapse
|
5
|
Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2020; 12:21-36. [PMID: 33353422 DOI: 10.4155/tde-2020-0099] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burst release of encapsulated drug with release of a significant fraction of payload into release medium within a short period, both in vitro and in vivo, remains a challenge for translation. Such unpredictable and uncontrolled release is often undesirable, especially from the perspective of developing sustained-release formulations. Moreover, a brisk release of the payload upsets optimal release kinetics. This account strives toward understanding burst release noticed in nanocarriers and investigates its causes. Various mathematical models to explain such untimely release were also examined, including their strengths and weaknesses. Finally, the account revisits current techniques of limiting burst release from nanocarriers and prioritizes future directions that harbor potential of fruitful translation by reducing such occurrences.
Collapse
|
6
|
Defraeye T, Bahrami F, Ding L, Malini RI, Terrier A, Rossi RM. Predicting Transdermal Fentanyl Delivery Using Mechanistic Simulations for Tailored Therapy. Front Pharmacol 2020; 11:585393. [PMID: 33117179 PMCID: PMC7550783 DOI: 10.3389/fphar.2020.585393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Transdermal drug delivery is a key technology for administering drugs. However, most devices are “one-size-fits-all”, even though drug diffusion through the skin varies significantly from person-to-person. For next-generation devices, personalization for optimal drug release would benefit from an augmented insight into the drug release and percutaneous uptake kinetics. Our objective was to quantify the changes in transdermal fentanyl uptake with regards to the patient’s age and the anatomical location where the patch was placed. We also explored to which extent the drug flux from the patch could be altered by miniaturizing the contact surface area of the patch reservoir with the skin. To this end, we used validated mechanistic modeling of fentanyl diffusion, storage, and partitioning in the epidermis to quantify drug release from the patch and the uptake within the skin. A superior spatiotemporal resolution compared to experimental methods enabled in-silico identification of peak concentrations and fluxes, and the amount of stored drug and bioavailability. The patients’ drug uptake showed a 36% difference between different anatomical locations after 72 h, but there was a strong interpatient variability. With aging, the drug uptake from the transdermal patch became slower and less potent. A 70-year-old patient received 26% less drug over the 72-h application period, compared to an 18-year-old patient. Additionally, a novel concept of using micron-sized drug reservoirs was explored in silico. These reservoirs induced a much higher local flux (µg cm-2 h-1) than conventional patches. Up to a 200-fold increase in the drug flux was obtained from these small reservoirs. This effect was mainly caused by transverse diffusion in the stratum corneum, which is not relevant for much larger conventional patches. These micron-sized drug reservoirs open new ways to individualize reservoir design and thus transdermal therapy. Such computer-aided engineering tools also have great potential for in-silico design and precise control of drug delivery systems. Here, the validated mechanistic models can serve as a key building block for developing digital twins for transdermal drug delivery systems.
Collapse
Affiliation(s)
- Thijs Defraeye
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Flora Bahrami
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Lu Ding
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Riccardo Innocenti Malini
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Alexandre Terrier
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
7
|
The tangential flow absorption model (TFAM) – A novel dissolution method for evaluating the performance of amorphous solid dispersions of poorly water-soluble actives. Eur J Pharm Biopharm 2020; 154:74-88. [DOI: 10.1016/j.ejpb.2020.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022]
|
8
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
9
|
Pontrelli G, Carr EJ, Tiribocchi A, Succi S. Modeling drug delivery from multiple emulsions. Phys Rev E 2020; 102:023114. [PMID: 32942448 DOI: 10.1103/physreve.102.023114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
We present a mechanistic model of drug release from a multiple emulsion into an external surrounding fluid. We consider a single multilayer droplet where the drug kinetics are described by a pure diffusive process through different liquid shells. The multilayer problem is described by a system of diffusion equations coupled via interlayer conditions imposing continuity of drug concentration and flux. Mass resistance is imposed at the outer boundary through the application of a surfactant at the external surface of the droplet. The two-dimensional problem is solved numerically by finite volume discretization. Concentration profiles and drug release curves are presented for three typical round-shaped (circle, ellipse, and bullet) droplets and the dependency of the solution on the mass transfer coefficient at the surface analyzed. The main result shows a reduced release time for an increased elongation of the droplets.
Collapse
Affiliation(s)
- G Pontrelli
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - E J Carr
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - A Tiribocchi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Italian Institute of Technology, CNLS@Sapienza, Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Italian Institute of Technology, CNLS@Sapienza, Rome, Italy
| |
Collapse
|
10
|
Sheng S, Yin X, Chen F, Lv Y, Zhang L, Cao M, Sun Y. Preparation and Characterization of PVA-Co-PE Drug-Loaded Nanofiber Membrane by Electrospinning Technology. AAPS PharmSciTech 2020; 21:199. [PMID: 32676796 DOI: 10.1208/s12249-020-01715-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/17/2020] [Indexed: 11/30/2022] Open
Abstract
A new transdermal drug delivery system of nanofiber membrane with good biocompatibility and high drug loading was developed by electrospinning technology in this study. Using vinyl alcohol-co-ethylene (PVA-co-PE) polymer as a spinning matrix and non-steroidal anti-inflammatory drug (NSAID) sulindac (SUL) as a model drug, the SUL@PVA-co-PE nanofiber membrane was prepared and characterized systematically. The morphology, molecular vibrational transitions, thermogravimetric attributes, and in vitro drug release and transdermal characteristics of drug-loaded nanofiber membranes were analyzed. The results indicated that the surface of PVA-co-PE nanofibers was uniform and smooth with the diameter ranged from 461 to 696 nm. Notably in vitro simulation experiments demonstrated that SUL@PVA-co-PE nanofiber membrane could provide a continuous drug release to reach the effective concentration of the drug, and exhibited significantly higher cumulative drug permeability compared to commercially available patches, Taken together, PVA-co-PE nanofiber membranes exhibited the characteristics of high drug loading and stability, and represented the potential to be utilized as a new transdermal drug delivery carrier with pronounced development prospect.
Collapse
|
11
|
Percutaneous delivery of levetiracetam as an alternative to topical nonsteroidal anti-inflammatory drugs: formulation development, in vitro and in vivo characterization. Drug Deliv Transl Res 2020; 11:227-241. [PMID: 32451940 DOI: 10.1007/s13346-020-00787-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study focused on formulation of carmellose sodium hydrogels and nonionic microemulsions with 5% and 10% of levetiracetam and investigation of drug concentration influence on their physicochemical characteristics and in-use stability as well as influence of drug concentration and carrier type on in vitro drug release and in vivo antihyperalgesic/antiedematous activity in a rat model of localized (intraplantar) carrageenan-induced inflammation. Hydrogels were pseudoplastic semisolids with thixotropy and pH 7.37-7.58. Microemulsions were low viscous Newtonian nanodispersions of oil droplets (13.11-15.11 nm) in water, with pH 4.01-4.64. Physical stability of the investigated systems was preserved over the 3-month storage under ambient conditions. Levetiracetam release followed zero order and Korsmeyer-Peppas models (R2 ≥ 0.99) reflecting the combined effects of drug concentration and carrier viscosity. All levetiracetam-loaded formulations produced significant reduction of hyperalgesia and paw swelling induced by carrageenan (p < 0.001). Their efficacy in exerting antihyperalgesic activity was significantly higher than that observed with the reference 5% ibuprofen hydrogel preparation (up to 6 h) (p < 0.001), while antiedematous activity was comparable with the reference product. No erythema and visible blood vessels were observed in a rat ear test. The study demonstrated percutaneous delivery of levetiracetam as useful and safe therapeutic option for localized inflammatory pain with potential to overcome the insufficient efficacy of topically applied nonsteroidal anti-inflammatory drugs in the form of a hydrogel. Graphical abstract.
Collapse
|
12
|
Djekic L, Čalija B, Medarević Đ. Gelation behavior, drug solubilization capacity and release kinetics of poloxamer 407 aqueous solutions: The combined effect of copolymer, cosolvent and hydrophobic drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Experiments and modeling of controlled release behavior of commercial and model polymer-drug formulations using dialysis membrane method. Drug Deliv Transl Res 2019; 10:515-528. [DOI: 10.1007/s13346-019-00696-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, Fresta M, Sandulovici R, Mircioiu I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019; 11:E140. [PMID: 30901930 PMCID: PMC6471682 DOI: 10.3390/pharmaceutics11030140] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Embedding of active substances in supramolecular systems has as the main goal to ensure the controlled release of the active ingredients. Whatever the final architecture or entrapment mechanism, modeling of release is challenging due to the moving boundary conditions and complex initial conditions. Despite huge diversity of formulations, diffusion phenomena are involved in practically all release processes. The approach in this paper starts, therefore, from mathematical methods for solving the diffusion equation in initial and boundary conditions, which are further connected with phenomenological conditions, simplified and idealized in order to lead to problems which can be analytically solved. Consequently, the release models are classified starting from the geometry of diffusion domain, initial conditions, and conditions on frontiers. Taking into account that practically all solutions of the models use the separation of variables method and integral transformation method, two specific applications of these methods are included. This paper suggests that "good modeling practice" of release kinetics consists essentially of identifying the most appropriate mathematical conditions corresponding to implied physicochemical phenomena. However, in most of the cases, models can be written but analytical solutions for these models cannot be obtained. Consequently, empiric models remain the first choice, and they receive an important place in the review.
Collapse
Affiliation(s)
- Constantin Mircioiu
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Victor Voicu
- Department of Clinical Pharmacology, Toxicology and Psychopharmacology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Andra Tudose
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Christian Celia
- Department of Pharmacy, G. D'Annunzio University of Chieti⁻Pescara, 66100 Chieti, Italy.
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, "Magna Græcia" University of Catanzaro, Germaneto - Catanzaro (CZ) 88100, Italy.
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy, "Magna Græcia" University of Catanzaro, Germaneto - Catanzaro (CZ) 88100, Italy.
| | - Roxana Sandulovici
- Department of Applied Mathematics and Biostatistics, Titu Maiorescu University, 004051 Bucharest, Romania.
| | - Ion Mircioiu
- Department of Biopharmacy and Pharmacokinetics, Titu Maiorescu University, 004051 Bucharest, Romania.
| |
Collapse
|
15
|
Hassanzadeh P, Atyabi F, Dinarvand R. Ignoring the modeling approaches: Towards the shadowy paths in nanomedicine. J Control Release 2018; 280:58-75. [DOI: 10.1016/j.jconrel.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
|
16
|
Kaoui B, Lauricella M, Pontrelli G. Mechanistic modelling of drug release from multi-layer capsules. Comput Biol Med 2017; 93:149-157. [PMID: 29306851 DOI: 10.1016/j.compbiomed.2017.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
Abstract
We propose a novel in silico model for computing drug release from multi-layer capsules. The diffusion problem in such heterogeneous layer-by-layer composite medium is described by a system of coupled partial differential equations, which we solve analytically using separation of variables. In addition to the conventional partitioning and mass transfer interlayer conditions, we consider a surface finite mass transfer resistance, which corresponds to the case of a coated capsule. The drug concentration in the core and through all the layers, as well as in the external release medium, is given in terms of a Fourier series that we compute numerically to describe and characterize the drug release mechanism.
Collapse
Affiliation(s)
- Badr Kaoui
- Biomechanics and Bioengineering Laboratory (UMR 7338), CNRS, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France; Labex MS2T "Control of Technological Systems-of-Systems", CNRS, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
17
|
Cascone S, De Santis F, Lamberti G. Mimicking the contractions of a human stomach and their effect on pharmaceuticals. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Cascone S, Lamberti G, Piazza O, Abbiati RA, Manca D. A physiologically-based model to predict individual pharmacokinetics and pharmacodynamics of remifentanil. Eur J Pharm Sci 2017; 111:20-28. [PMID: 28939143 DOI: 10.1016/j.ejps.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
Abstract
Remifentanil based anesthesia is nowadays spread worldwide. This drug is characterized by a rapid onset of the analgesic effects, but also by a rapid onset of the side effects. For this reason, the knowledge of the remifentanil concentration in the human body is a key topic in anesthesiology. The aims of this work are to propose and validate a physiologically based pharmacokinetic model capable to predict both the pharmacokinetics and pharmacodynamics of remifentanil, and to take into account the inter-individual differences among the patients (such as height and body mass). The blood concentration of remifentanil has been successfully simulated and compared with experimental literature data. The pharmacodynamics, in terms of effect of remifentanil on minute ventilation and electroencephalogram, has been implemented in this model. Moreover, the remifentanil concentration in various organs and tissues is predicted, which is a significant improvement with respect to the traditional compartmental models. The availability of the model makes possible the prediction of the effects of remifentanil administration, also accounting for individual parameters.
Collapse
Affiliation(s)
- Sara Cascone
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Gaetano Lamberti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Ornella Piazza
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84083 Baronissi, SA, Italy
| | - Roberto Andrea Abbiati
- PSE-Lab, CMIC Department, Politecnico di Milano, P.zza Leonardo da Vinci, 32, 20132, Milano, Italy
| | - Davide Manca
- PSE-Lab, CMIC Department, Politecnico di Milano, P.zza Leonardo da Vinci, 32, 20132, Milano, Italy
| |
Collapse
|
19
|
Caccavo D, Cascone S, Lamberti G, Dalmoro A, Barba AA. Modeling of the Behavior of Natural Polysaccharides Hydrogels for Bio-pharma Applications. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogels, even if not exclusively obtained from natural sources, are widely used for pharmaceuticals and for biomedical applications. The reasons for their uses are their biocompatibility and the possibility to obtain systems and devices with different properties, due to variable characteristics of the materials. In order to effectively design and produce these systems and devices, two main ways are available: i) trial-and-error process, at least guided by experience, during which the composition of the system and the production steps are changed in order to get the desired behavior; ii) production process guided by the a-priori simulation of the systems’ behavior, thanks to proper tuned mathematical models of the reality. Of course the second approach, when applicable, allows tremendous savings in term of human and instrumental resources. In this mini-review, several modeling approaches useful to describe the behavior of natural polysaccharide-based hydrogels in bio-pharma applications are reported. In particular, reported case histories are: i) the size calculation of micro-particles obtained by ultrasound assisted atomization; ii) the release kinetics from core-shell micro-particles, iii) the solidification behavior of blends of synthetic and natural polymers for gel paving of blood vessels, iv) the drug release from hydrogel-based tablets. This material can be seen as a guide toward the use of mathematical modeling in bio-pharma applications.
Collapse
Affiliation(s)
- Diego Caccavo
- Department of Industrial Engineering, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Sara Cascone
- Department of Industrial Engineering, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Gaetano Lamberti
- Department of Industrial Engineering, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Annalisa Dalmoro
- Department of Pharmacy, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Anna Angela Barba
- Department of Pharmacy, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| |
Collapse
|
20
|
Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels. J Pharm Sci 2017; 106:629-638. [DOI: 10.1016/j.xphs.2016.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022]
|
21
|
Kumar S, Singh SK. In silico-in vitro-in vivo studies of experimentally designed carvedilol loaded silk fibroin-casein nanoparticles using physiological based pharmacokinetic model. Int J Biol Macromol 2016; 96:403-420. [PMID: 28013012 DOI: 10.1016/j.ijbiomac.2016.12.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
The study aimed to design and develop carvedilol loaded silk fibroin-casein nanoparticles using 32 full factorial design. Silk fibroin and casein concentration were selected as the independent variables and their effect were observed on dependent variables: particle size, polydispersity index, encapsulation efficiency, drug release, and dissolution efficiency. The developed optimized formulation was characterized using fourier transform infrared spectroscopy, differential scanning calorimetry, and Powder X-ray diffraction. Surface morphology of optimized formulation using scanning electron microscopy, transmission electron microscopy, and atomic force microscopy revealed spherical nature of particles without any evidence of aggregation. The optimized formulation showed a 2.04-fold increase in Cmax, and 6.87-fold increase in bioavailability as compared to aqueous suspension. The formulation showed sustained release as confirmed by increases in mean residence time. The in vivo in silico simulation using physiologically based pharmacokinetics (PBPK) model and population simulation (100 subjects) revealed a reasonable degree of superimposition of simulated and observed pharmacokinetic parameters based on overall fold error (≤2.0). The enhanced bioavailability with sustained effect demonstrates potential of silk fibroin as an alternative carrier for drug delivery and presents Gastoplus™ as efficient tool for in vivo in silico simulations.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
22
|
Katuwavila NP, Perera A, Dahanayake D, Karunaratne V, Amaratunga GA, Karunaratne DN. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system. Int J Pharm 2016; 513:404-409. [DOI: 10.1016/j.ijpharm.2016.09.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 11/27/2022]
|
23
|
|
24
|
Lamberti G, Cascone S, Marra F, Titomanlio G, d’Amore M, Barba AA. Gastrointestinal behavior and ADME phenomena: II. In silico simulation. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Bartosz T, Irene T. Polyphenols encapsulation – application of innovation technologies to improve stability of natural products. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2015-0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
George JK, Singh SK, Verma PRP. Morphological and in vitro investigation of core–shell nanostructures of carvedilol using quality by design. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0204-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Chen W, Habraken TCJ, Hennink WE, Kok RJ. Polymer-Free Drug-Eluting Stents: An Overview of Coating Strategies and Comparison with Polymer-Coated Drug-Eluting Stents. Bioconjug Chem 2015; 26:1277-88. [PMID: 26041505 DOI: 10.1021/acs.bioconjchem.5b00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clinical evaluations have proven the efficacy of drug-elution stents (DES) in reduction of in-stent restenosis rates as compared to drug-free bare metal stents (BMS). Typically, DES are metal stents that are covered with a polymer film loaded with anti-inflammatory or antiproliferative drugs that are released in a sustained manner. However, although favorable effects of the released drugs have been observed, the polymer coating as such has been associated with several adverse clinical effects, such as late stent thrombosis. Elimination of the polymeric carrier of DES may therefore potentially lead to safer DES. Several technologies have been developed to design polymer-free DES, such as the use of microporous stents and inorganic coatings that can be drug loaded. Several drugs, including sirolimus, tacrolimus, paclitaxel, and probucol have been used in the design of carrier-free stents. Due to the function of the polymeric coating to control the release kinetics of a drug, polymer-free stents are expected to have a faster drug elution rate, which may affect the therapeutic efficacy. However, several polymer-free stents have shown similar efficacy and safety as the first-generation DES, although the superiority of polymer-free DES has not been established in clinical trials.
Collapse
Affiliation(s)
- Weiluan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tom C J Habraken
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
28
|
Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release 2015; 206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
|
29
|
Halib N, Mohd Amin MCI, Ahmad I, Abrami M, Fiorentino S, Farra R, Grassi G, Musiani F, Lapasin R, Grassi M. Topological characterization of a bacterial cellulose-acrylic acid polymeric matrix. Eur J Pharm Sci 2014; 62:326-333. [PMID: 24932712 DOI: 10.1016/j.ejps.2014.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023]
Abstract
This paper focuses on the micro- and nano-topological organization of a hydrogel, constituted by a mixture of bacterial cellulose and acrylic acid, and intended for biomedical applications. The presence of acrylic acid promotes the formation of two interpenetrated continuous phases: the primary "pores phase" (PP) containing only water and the secondary "polymeric network phase" (PNP) constituted by the polymeric network swollen by the water. Low field Nuclear Magnetic Resonance (LF NMR), rheology, Scanning Electron Microscopy (SEM) and release tests were used to determine the characteristics of the two phases. In particular, we found that this system is a strong hydrogel constituted by 81% (v/v) of PP phase the remaining part being occupied by the PNP phase. Pores diameters span in the range 10-100 μm, the majority of them (85%) falling in the range 30-90 μm. The high PP phase tortuosity indicates that big pores are not directly connected to each other, but their connection is realized by a series of interconnected small pores that rend the drug path tortuous. The PNP is characterized by a polymer volume fraction around 0.73 while mesh size is around 3 nm. The theoretical interpretation of the experimental data coming from the techniques panel adopted, yielded to the micro- and nano-organization of our hydrogel.
Collapse
Affiliation(s)
- N Halib
- Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Aras 15, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia.
| | - M C I Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - I Ahmad
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - M Abrami
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy.
| | - S Fiorentino
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy.
| | - R Farra
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy.
| | - G Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - F Musiani
- Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), Via Bonomea 265, I-34136 Trieste, Italy.
| | - R Lapasin
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - M Grassi
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
30
|
Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Control Release 2014; 190:664-73. [PMID: 24801251 PMCID: PMC4142083 DOI: 10.1016/j.jconrel.2014.04.048] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/15/2014] [Accepted: 04/25/2014] [Indexed: 01/14/2023]
Abstract
Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin.
Collapse
Affiliation(s)
- Jennifer R Weiser
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
31
|
Grassi M, Grassi G. Application of mathematical modeling in sustained release delivery systems. Expert Opin Drug Deliv 2014; 11:1299-1321. [PMID: 24938598 DOI: 10.1517/17425247.2014.924497] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. AREAS COVERED The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. EXPERT OPINION Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
Collapse
Affiliation(s)
- Mario Grassi
- University of Trieste, Department of Engineering and Architecture , Via Valerio 6/A, I - 34127, Trieste , Italy +39 040 558 3435 ; +39 040 569823 ;
| | | |
Collapse
|
32
|
Dadkhah D, Navarchian AH, Aref L, Tavakoli N. Application of Taguchi Method to Investigate the Drug Release Behavior of Poly(Acrylamide-co-Maleic Acid)/Montmorillonite Nanocomposite Hydrogels. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniyal Dadkhah
- Department of Chemical Engineering; Faculty of Engineering; University of Isfahan; Isfahan 81746-73441 Iran
| | - Amir H. Navarchian
- Department of Chemical Engineering; Faculty of Engineering; University of Isfahan; Isfahan 81746-73441 Iran
| | - Latif Aref
- Department of Chemical Engineering; Faculty of Engineering; University of Isfahan; Isfahan 81746-73441 Iran
| | - Naser Tavakoli
- Department of Pharmaceutics; Faculty of Pharmacy; Isfahan University of Medical Sciences; Isfahan 81746-73461 Iran
| |
Collapse
|
33
|
Barba AA, Lamberti G, Rabbia L, Grassi M, Larobina D, Grassi G. Modeling of the reticulation kinetics of alginate/pluronic blends for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:327-331. [PMID: 24582256 DOI: 10.1016/j.msec.2014.01.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/14/2013] [Accepted: 01/19/2014] [Indexed: 11/16/2022]
Abstract
In this work, blends of alginate/pluronic (F127) for biomedical applications were investigated. In particular, the kinetics of alginate chain reticulation by bivalent cations was studied by experimental and modeling approaches. Two kinds of sodium alginate were tested to obtain hard gel films. The thicknesses of the reticulated alginate films were measured as function of the exposure time and of the reticulating copper (Cu(2+)) solution concentration. The kinetics was described by a proper model able to reproduce the experimental data. The model parameters, evaluated based on the measurements of thicknesses as function of Cu(2+) concentration and exposure time, were further validated by comparing the prediction of the model with another set of independent measurement; here, the depletion of Cu(2+) ions in the conditioning solution above the reacting gel is measured as function of time. The tuned model could be used in the description of the future applications of the blends.
Collapse
Affiliation(s)
- Anna A Barba
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Gaetano Lamberti
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy.
| | - Luca Rabbia
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Mario Grassi
- Dipartimento dei Materiali e delle Risorse Naturali, Università degli Studi di Trieste, P. le Europa 1, Trieste 34127, Italy
| | - Domenico Larobina
- Istituto per i Materiali Compositi e Biomedici, CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli, NA, Italy
| | - Gabriele Grassi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via Giorgeri 1, Trieste 34127, Italy
| |
Collapse
|
34
|
In vitro simulation of drug intestinal absorption. Int J Pharm 2012; 439:165-8. [DOI: 10.1016/j.ijpharm.2012.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/26/2012] [Accepted: 10/08/2012] [Indexed: 02/04/2023]
|
35
|
Ford Versypt AN, Pack DW, Braatz RD. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres--a review. J Control Release 2012; 165:29-37. [PMID: 23103455 DOI: 10.1016/j.jconrel.2012.10.015] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
PLGA microspheres are widely studied for controlled release drug delivery applications, and many models have been proposed to describe PLGA degradation and erosion and drug release from the bulk polymer. Autocatalysis is known to have a complex role in the dynamics of PLGA erosion and drug transport and can lead to size-dependent heterogeneities in otherwise uniformly bulk-eroding polymer microspheres. The aim of this review is to highlight mechanistic, mathematical models for drug release from PLGA microspheres that specifically address interactions between phenomena generally attributed to autocatalytic hydrolysis and mass transfer limitation effects. Predictions of drug release profiles by mechanistic models are useful for understanding mechanisms and designing drug release particles.
Collapse
Affiliation(s)
- Ashlee N Ford Versypt
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
36
|
Barba AA, Dalmoro A, d’Amore M, Lamberti G. In vitrodissolution of pH sensitive microparticles for colon-specific drug delivery. Pharm Dev Technol 2012; 18:1399-406. [DOI: 10.3109/10837450.2012.727005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Oral drug delivery research in Europe. J Control Release 2012; 161:247-53. [DOI: 10.1016/j.jconrel.2012.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 01/06/2023]
|
38
|
Krenzlin S, Vincent C, Munzke L, Gnansia D, Siepmann J, Siepmann F. Predictability of drug release from cochlear implants. J Control Release 2011; 159:60-8. [PMID: 22233971 DOI: 10.1016/j.jconrel.2011.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
A simplified mathematical theory is presented allowing for in silico simulation of the effects of key parameters of miniaturized implants (size and composition) on the resulting drug release kinetics. Such devices offer a great potential, especially for local drug treatments, e.g. of the inner ear. However, the preparation and characterization of these systems is highly challenging, due to the small system dimensions. The presented mathematical theory is based on Fick's second law of diffusion. Importantly, theoretical predictions do not require the knowledge of many system-specific parameters: Only the "apparent" diffusion coefficient of the drug within the implant matrix is needed. This parameter can be easily determined via drug release measurements from thin, macroscopic films. The validity of the theoretical model predictions was evaluated by comparison with experimental results obtained with a cochlear implant. The latter consisted of miniaturized electrodes, which were embedded in a silicone matrix loaded with various amounts of dexamethasone. Importantly, independent experimental results confirmed the theoretical predictions. Thus, the presented simplified theory can help to significantly speed up the optimization of this type of controlled drug delivery systems, especially if long release periods are targeted (e.g., several months or years). Straightforward experiments with thin, macroscopic films and computer simulations can allow for rapid identification of optimal system design.
Collapse
Affiliation(s)
- S Krenzlin
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, Lille, France
| | | | | | | | | | | |
Collapse
|
39
|
A computational procedure for assessing the dynamic performance of diffusion-controlled transdermal delivery devices. Pharmaceutics 2011; 3:485-96. [PMID: 24310592 PMCID: PMC3857078 DOI: 10.3390/pharmaceutics3030485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/16/2022] Open
Abstract
The dynamic performances of two different controlled-release systems were analyzed. In a reservoir-type drug-delivery patch, the transdermal flux is influenced by the properties of the membrane. A constant thermodynamic drug activity is preserved in the donor compartment. Monolithic matrices are among the most inexpensive systems used to direct drug delivery. In these structures, the active pharmaceutical ingredients are encapsulated within a polymeric material. Despite the popularity of these two devices, to tailor the properties of the polymer and additives to specific transient behaviors can be challenging and time-consuming. The heuristic approaches often considered to select the vehicle formulation provide limited insight into key permeation mechanisms making it difficult to predict the device performance. In this contribution, a method to calculate the flux response time in a system consisting of a reservoir and a polymeric membrane was proposed and confirmed. Nearly 8.60 h passed before the metoprolol delivery rate reached ninety-eight percent of its final value. An expression was derived for the time it took to transport the active pharmaceutical ingredient out of the polymer. Ninety-eight percent of alpha-tocopherol acetate was released in 461.4 h following application to the skin. The effective time constant can be computed to help develop optimum design strategies.
Collapse
|