1
|
Tomás M, Sousa LGV, Oliveira AS, Gomes CP, Palmeira-de-Oliveira A, Cavaleiro C, Salgueiro L, Cerca N, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Vaginal Sheets with Thymbra capitata Essential Oil for the Treatment of Bacterial Vaginosis: Design, Characterization and In Vitro Evaluation of Efficacy and Safety. Gels 2023; 9:gels9040293. [PMID: 37102907 PMCID: PMC10137747 DOI: 10.3390/gels9040293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
We aimed to incorporate Thymbra capitata essential oil (TCEO), a potent antimicrobial natural product against bacterial vaginosis (BV)-related bacteria, in a suitable drug delivery system. We used vaginal sheets as dosage form to promote immediate relief of the typical abundant vaginal discharge with unpleasant odour. Excipients were selected to promote the healthy vaginal environment reestablishment and bioadhesion of formulations, while the TCEO acts directly on BV pathogens. We characterized vaginal sheets with TCEO in regard to technological characterization, predictable in vivo performance, in vitro efficacy and safety. Vaginal sheet D.O (acid lactic buffer, gelatine, glycerine, chitosan coated with TCEO 1% w/w) presented a higher buffer capacity and ability to absorb vaginal fluid simulant (VFS) among all vaginal sheets with EO, showing one of the most promising bioadhesive profiles, an excellent flexibility and structure that allow it to be easily rolled for application. Vaginal sheet D.O with 0.32 µL/mL TCEO was able to significantly reduce the bacterial load of all in vitro tested Gardnerella species. Although vaginal sheet D.O presented toxicity at some concentrations, this product was developed for a short time period of treatment, so this toxicity can probably be limited or even reversed when the treatment ends.
Collapse
Affiliation(s)
- Mariana Tomás
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Lúcia G. V. Sousa
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Sofia Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Carolina P. Gomes
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Labfit-HPRD Health Products Research and Development, Lda Edifício UBIMedical, Estrada Municipal 506, 6200-281 Covilhã, Portugal
| | - Carlos Cavaleiro
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-790 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-790 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Labfit-HPRD Health Products Research and Development, Lda Edifício UBIMedical, Estrada Municipal 506, 6200-281 Covilhã, Portugal
| |
Collapse
|
2
|
Cohen J, Shull D, Reed S. Co-delivery of an HIV prophylactic and contraceptive using PGSU as a long-acting multipurpose prevention technology. Expert Opin Drug Deliv 2023; 20:285-299. [PMID: 36654482 DOI: 10.1080/17425247.2023.2168642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Poly(glycerol sebacate) urethane (PGSU) elastomers formulated with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), levonorgestrel (LNG), or a combination thereof can function as multipurpose prevention technology implants for prophylaxis against HIV and unintended pregnancies. For these public health challenges, long-acting drug delivery technologies may improve patient experience and adherence. Traditional polymers encounter challenges delivering multiple drugs with dissimilar physiochemical properties. PGSU offers an alternative option that successfully delivers hydrophilic EFdA alongside hydrophobic LNG. METHODS This article presents the formulation, design, and characterization of PGSU implants, highlighting the impact of API loading, dimensions, and individual- versus combination-loading on release rates. RESULTS Co-delivery of hydrophilic EFdA alongside hydrophobic LNG acted as a porogen to accelerate LNG release. Increasing the surface area of LNG-only implants increased LNG release. All EFdA-LNG, EFdA-only, and LNG-only formulated implants demonstrated low burst release and linear release kinetics over 245 or 122 days studied to date. CONCLUSION PGSU co-delivers two APIs for HIV prevention and contraception at therapeutically relevant concentrations in vitro from a single bioresorbable, elastomeric implant. A new long-acting polymer technology, PGSU demonstrates linear-release kinetics, dual delivery of APIs with disparate physiochemical properties, and biocompatibility through long-term subcutaneous implantation. PGSU can potentially meet the demands of complex MPT or fixed-dose combination products, where better solutions can serve and empower patients.
Collapse
|
3
|
Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022; 213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.
Collapse
|
4
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
5
|
Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, Gralińska K, Ekert M, Puri V, Wrotyńska-Barczyńska J, Michniak-Kohn B. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021; 13:884. [PMID: 34203714 PMCID: PMC8232205 DOI: 10.3390/pharmaceutics13060884] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.
Collapse
Affiliation(s)
- Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Aleksandra Falana
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Kinga Gralińska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Michał Ekert
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Vinam Puri
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Joanna Wrotyńska-Barczyńska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
6
|
Martín-Illana A, Cazorla-Luna R, Notario-Pérez F, Bedoya LM, Rubio J, Tamayo A, Ruiz-Caro R, Veiga MD. Smart vaginal bilayer films of Tenofovir based on Eudragit® L100/natural polymer for the prevention of the sexual transmission of HIV. Int J Pharm 2021; 602:120665. [PMID: 33933643 DOI: 10.1016/j.ijpharm.2021.120665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In the absence of an effective vaccine, vaginal microbicides are essential for preventing the sexual transmission of HIV to women. Antiretroviral vaginal films have emerged as promising choices, especially those offering mucoadhesivity and controlled drug release. Tenofovir-loaded bilayer films based on Eudragit® L100 (EL100) and a biopolymer - gum arabic, karaya gum, pectin or tragacanth gum - were developed in a single-stage process. Cytotoxicity studies in three human cell lines indicated no toxicity of the excipients at the concentrations tested. Raman spectroscopy and SEM confirmed the formation of the two layers and their anchoring. Texture analysis showed no major differences between the batches. The swelling of the film is conditioned by its biopolymer nature and by the amount of EL100, which acts as structuring agent thus enhancing swelling. Tragacanth gum-based batches showed high mucoadhesion regardless the amount of EL100. The controlled release of Tenofovir in simulated vaginal fluid was faster in the presence of simulated seminal fluid due to the dissolution of EL100. Films containing 400 mg of EL100 and tragacanth gum are promising candidates for future studies, as they could sexually safeguard women from HIV for at least one week and ensure greater protection during intercourse.
Collapse
Affiliation(s)
- Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Raúl Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Fernando Notario-Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Luis Miguel Bedoya
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Juan Rubio
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain.
| | - Aitana Tamayo
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María Dolores Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Vartak R, Patki M, Menon S, Jablonski J, Mediouni S, Fu Y, Valente ST, Billack B, Patel K. β-cyclodextrin polymer/Soluplus® encapsulated Ebselen ternary complex (EβpolySol) as a potential therapy for vaginal candidiasis and pre-exposure prophylactic for HIV. Int J Pharm 2020; 589:119863. [DOI: 10.1016/j.ijpharm.2020.119863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
|
8
|
Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. J Control Release 2020; 327:477-499. [DOI: 10.1016/j.jconrel.2020.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
|
9
|
Design, optimization and characterization of novel topical formulations containing Triamcinolone Acetonide. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Machado RM, Tomás M, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. The vaginal sheet: an innovative form of vaginal film for the treatment of vaginal infections. Drug Dev Ind Pharm 2020; 46:135-145. [PMID: 31893929 DOI: 10.1080/03639045.2019.1711386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: To develop and characterize a new form of vaginal film.Significance: This formulation is intended to overcome some known limitations of traditional dosage forms. It has an absorptive intention to control symptoms and to improve the treatment of vaginal infections characterized by excessive fluid. The vaginal sheet is a thick drug delivery system easy to manipulate, nontoxic and composed by biocompatible macromolecules and polymers, such as gelatin and chitosan.Methods: The sheets were prepared by formulating gelatin or chitosan based gels isolated or in combination, in association with a plasticizer. Gels were subsequently lyophilized. Different proportions of polymer:plasticizer were tested. Lactose was used as a surrogate to study powder incorporation in the formulation. All formulations were analyzed regarding their organoleptic characteristics, texture (hardness and resilience), in vitro absorption efficiency of vaginal fluid simulant - VFS (pH 4 and 5), pH and acid-buffering capacity.Results: Different properties were obtained by varying polymer and plasticizer proportions. Combinations including gelatin with propylene glycol showed the best organoleptic characteristics. The best proportions were 4:3 and 4:5. Up to 10% of powder was successfully incorporated in the formulation. Hardness and resilience of formulations were largely dependent on the concentration of plasticizer. Absorption of vaginal fluid was found to be highly efficient, especially at pH 5. Buffering capacity, upon dilution in normal saline and VFS, was generally higher for VFS pH 4.Conclusions: The vaginal sheet is a promising solid drug delivery system able to further incorporate drugs to treat vaginal clinical conditions characterized by excessive fluid.
Collapse
Affiliation(s)
- Rita Monteiro Machado
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal
| | - Mariana Tomás
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal
| | - José Martinez-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Li J, Regev G, Patel SK, Patton D, Sweeney Y, Graebing P, Grab S, Wang L, Sant V, Rohan LC. Rational Design of a Multipurpose Bioadhesive Vaginal Film for Co-Delivery of Dapivirine and Levonorgestrel. Pharmaceutics 2019; 12:E1. [PMID: 31861267 PMCID: PMC7023193 DOI: 10.3390/pharmaceutics12010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection and unintended pregnancy, which can lead to life-threatening complications, are two major burdens for female reproductive health. To address these pressing health issues, multipurpose prevention technologies (MPTs) are proposed to deliver two or more drugs simultaneously. MPTs could offer several benefits for users such as improved convenience, increased effectiveness, reduced cost, and decreased environmental burden. Here, we report the development, and in vitro and in vivo assessment of a bioadhesive vaginal film as a coitally-independent MPT dosage form for delivering dapivirine (DPV) and levonorgestrel (LNG) to prevent HIV infection and unintended pregnancy, respectively. After confirming the feasibility of bioadhesive film use for weekly drug delivery in vivo through colpophotography and MRI evaluation, the pharmacokinetics (PK) of DPV/LNG single entity and combination bioadhesive films was investigated in pigtailed macaques (n = 5). Both drugs from single entity or combination films were able to provide sustained drug release in vivo. The combination film showed lower local tissue clearance for DPV and exhibited significantly increased plasma concentration for LNG as compared to the single entity film. This proof-of-concept study demonstrates the ability of this novel bioadhesive film platform to deliver LNG and DPV simultaneously as an MPT product for the prevention of HIV infection and unintended pregnancy.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Galit Regev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Sravan Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (D.P.); (Y.S.)
| | - Yvonne Sweeney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (D.P.); (Y.S.)
| | - Philip Graebing
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Sheila Grab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Lin Wang
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| |
Collapse
|
12
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Bedoya LM, Peña J, Veiga MD. Development of mucoadhesive vaginal films based on HPMC and zein as novel formulations to prevent sexual transmission of HIV. Int J Pharm 2019; 570:118643. [PMID: 31446023 DOI: 10.1016/j.ijpharm.2019.118643] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Although vaginal films were initially developed for a fast release of the drug, with the adequate formulation they can also be useful for sustained release. The latest strategies for the prevention of the sexual transmission of HIV have moved towards sustained-release dosage forms, so films may be an effective strategy that could also improve the patient's comfort. A hydrophilic polymer (hydroxypropylmethyl cellulose) and an amphiphilic polymer (zein) have been evaluated for the development of Tenofovir sustained-release vaginal films. The modification of the film's properties by the inclusion of polar (glycerol and polyethylene glycol 400 (PEG)) and amphiphilic (tributyl citrate and oleic acid) plasticisers was also evaluated. The films' physicochemical and mechanical properties were determined. The in vitro release of Tenofovir from the films and their bioadhesive capacity and behaviour in simulated vaginal fluid were also assessed. The combination of hydroxypropylmethyl cellulose and zein in films (ratio 1:5), with the inclusion of PEG (40% w/w) proved not only to have excellent mechanical properties, but was also able to release TFV in a sustained manner for 120 h and remain attached to biological tissues throughout this time. This film could be an interesting option for the prevention of sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Araceli Martín-Illana
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Raúl Cazorla-Luna
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Luis-Miguel Bedoya
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
| | - Juan Peña
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Singh K, Sarafianos SG, Sönnerborg A. Long-Acting Anti-HIV Drugs Targeting HIV-1 Reverse Transcriptase and Integrase. Pharmaceuticals (Basel) 2019; 12:E62. [PMID: 31010004 PMCID: PMC6631967 DOI: 10.3390/ph12020062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the major factors contributing to HIV-1 drug resistance is suboptimal adherence to combination antiretroviral therapy (cART). Currently, recommended cART for HIV-1 treatment is a three-drug combination, whereas the pre-exposure prophylaxis (PrEP) regimens consist of one or two antivirals. Treatment regimens require adherence to a once or twice (in a subset of patients) daily dose. Long-acting formulations such as injections administered monthly could improve adherence and convenience, and thereby have potential to enhance the chances of expected outcomes, although long-lasting drug concentrations can also contribute to clinical issues like adverse events and development of drug resistance. Globally, two long-acting antivirals have been approved, and fifteen are in clinical trials. More than half of investigational long-acting antivirals target HIV-1 reverse transcriptase (HIV-1 RT) and/or integrase (HIV-1 IN). Here, we discuss the status and potential of long-acting inhibitors, including rilpivirine (RPV), dapivirine (DPV), and 4-ethynyl-2-fluoro-2-deoxyadenosine (EFdA; also known as MK-8591), which target RT, and cabotegravir (CAB), which targets IN. The outcomes of various clinical trials appear quite satisfactory, and the future of long-acting HIV-1 regimens appears bright.
Collapse
Affiliation(s)
- Kamal Singh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Anders Sönnerborg
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
| |
Collapse
|
14
|
4'-Ethynyl-2-fluoro-2'-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor. Curr Opin HIV AIDS 2019; 13:294-299. [PMID: 29697468 DOI: 10.1097/coh.0000000000000467] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside reverse transcriptase inhibitor (NRTI) with a novel mechanism of action, unique structure, and amongst NRTIs, unparalleled anti-HIV-1 activity. We will summarize its structure and function, antiviral activity, resistance profile, and potential as an antiretroviral for use in the treatment and preexposure prophylaxis of HIV-1 infection. RECENT FINDINGS EFdA is active against wild-type (EC50 as low as 50 pmol/l) and most highly NRTI-resistant viruses. The active metabolite, EFdA-triphosphate, has been shown to have a prolonged intracellular half-life in human and rhesus (Rh) blood cells. As a result, single drug doses tested in simian immunodeficiency virus mac251-infected Rh macaques and HIV-1-infected individuals exhibited robust antiviral activity of 7-10 days duration. Preclinical studies of EFdA as preexposure prophylaxis in the Rh macaque/simian/human immunodeficiency virus low-dose intrarectal challenge model have shown complete protection when given in clinically relevant doses. SUMMARY EFdA is a novel antiretroviral with activity against both wild-type and NRTI-resistant viruses. As a result of the prolonged intracellular half-life of its active moiety, it is amenable to flexibility in dosing of at least daily to weekly and perhaps longer.
Collapse
|
15
|
Abstract
Oral pre-exposure prophylaxis for the prevention of HIV-1 transmission (HIV PrEP) has been widely successful as demonstrated by a number of clinical trials. However, studies have also demonstrated the need for patients to tightly adhere to oral dosing regimens in order to maintain protective plasma and tissue concentrations. This is especially true for women, who experience less forgiveness from dose skipping than men in clinical trials of HIV PrEP. There is increasing interest in long-acting (LA), user-independent forms of HIV PrEP that could overcome this adherence challenge. These technologies have taken multiple forms including LA injectables and implantables. Phase III efficacy trials are ongoing for a LA injectable candidate for HIV PrEP. This review will focus on the design considerations for both LA injectable and implantable platforms for HIV PrEP. Additionally, we have summarized the existing LA technologies currently in clinical and pre-clinical studies for HIV PrEP as well as other technologies that have been applied to HIV PrEP and contraceptives. Our discussion will focus on the potential application of these technologies in low resource areas, and their use in global women's health.
Collapse
|
16
|
Abstract
Sexual intercourse (vaginal and anal) is the predominant mode of human immunodeficiency virus (HIV) transmission. Topical microbicides used in an on-demand format (i.e., immediately before or after sex) can be part of an effective tool kit utilized to prevent sexual transmission of HIV. The effectiveness of prevention products is positively correlated with adherence, which is likely to depend on user acceptability of the product. The development of an efficacious and acceptable product is therefore paramount for the success of an on-demand product. Acceptability of on-demand products (e.g., gels, films, and tablets) and their attributes is influenced by a multitude of user-specific factors that span behavioral, lifestyle, socio-economic, and cultural aspects. In addition, physicochemical properties of the drug, anatomical and physiological aspects of anorectal and vaginal compartments, issues relating to large-scale production, and cost can impact product development. These factors together with user preferences determine the design space of an effective, acceptable, and feasible on-demand product. In this review, we summarize the interacting factors that together determine product choice and its target product profile.
Collapse
Affiliation(s)
- Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Lisa Cencia Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018; 542:242-252. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
Abstract
Paclitaxel (PTX) belongs to a class of taxane anti-tumor drug used for the clinic treatment of breast cancer, ovarian cancer, non-small-cell lung cancer, and so on. PTX has poor water solubility and oral bioavailability. It is generally administered via intravenous (i.v.) infusion. Traditional PTX injectable preparations contain Cremophor-EL and ethanol to improve its solubility, which would result in adverse reactions like severe hypersensitivity, neutropenia, etc. Adverse reactions can be reduced only by complicated pretreatment with glucocorticoid and antihistamines drugs and followed by PTX slow infusion for three hours, which has brought significant inconvenience to the patients. Though, a new-generation PTX formulation, Abraxane, free of Cremophor-EL and ethanol, is still being administrated by frequent i.v. infusions and extremely expensive. Therefore, non-injection administration of PTX is urgently needed to avoid the side effects as well as reduce inconvenience to the patients. Recently, a variety of non-injection drug delivery systems (DDSs) of PTX have been developed. This review aims to discuss the progress of non-injectable administration systems of PTX, including oral administration systems, vaginal administration systems, implantable DDSs, transdermal DDSs and intranasal administration for the future study and clinical applications.
Collapse
Affiliation(s)
- Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Manfei Fu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
18
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Machado A, Cunha-Reis C, Araújo F, Nunes R, Seabra V, Ferreira D, das Neves J, Sarmento B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater 2016; 44:332-40. [PMID: 27544812 DOI: 10.1016/j.actbio.2016.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Topical pre-exposure prophylaxis (PrEP) with antiretroviral drugs holds promise in preventing vaginal transmission of HIV. However, significant biomedical and social issues found in multiple past clinical trials still need to be addressed in order to optimize protection and users' adherence. One approach may be the development of improved microbicide products. A novel delivery platform comprising drug-loaded nanoparticles (NPs) incorporated into a thin polymeric film base (NPs-in-film) was developed in order to allow the vaginal administration of the microbicide drug candidate tenofovir. The system was optimized for relevant physicochemical features and characterized for biological properties, namely cytotoxicity and safety in a mouse model. Tenofovir-loaded poly(lactic-co-glycolic acid) (PLGA)/stearylamine (SA) composite NPs with mean diameter of 127nm were obtained with drug association efficiency above 50%, and further incorporated into an approximately 115μm thick, hydroxypropyl methylcellulose/poly(vinyl alcohol)-based film. The system was shown to possess suitable mechanical properties for vaginal administration and to quickly disintegrate in approximately 9min upon contact with a simulated vaginal fluid (SVF). The original osmolarity and pH of SVF was not affected by the film. Tenofovir was also released in a biphasic fashion (around 30% of the drug in 15min, followed by sustained release up to 24h). The incorporation of NPs further improved the adhesive potential of the film to ex vivo pig vaginal mucosa. Cytotoxicity of NPs and film was significantly increased by the incorporation of SA, but remained at levels considered tolerable for vaginal delivery of tenofovir. Moreover, histological analysis of genital tissues and cytokine/chemokine levels in vaginal lavages upon 14days of daily vaginal administration to mice confirmed that tenofovir-loaded NPs-in-film was safe and did not induce any apparent histological changes or pro-inflammatory response. Overall, obtained data support that the proposed delivery system combining the use of polymeric NPs and a film base may constitute an exciting alternative for the vaginal administration of microbicide drugs in the context of topical PrEP. STATEMENT OF SIGNIFICANCE The development of nanotechnology-based microbicides is a recent but promising research field seeking for new strategies to circumvent HIV sexual transmission. Different reports detail on the multiple potential advantages of using drug nanocarriers for such purpose. However, one important issue being frequently neglected regards the development of vehicles for the administration of microbicide nanosystems. In this study, we propose and detail on the development of a nanoparticle-in-film system for the vaginal delivery of the microbicide drug candidate tenofovir. This is an innovative approach that, to our best knowledge, had never been tested for tenofovir. Results, including those from in vivo testing, sustain that the proposed system is safe and holds potential for further development as a vaginal microbicide product.
Collapse
|
20
|
Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release 2016; 243:43-53. [PMID: 27664327 DOI: 10.1016/j.jconrel.2016.09.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
Combining two or more antiretroviral drugs in one medical product is an interesting but challenging strategy for developing topical anti-HIV microbicides. We developed a new vaginal delivery system comprising the incorporation of nanoparticles (NPs) into a polymeric film base - NPs-in-film - and tested its ability to deliver tenofovir (TFV) and efavirenz (EFV). EFV-loaded poly(lactic-co-glycolic acid) NPs were incorporated alongside free TFV into fast dissolving films during film manufacturing. The delivery system was characterized for physicochemical properties, as well as genital distribution, local and systemic 24h pharmacokinetics (PK), and safety upon intravaginal administration to mice. NPs-in-film presented suitable technological, mechanical and cytotoxicity features for vaginal use. Retention of NPs in vivo was enhanced both in vaginal lavages and tissue when associated to film. PK data evidenced that vaginal drug levels rapidly decreased after administration but NPs-in-film were still able to enhance drug concentrations of EFV. Obtained values for area-under-the-curve for EFV were around one log10 higher than those for the free drugs in aqueous vehicle (phosphate buffered saline). Film alone also contributed to higher and more prolonged local drug levels as compared to the administration of TFV and EFV in aqueous vehicle. Systemic exposure to both drugs was low. NPs-in-film was found to be safe upon once daily vaginal administration to mice, with no significant genital histological changes or major alterations in cytokine/chemokine profiles being observed. Overall, the proposed NPs-in-film system seems to be an interesting delivery platform for developing combination vaginal anti-HIV microbicides.
Collapse
|
21
|
Mishra R, Joshi P, Mehta T. Formulation, development and characterization of mucoadhesive film for treatment of vaginal candidiasis. Int J Pharm Investig 2016; 6:47-55. [PMID: 27014619 PMCID: PMC4787062 DOI: 10.4103/2230-973x.176487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of the present investigation was formulation, optimization and characterization of mucoadhesive film of clotrimazole (CT) which is patient-convenient and provides an effective alternative for the treatment of vaginal candidiasis. CT is an antimycotic drug applied locally for the treatment of vaginal candidiasis. Materials and Methods: Mucoadhesive vaginal films were prepared by solvent casting technique using hydroxyl propylcellulose and sodium alginate as polymers. Propylene glycol and polyethylene glycol-400 were evaluated as plasticizers. The mucoadhesive vaginal films were evaluated for percentage elongation, tensile strength, folding endurance, drug content, in vitro disintegration time, in vitro dissolution study, swelling index, bioadhesive strength, and diffusion study. Results: Among various permeation enhancers used, isopropyl myristate was found to be suitable. To evaluate the role of the concentration of permeation enhancer and concentration of polymers in the optimization of mucoadhesive vaginal film, 32 full factorial design was employed. Optimized batch showed in vitro disintegration time, 18 min; drug content, 99.83%; and tensile strength, 502.1 g/mm2. In vitro diffusion study showed that 77% drug diffusion occurred in 6 h. This batch was further evaluated by scanning electron microscopy indicating uniformity of the film. In vitroLactobacillus inhibition and in vitro antifungal activity of optimized batch showed an inhibitory effect against Candida albicans and no effect on Lactobacillus, which is a normal component of vaginal flora. Conclusion: Mucoadhesive vaginal film of CT is an effective dosage form for the treatment of vaginal candidiasis.
Collapse
Affiliation(s)
- Renuka Mishra
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Priyanka Joshi
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Kim DW, Kim KS, Seo YG, Lee BJ, Park YJ, Youn YS, Kim JO, Yong CS, Jin SG, Choi HG. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int J Pharm 2015; 495:67-74. [DOI: 10.1016/j.ijpharm.2015.08.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/13/2015] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
|
23
|
Vaginal Microbicide Film Combinations of Two Reverse Transcriptase Inhibitors, EFdA and CSIC, for the Prevention of HIV-1 Sexual Transmission. Pharm Res 2015; 32:2960-72. [PMID: 25794967 DOI: 10.1007/s11095-015-1678-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. METHODS Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. RESULTS No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. CONCLUSIONS Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.
Collapse
|
24
|
Grammen C, Van den Mooter G, Appeltans B, Michiels J, Crucitti T, Ariën KK, Augustyns K, Augustijns P, Brouwers J. Development and characterization of a solid dispersion film for the vaginal application of the anti-HIV microbicide UAMC01398. Int J Pharm 2014; 475:238-44. [PMID: 25175729 DOI: 10.1016/j.ijpharm.2014.08.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
The purpose of this work was to design and evaluate a vaginal film delivery system for UAMC01398, a novel non-nucleoside reverse transcriptase inhibitor currently under investigation for use as an anti-HIV microbicide. UAMC01398 (1mg) films consisting of hydroxypropylmethylcellulose (HPMC) and polyethylene glycol 400 (PEG400) in different ratios were prepared by solvent evaporation. Based on its flexibility, softness and translucent appearance, the 30% PEG400 and 70% HPMC containing film was selected for further assessment. The vaginal film formulation was fast-dissolving (<10 min in 1 mL of vaginal fluid simulant), stable up to at least one month and safe toward epithelial cells and lactobacilli. Furthermore, formulating UAMC01398 into the film dosage form did not influence its antiviral activity. Powder X-ray diffraction revealed the amorphous nature of the UAMC01398 film, resulting in enhanced compound permeation across the epithelial HEC-1A cell layer, presumably owing to the induction of supersaturation. The in vivo vaginal tissue uptake of UAMC01398 in rabbits, as measured by systemic concentrations, was increased compared to the previously established non-solubilizing gel (significant difference) and sulfobutyl ether-β-cyclodextrin (5%) containing gel. To conclude, we identified a film formulation suitable for the vaginal delivery of UAMC01398.
Collapse
Affiliation(s)
| | | | | | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tania Crucitti
- HIV/STD Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|