1
|
Li ZE, Jin YG, Hu SZ, Liu Y, Duan MH, Li SH, Sun LJ, Yang F, Yang F. Design, Optimization, Manufacture and Characterization of Milbemycin Oxime Nanoemulsions. Pharmaceutics 2025; 17:289. [PMID: 40142953 PMCID: PMC11944943 DOI: 10.3390/pharmaceutics17030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Despite the rapid development of nanoemulsions in recent years, no method has been established for the preparation of milbemycin oxime nanoemulsions. Milbemycin oxime is a widely used macrolide antibiotic in veterinary medicine, particularly for treating parasitic infections in animals such as dogs. However, its poor solubility in water limits its bioavailability and therapeutic efficacy. Developing a nanoemulsion formulation can enhance its solubility, stability, and bioavailability, offering a more effective treatment option. Methods: In this experiment, oil-in-water (O/W) milbemycin oxime nanoemulsions were successfully prepared by the phase inversion composition (PIC) method using ethyl butyrate as the oil phase, Tween-80 as the surfactant, and anhydrous ethanol as the co-surfactant. The region of O/W nanoemulsions was identified by constructing a pseudo-ternary phase diagram and, based on this, was screened by determining the droplet size, polydispersity coefficient, and zeta potential of each preparation. Results and Conclusions: The finalized formulation had a 2:1 ratio of surfactant to co-surfactant and a 7:3 ratio of mixed surfactant to oil, and its droplet size, polydispersity index (PDI), and zeta potential were 12.140 ± 0.128 nm, 0.155 ± 0.015, and -4.947 ± 0.768 mV, respectively. Transmission electron microscopy confirmed the spherical uniform distribution of droplets, and the nanoemulsions passed thermodynamic stability tests. The in vitro release of milbemycin oxime nanoemulsions followed first-order kinetic equations. In conclusion, nanoemulsions are an interesting option for the delivery of poorly water-soluble molecules such as milbemycin oxime.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Z.-E.L.); (Y.-G.J.); (S.-Z.H.); (Y.L.); (M.-H.D.); (S.-H.L.); (L.-J.S.)
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Z.-E.L.); (Y.-G.J.); (S.-Z.H.); (Y.L.); (M.-H.D.); (S.-H.L.); (L.-J.S.)
| |
Collapse
|
2
|
Nasser N, Hathout RM, Abd-Allah H, Sammour OA. Simplex Lattice Design and Machine Learning Methods for the Optimization of Novel Microemulsion Systems to Enhance p-Coumaric Acid Oral Bioavailability: In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:56. [PMID: 38448576 DOI: 10.1208/s12249-024-02766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Novel p-coumaric acid microemulsion systems were developed to circumvent its absorption and bioavailability challenges. Simplex-lattice mixture design and machine learning methods were employed for optimization. Two optimized formulations were characterized using in vitro re-dispersibility and cytotoxicity on various tumor cell lines (MCF-7, CaCO2, and HepG2). The in vivo bioavailability profiles of the drug loaded in the two microemulsion systems and in the suspension form were compared. The optimized microemulsions composed of Labrafil M1944 CS (5.67%)/Tween 80 (38.71%)/Labrasol (38.71%)/water (16.92%) and Capryol 90 (0.50%)/Transcutol P (26.67%)/Tween 80 (26.67%)/Labrasol (26.67%)/water (19.50%), respectively. They revealed uniform and stable p-coumaric acid-loaded microemulsion systems with a droplet size diameter of about 10 nm. The loaded microemulsion formulations enhanced the drug re-dispersibility in contrast to the drug suspension which exhibited 5 min lag time. The loaded formulae were significantly more cytotoxic on all cell lines by 11.98-16.56 folds on MCF-7 and CaCo2 cells and 47.82-98.79 folds on HepG2 cells higher than the pure drug. The optimized microemulsions were 1.5-1.8 times more bioavailable than the drug suspension. The developed p-coumaric acid microemulsion systems could be considered a successful remedy for diverse types of cancer.
Collapse
Affiliation(s)
- Nayera Nasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt.
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| |
Collapse
|
3
|
Preparation of redispersible dry nanoemulsion using chitosan-octenyl succinic anhydride starch polyelectrolyte complex as stabilizer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Chrysin-Loaded Microemulsion: Formulation Design, Evaluation and Antihyperalgesic Activity in Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chrysin is a bioactive flavonoid found in pollens, passion flowers, honey, royal jelly, and propolis, which is commonly used as an ingredient in natural food supplements and is primarily responsible for their pharmacological properties. A transparent chrysin-loaded microemulsion (CS-ME) prepared through a ternary phase diagram was evaluated for use as an antihyperalgesic formulation. It was formulated with 40% Labrasol® (surfactant), 5% isopropyl myristate (oil phase) and 55% water (aqueous phase) and classified as an oil-in-water (O/W) microsized system (74.4 ± 15.8 nm). Its negative Zeta potential (−16.1 ± 1.9 mV) was confirmed by polarized light microscopy and dynamic light scattering analysis. In vitro studies in Franz-type static diffusion cells showed that chrysin release from CS-ME followed zero-order kinetics. Oral administration of CS-ME in mice resulted in a statistically significantly reduction (p < 0.05) in carrageenan-induced mechanical hyperalgesia compared to the control group. Treatment with CS-ME also showed anti-inflammatory activity by significantly decreasing the TNF-α level (p < 0.01) and increasing that of IL-10 (p < 0.05) compared to the control group. These results suggest that the proposed microsystem is a promising vector for the release of chrysin, being able to improve its capacity to modulate inflammatory and nociceptive responses.
Collapse
|
5
|
Eid RK, Arafa MF, Ashour DS, Essa EA, Zoghroban HS, Issa YA, Nomeir HM, Abo Safia HS, El Maghraby GM. Eudragit coated microemulsion for enhanced efficacy of spiramycin against toxoplasmic encephalitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Suhail N, Alzahrani AK, Basha WJ, Kizilbash N, Zaidi A, Ambreen J, Khachfe HM. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.754889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microemulsions, comprising oil, water and a surfactant, in association with some co-surfactant, are thermodynamically stable systems. They have found applications in a large number of chemical and pharmacological processes due to their unique properties such as large interfacial area, low interfacial tension, and most importantly, the ability to solubilize and deliver hydrophobic drugs. In addition to the oral and intravenous route, they are suitable for drug delivery through the ophthalmic, vaginal, pulmonary, dental, and topical routes. This review highlights the properties and several recent developments in the use of microemulsions for medical treatment purposes including targeted drug delivery.
Collapse
|
7
|
Gulati N, Kumar Chellappan D, Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, Anand K, Sharma A, Kumar Jha N, Gupta G, Dua K, Dureja H. Oral Nanoemulsion of Fenofibrate: Formulation, Characterization, and In Vitro Drug Release Studies. Assay Drug Dev Technol 2021; 19:246-261. [PMID: 33989048 DOI: 10.1089/adt.2021.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Londonderry, United Kingdom
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Ankur Sharma
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
8
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Nasser N, Hathout RM, Abd-Allah H, Sammour OA. Enhancement of oral bioavailability of drugs using lipid-based carriers: a meta-analysis study. Drug Dev Ind Pharm 2020; 46:2105-2110. [PMID: 33185482 DOI: 10.1080/03639045.2020.1851245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer is the disease of this era. Its therapy is moving through ups and downs not only due to poor effectiveness of many treating drugs, but also due to the serious side effects always evolving. In an attempt to overcome this problem, many systems, including lipid-based carriers, have been exploited for their oral delivery. Throughout this study, the meta-analysis tool was used to combine data from different studies and extract evidences that lipid-based carriers enhance the oral bioavailability. Consequently, increasing the efficiency and the reduction in side effects of drugs would follow. Accordingly, the usual parameter to indicate the bioavailability; the area under effect curve (AUC) was used where the lipid carriers have proven their superiority over conventional formulations. Interestingly, by comparing microemulsion/self-microemulsifying system (SMEDDS) versus liposomes/pro-liposomes as subgroups of the meta-analysis study, insignificant differences were recorded between them.
Collapse
Affiliation(s)
- Nayera Nasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Nasr AM, Qushawy MK, Elkhoudary MM, Gawish AY, Elhady SS, Swidan SA. Quality by Design for the Development and Analysis of Enhanced In-Situ Forming Vesicles for the Improvement of the Bioavailability of Fexofenadine HCl in Vitro and in Vivo. Pharmaceutics 2020; 12:E409. [PMID: 32365695 PMCID: PMC7285181 DOI: 10.3390/pharmaceutics12050409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Drug absorption from the gastrointestinal tract (GIT) is one of the major problems affecting the bioavailability of orally absorbed drugs. This work aims to enhance Fexofenadine HCl oral bioavailability in vivo, the drug used for allergic rhinitis. In this study, novel spray-dried lactose-based enhanced in situ forming vesicles were prepared using different absorption enhancer by the slurry method. Full factorial design was used to obtain an optimized formulation, while central composite design was used to develop economic, environment-friendly analysis method of Fexofenadine HCl in plasma of rabbits. The optimized formulation containing Capryol 90 as absorption enhancer has a mean particle size 202.6 ± 3.9 nm and zeta potential -31.6 ± 0.9 mV. It achieved high entrapment efficiency of the drug 73.7 ± 1.7% and rapid Q3h release reaches 71.5 ± 2.7%. The design-optimized HPLC assay method in rabbit plasma could separate Fexofenadine HCl from endogenous plasma compounds in less than 3.7 min. The pharmacokinetic study and the pharmacological effect of the fexofenadine-loaded optimized formulation showed a significant increase in blood concentration and significantly higher activity against compound 48/80 induced systemic anaphylaxis-like reactions in mice. Therefore, enhanced in situ forming vesicles were effective nanocarriers for the entrapment and delivery of Fexofenadine HCl.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
| | - Mona K. Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mahmoud M. Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Aya Y. Gawish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, MTI University, Cairo 11571, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shady A. Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
11
|
Affiliation(s)
- Raj Kumar
- School of Basic Sciences and Advanced Materials Research CentreIndian Institute of Technology Mandi Mandi, Himachal Pradesh India- 175005
| |
Collapse
|
12
|
Korani M, Korani S, Zendehdel E, Jaafari MR, Sathyapalan T, Sahebkar A. Utilization of Lipid-based Nanoparticles to Improve the Therapeutic Benefits of Bortezomib. Anticancer Agents Med Chem 2020; 20:643-650. [PMID: 31985384 DOI: 10.2174/1871520620666200127141328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 02/02/2023]
Abstract
Cancer is a condition where there is an uncontrolled growth of cells resulting in high mortality. It is the second most frequent cause of death worldwide. Bortezomib (BTZ) is a Proteasome Inhibitor (PI) that is used for the treatment of a variety of cancers. It is the first PI that has received the approval of the US Food and Drug Administration (FDA) to treat mantle cell lymphoma and multiple myeloma. High incidence of sideeffects, limited dose, low water solubility, fast clearance, and drug resistance are the significant limitations of BTZ. Therefore, various drug delivery systems have been tried to overcome these limitations of BTZ in cancer therapy. Nanotechnology can potentially enhance the aqueous solubility of BTZ, increase its bioavailability, and control the release of BTZ at the site of administration. The lipid-based nanocarriers, such as liposomes, solid lipid NPs, and microemulsions, are some of the developments in nanotechnology, which could potentially enhance the therapeutic benefits of BTZ.
Collapse
Affiliation(s)
- Mitra Korani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Paw M, Wnuk D, Kądziołka D, Sęk A, Lasota S, Czyż J, Madeja Z, Michalik M. Fenofibrate Reduces the Asthma-Related Fibroblast-To-Myofibroblast Transition by TGF-Β/Smad2/3 Signaling Attenuation and Connexin 43-Dependent Phenotype Destabilization. Int J Mol Sci 2018; 19:ijms19092571. [PMID: 30158495 PMCID: PMC6163263 DOI: 10.3390/ijms19092571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
The activation of human bronchial fibroblasts by transforming growth factor-β1 (TGF-β1) leads to the formation of highly contractile myofibroblasts in the process of the fibroblast–myofibroblast transition (FMT). This process is crucial for subepithelial fibrosis and bronchial wall remodeling in asthma. However, this process evades current therapeutic asthma treatment strategies. Since our previous studies showed the attenuation of the TGF-β1-induced FMT in response to lipid-lowering agents (e.g., statins), we were interested to see whether a corresponding effect could be obtained upon administration of hypolipidemic agents. In this study, we investigated the effect of fenofibrate on FMT efficiency in populations of bronchial fibroblasts derived from asthmatic patients. Fenofibrate exerted a dose-dependent inhibitory effect on the FMT, even though it did not efficiently affect the expression of α-smooth muscle actin (α-SMA; marker of myofibroblasts); however, it considerably reduced its incorporation into stress fibers through connexin 43 regulation. This effect was accompanied by disturbances in the actin cytoskeleton architecture, impairments in the maturation of focal adhesions, and the fenofibrate-induced deactivation of TGF-β1/Smad2/3 signaling. These data suggest that fenofibrate interferes with myofibroblastic differentiation during asthma-related subepithelial fibrosis. The data indicate the potential application of fenofibrate in the therapy and prevention of bronchial remodeling during the asthmatic process.
Collapse
Affiliation(s)
- Milena Paw
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Dawid Wnuk
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Dominika Kądziołka
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Aleksandra Sęk
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
- Nencki Institute of Experimental Biology, Laboratory of Intracellular Ion Channels, 02-093 Warsaw, Poland.
| | - Sławomir Lasota
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Jarosław Czyż
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Zbigniew Madeja
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| | - Marta Michalik
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, 30-378 Kraków, Poland.
| |
Collapse
|
15
|
Tripathi CB, Gupta N, Kumar P, Singh AK, Raj V, Parashar P, Singh M, Kanoujia J, Arya M, Saraf SA, Saha S. ω-3 Fatty Acid Synergized Novel Nanoemulsifying System for Rosuvastatin Delivery: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2018; 19:1205-1218. [PMID: 29260378 DOI: 10.1208/s12249-017-0933-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/27/2017] [Indexed: 01/11/2023] Open
Abstract
The present study was undertaken to improve rosuvastatin (RSV) bioavailability and pharmacological response through formation of SNES using Perilla frutescens oil as lipid carrier. The composition of oil was estimated by fatty acid methyl ester (FAME) analysis using gas chromatography. Solubility of RSV in Perilla frutescens oil and Cremophor EL was 25.0 ± 3.0 and 60.0 ± 5.0 mg/mL, respectively. Later, nanophasic maps and a central composite design were employed to determine the maximum nanoemulsion region and further optimize SNES in this study. Finally, the optimized formulation was evaluated in vitro and in vivo. FAME analysis revealed that PUFA content was 70.3% of total fatty acid. Optimized SNES formulation demonstrated particle size of 17.90 nm, dissolution 98.80%, cloud point 45°C, emulsification time 2 min, and viscosity 241.41 ± 5.52 cP. The hypolipidemic property of SNES was further explored using Triton X-100-induced hyperlipidemic rat model, and there were reductions of serum cholesterol, triglyceride, and LDL and VLDL levels in the SNES-treated group as compared to the toxic control. Pharmacokinetic study of SNES revealed significantly higher C max (60.13 ± 25.43 ng/mL) and AUC0-∞ (6195 ± 42.38 ng h/mL) vis-à-vis marketed tablet (284.80 ± 13.44 ng/mL, 3131.72 ± 51.93 ng h/mL, respectively). RSV was successfully incorporated into ω-3 fatty acid-based SNES with improved pharmacokinetic parameters (~ 2-fold improved bioavailability) and better hypolipidemic properties, owing to the synergistic effects of hepatic lipid regulation itself. The results clearly explicated that ω-3 fatty acid-based SNES effectively enhanced bioavailability and pharmacological responses of RSV, suggesting that these formulations may be useful as alternative for hyperlipidemia treatment in future drug design perspective.
Collapse
|
16
|
Li T, Liu J, Zheng Y, Yang S, Liu X, Li X. Effects of triptolide on pharmacokinetics of fenofibrate in rats and its potential mechanism. Xenobiotica 2018; 49:211-215. [PMID: 29412757 DOI: 10.1080/00498254.2018.1438685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Triptolide and fenofibrate are often used together for the treatment of nephrotic syndrome in Chinese clinics. This study investigates the effects of triptolide on the pharmacokinetics of fenofibrate in rats and it potential mechanism. The pharmacokinetics of fenofibrate (20 mg/kg) with or without triptolide pretreatment (2 mg/kg/day for seven days) were investigated. Additionally, the inhibitory effects of triptolide on the metabolic stability of fenofibrate were investigated using rat liver microsome incubation systems. The results indicated that the Cmax (35.34 ± 7.52 vs. 30.43 ± 6.45 μg/mL), t1/2 (6.17 ± 1.15 vs. 4.90 ± 0.82 h) and AUC(0-t) (468.12 ± 35.84 vs. 416.35 ± 32.68 mg h L-1) of fenofibric acid decreased significantly (p < .05). The Tmax of fenofibric acid increased significantly (p < .05) from 5.12 ± 0.36 to 6.07 ± 0.68 h. Additionally, the metabolic stability of fenofibrate was prolonged from 35.8 ± 6.2 to 48.6 ± 7.5 min (p < .05) with the pretreatment of triptolide. In conclusion, these results indicated that triptolide could affect the pharmacokinetics of fenofibric acid, possibly by inhibiting the metabolism of fenofibrate in rat liver when they were co-administered.
Collapse
Affiliation(s)
- Tonghui Li
- a Department of Pharmacy , the Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jijun Liu
- b Department of Pharmacy , the Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Yingying Zheng
- a Department of Pharmacy , the Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Shengchang Yang
- c Department of Physiology , Hebei University of Chinese Medicine , Shijiazhuang , China
| | - Xun Liu
- d Department of General Surgery , the Fourth Hospital of Hebei Medical University , Shijiazhuang , China
| | - Xuejing Li
- a Department of Pharmacy , the Third Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|
17
|
Singh M, Kanoujia J, Parashar P, Arya M, Tripathi CB, Sinha VR, Saraf SK, Saraf SA. Augmented bioavailability of felodipine through an α-linolenic acid-based microemulsion. Drug Deliv Transl Res 2017; 8:204-225. [DOI: 10.1007/s13346-017-0453-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int J Pharm 2017; 526:425-442. [PMID: 28495500 DOI: 10.1016/j.ijpharm.2017.05.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022]
Abstract
Emulsion technology has been utilized extensively in the pharmaceutical industry. This article presents a comprehensive review of the literature on an important subcategory of emulsions, microemulsions. Microemulsions are optically transparent, thermodynamically stable colloidal systems, 10-100nm diameter, that form spontaneously upon mixing of oil, water and emulsifier. This review is the first to address advantages and disadvantages, as well as considerations and challenges in multi-drug delivery. For the period 1 January 2011-30 April 2016, 431 publications related to microemulsion drug delivery were identified and screened according to microemulsion, drug classification, and surfactant types. Results indicate the use of microemulsions predominantly in lipophilic drug delivery (79.4%) via oil-in-water microemulsions and non-ionic surfactants (90%) for oral or topical administration. Cancer is the disease state most targeted followed by inflammatory diseases, microbial infections and cardiovascular disease. Key generalizations from this analysis include: 1) microemulsion formulation is largely based on trial-and-error despite over 1200 publications related to microemulsion drug delivery since their discovery in 1943; 2) characterization using methods including interfacial tension, droplet size, electrical conductivity, turbidity and viscosity may provide additional information for greater predictability; 3) microemulsion drug delivery publications arise primarily from China (27%) and India (21%) suggesting additional research opportunities elsewhere.
Collapse
|
19
|
Szklarz G, Adrjanowicz K, Knapik-Kowalczuk J, Jurkiewicz K, Paluch M. Crystallization of supercooled fenofibrate studied at ambient and elevated pressures. Phys Chem Chem Phys 2017; 19:9879-9888. [DOI: 10.1039/c7cp00823f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of the thermodynamic history in the T,p-plane of the crystallization process of a supercooled liquid.
Collapse
Affiliation(s)
- Grzegorz Szklarz
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Karolina Adrjanowicz
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Justyna Knapik-Kowalczuk
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Karolina Jurkiewicz
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Marian Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
| |
Collapse
|
20
|
Szklarz G, Adrjanowicz K, Dulski M, Knapik J, Paluch M. Dielectric Relaxation Study at Ambient and Elevated Pressure of the Modeled Lipophilic Drug Fenofibrate. J Phys Chem B 2016; 120:11298-11306. [DOI: 10.1021/acs.jpcb.6b08511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Grzegorz Szklarz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
- Institute of Material
Science, Univeristy of Silesia, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Justyna Knapik
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
21
|
Xavier-Junior FH, Huang N, Vachon JJ, Rehder VLG, do Egito EST, Vauthier C. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content. Pharm Res 2016; 33:3031-3043. [PMID: 27599989 DOI: 10.1007/s11095-016-2025-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. METHOD Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. RESULTS Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. CONCLUSION O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.
Collapse
Affiliation(s)
- Francisco Humberto Xavier-Junior
- Université Paris-Sud, Institut Galien Paris Sud - UMR CNRS 8612 - Faculté de Pharmacie, 92296, Chatenay-Malabry Cedex, France.,Universidade Federal do Rio Grande do Norte, Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis, 59010-180, Natal, RN, Brazil
| | - Nicolas Huang
- Université Paris-Sud, Institut Galien Paris Sud - UMR CNRS 8612 - Faculté de Pharmacie, 92296, Chatenay-Malabry Cedex, France
| | - Jean-Jacques Vachon
- Université Paris-Sud, Institut Galien Paris Sud - UMR CNRS 8612 - Faculté de Pharmacie, 92296, Chatenay-Malabry Cedex, France
| | - Vera Lucia Garcia Rehder
- Universidade Estadual de Campinas (UNICAMP) - Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas. Rua Alexandre Cazelatto, 999, Vila Betel, Paulínia, SP, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Universidade Federal do Rio Grande do Norte, Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis, 59010-180, Natal, RN, Brazil
| | - Christine Vauthier
- Université Paris-Sud, Institut Galien Paris Sud - UMR CNRS 8612 - Faculté de Pharmacie, 92296, Chatenay-Malabry Cedex, France.
| |
Collapse
|
22
|
Nguyen-Kim V, Prévost S, Seidel K, Maier W, Marguerre AK, Oetter G, Tadros T, Gradzielski M. Solubilization of active ingredients of different polarity in Pluronic® micellar solutions – Correlations between solubilizate polarity and solubilization site. J Colloid Interface Sci 2016; 477:94-102. [DOI: 10.1016/j.jcis.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 11/28/2022]
|
23
|
Li G, Yang F, Liu M, Su X, Zhao M, Zhao L. Development and application of a UPLC-MS/MS method for simultaneous determination of fenofibric acid and berberine in rat plasma: application to the drug-drug pharmacokinetic interaction study of fenofibrate combined with berberine after oral administrati. Biomed Chromatogr 2016; 30:1075-1082. [PMID: 26577601 DOI: 10.1002/bmc.3652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Guofei Li
- Department of Pharmacy; Shengjing Hospital of China Medical University; Shenyang China
| | - Fan Yang
- School of Pharmacy; Shenyang Pharmaceutical University; 103 Wenhua Road Shenyang 110016 China
| | - Mei Liu
- Department of Pharmacy; Shengjing Hospital of China Medical University; Shenyang China
| | - Xianying Su
- Northeast Pharmaceutical (Shenyang) Science & Technology Development Co., Ltd.; Shenyang China
| | - Mingming Zhao
- Department of Pharmacy; Shengjing Hospital of China Medical University; Shenyang China
| | - Limei Zhao
- Department of Pharmacy; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
24
|
Singh M, Kanoujia J, Singh P, Tripathi CB, Arya M, Parashar P, Sinha VR, Saraf SA. Development of an α-linolenic acid containing soft nanocarrier for oral delivery: in vitro and in vivo evaluation. RSC Adv 2016. [DOI: 10.1039/c6ra15166c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Use of α-linolenic acid as an oil phase for microemulsion preparation with synergistic effect of oil in lowering of lipid levels in combination with simvastatin.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| | - Pooja Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| | - Chandra B. Tripathi
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| | - Malti Arya
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| | - Vivek R. Sinha
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014 (UT)
- India
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University)
- Lucknow-226025
- India
| |
Collapse
|
25
|
Hong EP, Kim JY, Kim SH, Hwang KM, Park CW, Lee HJ, Kim DW, Weon KY, Jeong SY, Park ES. Formulation and Evaluation of a Self-microemulsifying Drug Delivery System Containing Bortezomib. Chem Pharm Bull (Tokyo) 2016; 64:1108-17. [DOI: 10.1248/cpb.c16-00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eon-Pyo Hong
- College of Pharmacy, Kyung Hee University
- R&D Center, Handok Inc
| | | | | | | | | | - Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University
| | | | | | | |
Collapse
|
26
|
Kim SJ, Lee SE, Ng CL, Lee JK, Kim TH, Cho CW, Park JS. Preformulation and in vitro physicochemical characterization of fenofibrate-loaded emulsion. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0223-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Froelich A, Osmałek T, Kunstman P, Roszak R, Białas W. Rheological and textural properties of microemulsion-based polymer gels with indomethacin. Drug Dev Ind Pharm 2015. [DOI: 10.3109/03639045.2015.1066799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anna Froelich
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland and
| | - Tomasz Osmałek
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland and
| | - Paweł Kunstman
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland and
| | - Rafał Roszak
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland and
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| |
Collapse
|
28
|
Gurram AK, Deshpande PB, Kar SS, Nayak UY, Udupa N, Reddy MS. Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems. Indian J Pharm Sci 2015; 77:249-57. [PMID: 26180269 PMCID: PMC4502138 DOI: 10.4103/0250-474x.159596] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 11/23/2014] [Accepted: 04/17/2015] [Indexed: 11/04/2022] Open
Abstract
Pharmaceutical research is focused in designing novel drug delivery systems to improve the bioavailability of poorly water soluble drugs. Self-microemulsifying drug delivery systems, one among the lipid-based dosage forms were proven to be promising in improving the oral bioavailability of such drugs by enhancing solubility, permeability and avoiding first-pass metabolism via enhanced lymphatic transport. Further, they have been successful in avoiding both inter and intra individual variations as well as the dose disproportionality. Aqueous insoluble drugs, in general, show greater solubility in lipid based excipients, and hence they are formulated as lipid based drug delivery systems. The extent of solubility of a hydrophobic drug in lipid excipients i.e. oil, surfactant and co-surfactant (components of self-microemulsifying drug delivery systems) greatly affects the drug loading and in producing stable self-microemulsifying drug delivery systems. The present review highlighted the influence of physicochemical factors and structural features of the hydrophobic drug on its solubility in lipid excipients and an attempt was made to explore the role of each component of self-microemulsifying drug delivery systems in the formation of stable microemulsion upon dilution.
Collapse
Affiliation(s)
- A K Gurram
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - P B Deshpande
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - S S Kar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - N Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - M S Reddy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| |
Collapse
|
29
|
Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:964051. [PMID: 27382619 PMCID: PMC4897095 DOI: 10.1155/2014/964051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Ease of administration and painless approach made oral route the most preferred. Poor oral bioavailability is pronounced with the majority of recent active ingredients because of dissolution rate limited absorption. Failure to attain intended therapeutic effect of the poor water soluble drugs by this route led to development of novel drug delivery systems which will fulfill therapeutic needs with minimum dose. Although many formulation approaches like solid dispersions, complexation, pH modification, and cocrystals exist, lipid based delivery systems finding increased appliance with the apparent increase in absorption of drug. Among lipid based formulations, self-microemulsifying formulations (droplet size < 100 nm) are evident to improve the oral bioavailability of hydrophobic drugs primarily due to their efficiency in facilitating solubilization and in presenting the hydrophobic drug in solubilized form whereby dissolution process can be circumvented. Various components that are used to formulate these dosage forms like surfactants and lipids contribute to the overall improvement in oral bioavailability via promoting the lymphatic transport; thereby hepatic first pass metabolism can be surmounted. The present paper gives exhaustive information on the formulation design and characterization of SMEDDS along with the probable mechanisms by which the bioavailability can be improved with SMEDDS.
Collapse
|
30
|
In Vitro Intestinal Permeability Studies and Pharmacokinetic Evaluation of Famotidine Microemulsion for Oral Delivery. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:452051. [PMID: 27379272 PMCID: PMC4897392 DOI: 10.1155/2014/452051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022]
Abstract
The absolute bioavailability of famotidine after oral administration is about 40-45% and absorbance only in the initial part of small intestine may be due to low intestinal permeability. Hence, an olive oil based microemulsion formulation with Tween-80 as surfactant and PEG-400 as cosurfactant was developed by using water titration method with the aim of enhancing the intestinal permeability as well as oral bioavailability. In vitro drug permeation in intestine after 8 h for all formulations varied from 30.42% to 78.39% and most of the formulations showed enhanced permeation compared to pure drug (48.92%). Famotidine microemulsion exhibited the higher absorption and C max achieved from the optimized famotidine formulation (456.20 ng·h/ml) was higher than the standard (126.80 ng·h/mL). It was found that AUC0-24 h obtained from the optimized famotidine test formulation (3023.5 ng·h/mL) was significantly higher than the standard famotidine (1663.3 ng·h/mL). F-1 demonstrated a longer (6 h) T max compared with standard drug (2 h) and sustained the release of drug over 24 h. The bioavailability of F-1 formulation was about 1.8-fold higher than that of standard drug. This enhanced bioavailability of famotidine loaded in microemulsion system might be due to increased intestinal permeability.
Collapse
|
31
|
Piwowarczyk K, Wybieralska E, Baran J, Borowczyk J, Rybak P, Kosińska M, Włodarczyk AJ, Michalik M, Siedlar M, Madeja Z, Dobrucki J, Reiss K, Czyż J. Fenofibrate enhances barrier function of endothelial continuum within the metastatic niche of prostate cancer cells. Expert Opin Ther Targets 2014; 19:163-76. [PMID: 25389904 DOI: 10.1517/14728222.2014.981153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Extravasation of circulating cancer cells is an important step of the metastatic cascade and a potential target for anti-cancer strategies based on vasoprotective drugs. Reports on anti-cancer effects of fenofibrate (FF) prompted us to analyze its influence on the endothelial barrier function during prostate cancer cell diapedesis. RESEARCH DESIGN AND METHODS In vitro co-cultures of endothelial cells with cancer cells imitate the 'metastatic niche' in vivo. We qualitatively and quantitatively estimated the effect of 25 μM FF on the events which accompany prostate carcinoma cell diapedesis, with the special emphasis on endothelial cell mobilization. RESULTS Fenofibrate attenuated cancer cell diapedesis via augmenting endothelial cell adhesion to the substratum rather than through the effect on intercellular communication networks within the metastatic niche. The inhibition of endothelial cell motility was accompanied by the activation of PPARα-dependent and PPARα-independent reactive oxygen species signaling, Akt and focal adhesion kinase (FAK) phosphorylation, in the absence of cytotoxic effects in endothelial cells. CONCLUSIONS Fenofibrate reduces endothelial cell susceptibility to the paracrine signals received from prostate carcinoma cells, thus inhibiting endothelial cell mobilization and reducing paracellular permeability of endothelium in the metastatic niche. Our data provide a mechanistic rationale for extending the clinical use of FF and for the combination of this well tolerated vasoactive drug with the existing multidrug regimens used in prostate cancer therapy.
Collapse
Affiliation(s)
- Katarzyna Piwowarczyk
- Jagiellonian University, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology , Krakow , Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Y, Song J, Tian N, Cai J, Huang M, Xing Q, Wang Y, Wu C, Hu H. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution. Int J Pharm 2014; 473:316-25. [DOI: 10.1016/j.ijpharm.2014.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
33
|
Weng T, Qi J, Lu Y, Wang K, Tian Z, Hu K, Yin Z, Wu W. The role of lipid-based nano delivery systems on oral bioavailability enhancement of fenofibrate, a BCS II drug: comparison with fast-release formulations. J Nanobiotechnology 2014; 12:39. [PMID: 25248304 PMCID: PMC4180958 DOI: 10.1186/s12951-014-0039-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to compare various formulations solid dispersion pellets (SDP), nanostructured lipid carriers (NLCs) and a self-microemulsifying drug delivery system (SMEDDS) generally accepted to be the most efficient drug delivery systems for BCS II drugs using fenofibrate (FNB) as a model drug. The size and morphology of NLCs and SMEDDS was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Their release behaviors were investigated in medium with or without pancreatic lipase. The oral bioavailability of the various formulations was compared in beagle dogs using commercial Lipanthyl® capsules (micronized formulation) as a reference. The release of FNB from SDP was much faster than that from NLCs and SMEDDS in medium without lipase, whereas the release rate from NLCs and SMEDDS was increased after adding pancreatic lipase into the release medium. However, NLCs and SMEDDS increased the bioavailability of FNB to 705.11% and 809.10%, respectively, in comparison with Lipanthyl® capsules, although the relative bioavailability of FNB was only 366.05% after administration of SDPs. Thus, lipid-based drug delivery systems (such as NLCs and SMEDDS) may have more advantages than immediate release systems (such as SDPs and Lipanthyl® capsules).
Collapse
|
34
|
Fan Y, Ma L, Zhang W, Wang J, Chen Y, Gao Y, Feng W, Zhong L, Song X. The design of propolis flavone microemulsion and its effect on enhancing the immunity and antioxidant activity in mice. Int J Biol Macromol 2014; 65:200-7. [PMID: 24463267 DOI: 10.1016/j.ijbiomac.2014.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
The objective of the present study was to formulate a microemulsion system for improving the activity of propolis flavone (PF). Pseudo-ternary phase diagrams were constructed to evaluate the existence area of PF microemulsion (PFM). The formulation was characterized by particle size, zeta potential, morphology and stability. The results showed that the optimal PFM formulation consists of 5.3% ethyl acetate, 14% RH-40, 7% ethanol and 73.7% water (w/w), with a solubility of PF up to 3.0 mg mL(-1). The immune-enhancing and antioxidant activity of PFM in vitro and in vivo were performed. The results showed that PFM could significantly promote the splenocyte proliferation and the secretion of IL-2 and IFN-γ in vitro. In vivo, PFM at high and medium doses was able to significantly increase the thymus and spleen indices, enhance splenocyte activity and improve the contents of IgG and IgM in serum, it could also improve the antioxidant activity, significantly increase the levels of superoxidase dismutase and glutathione peroxidase, and decrease the malondialdehyde levels compared with PF. These results indicated that microemulsion could be used as an effective formulation for enhancing the activity of PF. Therefore, microemulsion would be expected to exploit into a new-type preparation of PF.
Collapse
Affiliation(s)
- Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junmin Wang
- Laboratory Animal Center, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuanyuan Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liuqing Zhong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
35
|
Borkar N, Xia D, Holm R, Gan Y, Müllertz A, Yang M, Mu H. Investigating the correlation between in vivo absorption and in vitro release of fenofibrate from lipid matrix particles in biorelevant medium. Eur J Pharm Sci 2014; 51:204-10. [DOI: 10.1016/j.ejps.2013.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/04/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
36
|
Zhang H, Meng Y, Wang X, Dai W, Wang X, Zhang Q. Pharmaceutical and pharmacokinetic characteristics of different types of fenofibrate nanocrystals prepared by different bottom-up approaches. Drug Deliv 2013; 21:588-94. [DOI: 10.3109/10717544.2013.865815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Kamel R, Basha M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bfopcu.2013.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine 2013; 8:3769-79. [PMID: 24124365 PMCID: PMC3794992 DOI: 10.2147/ijn.s51578] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Baicalin is one of the main bioactive flavone glucuronides derived as a medicinal herb from the dried roots of Scutellaria baicalensis Georgi, and it is widely used for the treatment of fever, inflammation, and other conditions. Due to baicalin’s poor solubility in water, its absolute bioavailability after oral administration is only 2.2%. The objective of this study was to develop a novel baicalin-loaded nanoemulsion to improve the oral bioavailability of baicalin. Based on the result of pseudoternary phase diagram, the nanoemulsion formulation consisting of soy-lecithin, tween-80, polyethylene glycol 400, isopropyl myristate, and water (1:2:1.5:3.75:8.25, w/w) was selected for further study. Baicalin-loaded nanoemulsions (BAN-1 and BAN-2) were prepared by internal or external drug addition and in vivo and in vitro evaluations were performed. The results showed that the mean droplet size, polydispersity index, and drug content of BAN-1 and BAN-2 were 91.2 ± 2.36 nm and 89.7 ± 3.05 nm, 0.313 ± 0.002 and 0.265 ± 0.001, and 98.56% ± 0.79% and 99.40% ± 0.51%, respectively. Transmission electron microscopy revealed spherical globules and confirmed droplet size analysis. After dilution 30-fold with water, the solubilization capacity of BAN-1 and BAN-2 did not change. In vitro release results showed sustained-release characteristics. BAN-1 formulation was stable for at least 6 months and was more stable than BAN-2. In rats, the area under the plasma drug concentration-time curve value of BAN-1 was 1.8-fold and 7-fold greater than those of BAN-2 and free baicalin suspension after oral administration at a dose of 100 mg/kg. In conclusion, these results demonstrated that the baicalin-loaded nanoemulsion formulation, in particular BAN-1, was very effective for improving the oral bioavailability of baicalin and exhibited great potential for future clinical application.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China ; Drug and Functional Food Research Center, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Shakeel F, Haq N, Alanazi FK, Alsarra IA. Impact of various nonionic surfactants on self-nanoemulsification efficiency of two grades of Capryol (Capryol-90 and Capryol-PGMC). J Mol Liq 2013; 182:57-63. [DOI: 10.1016/j.molliq.2013.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Fei Y, Kostewicz ES, Sheu MT, Dressman JB. Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro-in silico-in vivo approach. Eur J Pharm Biopharm 2013; 85:1274-84. [PMID: 23500116 DOI: 10.1016/j.ejpb.2013.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/14/2013] [Accepted: 03/02/2013] [Indexed: 12/21/2022]
Abstract
Lipid-based formulations have established a significant role in the formulation of poorly soluble drugs for oral administration. In order to better understand their potential advantages over solid oral dosage forms, we studied the solubility and dissolution/precipitation characteristics of three self-microemulsifying drug delivery system (SMEDDS) formulations and one suspension of micronized fenofibrate in lipid excipients, for which pharmacokinetic studies had already been reported in the open literature. The in vitro dispersion/dissolution studies were carried out in biorelevant media using USP II apparatus. These were followed up by in silico simulations using STELLA® software, in which not only dispersion/dissolution, but also the precipitation and re-dissolution of fenofibrate was taken into account. While unformulated drug exhibited poor solubility (0.22 μg/mL in FaSSGF and 4.31 μg/mL in FaSSIF-V2(PO4)) and dissolved less than 2% in dissolution tests, the solubility of fenofibrate in the presence of the lipid excipients increased dramatically (e.g., to 65.44 μg/mL in the presence of the Myritol 318/TPGS/Tween 80 SMEDDS) and there was an attendant increase in the dissolution (over 80% from capsules containing the Myritol 318/TPGS/Tween 80 SMEDDS and about 20% from the dispersion of fenofibrate in lipid excipients). For the four lipid-based fenofibrate formulations studied, combining in vitro data in biorelevant media with in silico simulation resulted in accurate prediction of the in vivo human plasma profiles. The point estimates of C(max) and AUC ratio calculated from the in silico and in vivo plasma profiles fell within the 0.8-1.25 range for the SMEDDS solution and capsule formulations, suggesting an accurate simulation of the in vivo profiles. This similarity was confirmed by calculation of the respective f2 factors. Sensitivity analysis of the simulation profiles revealed that the SMEDDS formulations had virtually removed any dependency of absorption on the dissolution rate in the small intestine, whereas for the dispersion in lipid excipients, this barrier remained. Such results pave the way to optimizing the performance of oral lipid-based formulations via an in vitro-in silico-in vivo approach.
Collapse
Affiliation(s)
- Yang Fei
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
41
|
Dai J, Kim JC. Chemical Stability and Skin Permeation of Fucoxanthin-Loaded Microemulsions. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50091-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Shah P, Swarnkar D, Parikh R. Development and characterization of microemulsion containing antihypertensive agent using factorial design. J Pharm Bioallied Sci 2012; 4:S69-70. [PMID: 23066212 PMCID: PMC3467821 DOI: 10.4103/0975-7406.94143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Microemulsion which act as a carrier for drug having poor water solubility, were formulated by the use of excipients having safety of administration and solubility of drug component. The phase study was carried out using isopropyl myristate, cremophor-el, propylene glycol and water with different ratios of components. Microemulsion region was chosen on basis of area covered. The % oil and % surfactant were selected as the independent factors and particle size and viscosity were selected as the dependent factors for the 2(2) Full Factorial Design. The optimized formulation showed the overcoming of the dissolution barrier helping in the formulation and administration.
Collapse
Affiliation(s)
- P Shah
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta: Petlad, Dist: Anand, Gujarat, India
| | | | | |
Collapse
|
43
|
Yi C, Zhong H, Tong S, Cao X, Firempong CK, Liu H, Fu M, Yang Y, Feng Y, Zhang H, Xu X, Yu J. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug. Int J Nanomedicine 2012; 7:5067-78. [PMID: 23049254 PMCID: PMC3459840 DOI: 10.2147/ijn.s34612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the growth inhibition activity of Flammulina velutipes sterol (FVS) against certain human cancer cell lines (gastric SGC and colon LoVo) and to evaluate the optimum microemulsion prescription, as well as the pharmacokinetics of encapsulated FVS. METHODS Molecules present in the FVS isolate were identified by gas chromatography/mass spectrometry analysis. The cell viability of FVS was assessed with methyl thiazolyl tetrazolium (MTT) bioassay. Based on the solubility study, phase diagram and stability tests, the optimum prescription of F. velutipes sterol microemulsions (FVSMs) were determined, followed by FVSMs characterization, and its in vivo pharmacokinetic study in rats. RESULTS The chemical composition of FVS was mainly ergosterol (54.8%) and 22,23-dihydroergosterol (27.9%). After 72 hours of treatment, both the FVS (half-maximal inhibitory concentration [IC(50)] = 11.99 μg · mL(-1)) and the standard anticancer drug, 5-fluorouracil (IC(50) = 0.88 μg · mL(-1)) exhibited strong in vitro antiproliferative activity against SGC cells, with IC(50) > 30.0 μg · mL(-1); but the FVS performed poorly against LoVo cells (IC(50) > 40.0 μg · mL(-1)). The optimal FVSMs prescription consisted of 3.0% medium chain triglycerides, 5.0% ethanol, 21.0% Cremophor EL and 71.0% water (w/w) with associated solubility of FVS being 0.680 mg · mL(-1) as compared to free FVS (0.67 μg · mL(-1)). The relative oral bioavailability (area-under-the-curve values of ergosterol and 22,23-dihydroergosterol showed a 2.56-fold and 4.50-fold increase, respectively) of FVSMs (mean diameter ~ 22.9 nm) as against free FVS were greatly enhanced. CONCLUSION These results indicate that the FVS could be a potential candidate for the development of an anticancer drug and it is readily bioavailable via microemulsion formulations.
Collapse
Affiliation(s)
| | | | | | | | - Caleb K Firempong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Hongfei Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Min Fu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yan Yang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yingshu Feng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Huiyun Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
44
|
Ryu JK, Yoo SD. Preparation and evaluation of bicyclol microemulsions for enhanced oral bioavailability. Drug Dev Ind Pharm 2012; 38:1313-8. [DOI: 10.3109/03639045.2011.650643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|